
ALIAS: A Modular Tool for Finding Backdoors for SAT

Stepan Kochemazov and Oleg Zaikin

ISDCT SB RAS, Irkutsk, Russia
veinamond@gmail.com, zaikin.icc@gmail.com

Abstract. We present ALIAS, a modular tool aimed at finding backdoors for
hard SAT instances. Here by a backdoor for a specific SAT solver and SAT for-
mula we mean a set of its variables, all possible instantiations of which lead to
construction of a family of subformulas with the total solving time less than that
for an original formula. For a particular backdoor, the tool uses the Monte-Carlo
algorithm to estimate the runtime of a solver when partitioning an original prob-
lem via said backdoor. Thus, the problem of finding a backdoor is viewed as a
black-box optimization problem. The tool’s modular structure allows to employ
state-of-the-art SAT solvers and black-box optimization heuristics. In practice,
for a number of hard SAT instances, the tool made it possible to solve them much
faster than using state-of-the-art multithreaded SAT-solvers.

1 Introduction

Informally, a backdoor is some hidden flaw in a design of a system that allows one to
do something within that system that should not be possible otherwise. In the context
of Constraint Satisfaction Problems (CSP) a backdoor is usually a small subset of prob-
lem variables which has a peculiar property: instantiating backdoor variables results in
a subproblem that is significantly easier to solve. For the first time the concept of back-
doors arose in the context of CSP in [26], where strong backdoors were introduced and
analyzed. Their main disadvantage is that they rely on polynomial algorithms to solve
simplified subproblems, and thus strong backdoors that can be used in practice are very
hard to find [15, 23].

In the present paper, we consider more general backdoors to SAT, that do not rely
on polynomial algorithms to solve simplified subproblems. In particular, we search for
such sets of variables of a considered SAT instance that all possible instantiations of
backdoor variables results in a family of subproblems, for which a total solving time
is less than that for an original SAT instance. It is clear that such subproblems can
be solved in parallel. For a given SAT instance C, solver S and backdoor B one can
effectively compute the estimation of runtime of S on a family of subproblems produced
by assigning values to variables from B in C using a Monte-Carlo method. Thus there
is defined a black-box pseudo-Boolean function with aforementioned inputs. Then, it
is possible to use arbitrary black-box pseudo-Boolean optimization methods to traverse
the search space of possible general backdoors to find one with a good estimation.

We implemented this approach in the form of modulAr tooL for fInding bAckdoors
for Sat (ALIAS) – a convenient customizable scalable tool that can employ arbitrary
incremental state-of-the-art SAT solvers and black-box optimization heuristics to search
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for backdoors to hard SAT instances. The found backdoor is then used to solve the
corresponding instance by the same incremental solver. Thereby, ALIAS can be viewed
as a tool for constructing backdoor-based divide-and-conquer parallel SAT solvers. The
ALIAS tool and our benchmarks are available at https://github.com/Nauchnik/alias.

2 On Backdoors to SAT

Suppose C is a SAT instance, X is a set of its variables, and A is a polynomial algo-
rithm. If we assign values α = (α1, . . . , αk) to variables from set B,|B| = k, B ⊆ X ,
then the simplified SAT instance is denoted as C[α/B].

Definition 1 (Backdoor [26]). A nonempty subset B of variables from C is called a
backdoor in C for A if for some instantiation β of variables from B an algorithm A
returns a satisfying assignment of C[β/B].

Note that the definition of backdoor implies only satisfiable instances and can not be
easily extended to unsatisfiable ones. Also, even if backdoor is known, it is necessary
to find such β that A would be able to solve a considered instance.

Definition 2 (Strong Backdoor [26]). A nonempty subset B of variables from C is a
strong backdoor in C for A if for any instantiation γ of variables from B an algorithm
A returns a satisfying assignment or concludes unsatisfiability of C[γ/B].

For SAT instances the natural choice of polynomial algorithmA is the Unit Propagation
rule (UP) [8]. A Strong Backdoor w.r.t UP is called Strong Unit Propagation Backdoor
Set (SUPBS). For any SAT instance the whole set of its variables is a SUPBS (further it
is called trivial SUPBS). If a SAT instance encodes a Boolean circuit, a set of variables
encoding its input can usually serve as a SUPBS.

Compared to a backdoor a strong backdoor is much more powerful: given a strong
backdoor B, one can traverse through possible instantiations of variables from B thus
solving C in time ≈ 2|B| × |C| (here |C| is the size of a SAT instance C in computer
memory). However, it is unclear what to do if, for example, |B| > 100. Also, the
problem of finding strong backdoors for SAT is particularly hard, see e.g. [15].

The main disadvantage of the notion of strong backdoor lies in polynomial complex-
ity requirement for an algorithm used to solve constructed subproblems. The following
definition in a way extends the notion of backdoors to non-polynomial algorithms. As-
sume that G is an arbitrary complete SAT solving algorithm.

Definition 3 (Non-deterministic Oracle Backdoor Set (NOBS) [21]). A non-empty
set B of variables from C is a Non-deterministic Oracle Backdoor Set (NOBS) w.r.t.
algorithm G if the total running time of G given formulas C[β/B], β ∈ {0, 1}|B|, is
less than the running time of G on the original formula C.

Without formally defining NOBS, the corresponding idea was used in a number of pa-
pers on application of SAT to cryptanalysis instances, such as [7, 9, 22, 27]. Compared
to strong backdoors, NOBS do not give a straightforward way to estimate the runtime
of G for solving C using backdoor B. However, it can be done via the Monte-Carlo
method [17] as follows. We treat the average runtime of G on an arbitrary subproblem
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C[γ/B], γ ∈ {0, 1}|B| as a random variable. The intermediate goal is to estimate its
expected value. For this purpose, first, construct a random sample of size N of instan-
tiations of variables from B:{β1, . . . , βN}, βi ∈ {0, 1}|B|, i ∈ {1, . . . , N}. Second,
measure the runtime of G on C[βi/B], i ∈ {1, . . . , N}, denote it by TG(βi). Then the
runtime estimation can be computed using the formula:

Runtime Estimation(C,B,G,N) = 2|B| × 1

N
×

N∑
i=1

TG(βi) (1)

Since G is a complete algorithm, theoretically, the value of Runtime Estimation
function can be computed for any B. Essentially, it is a blackbox function. One pos-
sible way to find a good backdoor B is for fixed C, G and N to minimize the value
of Runtime Estimation(C,B,G,N) by varying B. Since any backdoor B can be
uniquely represented by a Boolean vector from {0, 1}|X|, where X is the set of vari-
ables from C, it means that the corresponding search space is {0, 1}|X|.

3 The ALIAS tool

Essentially, the ALIAS tool implements the blackbox optimization in the space of
possible NOBS. The blackbox function in ALIAS is computed according to (1). The
flowchart of the tool is presented in Figure 1.
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Fig. 1: ALIAS flowchart

ALIAS consists of four interconnected modules: ALIAS LS, ALIAS.PY, SAMPLER
and GENIPAINTERVAL program. The latter three implement the aforementioned black-
box function which for a given incremental SAT solver, SAT instance and NOBS com-
putes a runtime estimation for this instance. Detailed comments are presented below.

ALIAS LS module Note that due to the fact that the search space of possible NOBS
in the general case is extremely large, any possible way to restrict it is welcomed. Be-
cause of this, in ALIAS the search space of possible NOBS always consists of possible
subsets of a SUPBS, either trivial or nontrivial.
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Now, assume that a SUPBS for a considered SAT instance contains N variables.
Then the search space has 2N points, each point corresponding to some NOBS. For each
NOBS we can compute the runtime estimation using (1) (for a fixed SAT solver). So the
goal of ALIAS LS is to traverse the search space towards NOBSs with minimal runtime
estimations. Currently, for this purpose ALIAS LS uses a simple optimization algorithm
based on the Greedy Best First Search (GBFS) [19]. GBFS uses SUPBS as a starting
point to construct a baseline runtime estimation. Then it checks all points from the
neighborhood of the starting point (a set of points at Hamming distance of 1). If it finds
a better point, then it starts checking its neighborhood. If all points from a neighborhood
are worse than the current best known value, then it means that a local minimum is
reached. Since the computation of (1) for an arbitrary point is quite costly, all passed
points are stored in order to avoid recomputing (1) for corresponding backdoors.

The GBFS implementation in ALIAS uses two additional heuristics. First, at the
beginning of the search the algorithm tries to quickly traverse the search space by re-
moving large amount of randomly chosen variables (10 in our experiments) from the
current record point at each step as long as it leads to updating the record. It often al-
lows to quickly move from NOBS with hundreds of variables to that with dozens. The
second heuristic is that when a local minimum is reached, the algorithm tries to jump
from it by constructing a new starting point by permuting the current record point. The
algorithm stops either if the time limit is exceeded, if the limit of jumps is reached or if
the current runtime estimation is lower than the (scaled) remaining time.

On the current stage the ALIAS components are configured in a way to support
optimization tools, which were used in Configurable SAT Solver Competition (CSSC)
2013 and 2014 [14], such as ParamILS [13], SMAC [12], and GGA [1]. Similar to our
implementation, all these tools make use of the .pcs file that contains Boolean variables
corresponding to the starting point (SUPBS).

ALIAS.PY module The ALIAS.PY is an auxiliary Python 3.6 script that ties together
other ALIAS components. It launches and controls all computations, processes the data
from SAMPLER and GENIPAINTERVAL, constructs the runtime estimation for a given
SAT instance, solver and NOBS, thus implementing a blackbox function. It can also
be used to solve a SAT instance using the provided NOBS. In all modes ALIAS.PY can
employ multiple CPU cores.

When constructing a runtime estimation, ALIAS.PY implements the Monte-Carlo
method: it uses SAMPLER to construct a random sample of subproblems (in the form of
assumptions for a SAT solver), then gives them in blocks of fixed size to GENIPAINTER-
VAL solver (by a block we mean a set of instantiations of backdoor variables, in form
of assumptions), computes the average solving time for an arbitrary subproblem from
random sample, uses it to compute runtime estimation and returns it to ALIAS LS.

In the solving mode ALIAS.PY splits all possible instantiations of a provided NOBS
variables into small blocks and feeds them to GENIPAINTERVAL until either all blocks
are processed or a satisfying assignment is found.

SAMPLER module SAMPLER is a program for generating random samples that is im-
plemented on the basis of COMINISATPS solver [18]. Generally speaking, a random
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sample can be constructed in many different ways. In the most simple case for a NOBS
B we can simply take N randomly generated vectors from {0, 1}|B| and view them
as a random sample by assigning corresponding values to variables from B. This ap-
proach was used in [9, 20, 22]. However, the described straightforward sampling proce-
dure might not benefit fully from the incremental solving ability of state-of-the-art SAT
solvers because the assignments of variables are too distant from each other (for ex-
ample Hamming distance-wise). Thus, by default SAMPLER uses the sampling strategy
proposed in [27]. Informally, it attempts to construct sequences of backdoor instan-
tiations which are close to each other as nodes of the search tree. At the same time
SAMPLER when possible puts into a random sample only subproblems that can not be
solved using UP.

GENIPAINTERVAL module The GENIPAINTERVAL program, given a CNF formula
and a set of assumptions processes the latter sequentially in incremental way. To build
it one needs the IPASIR API [4] and sources of some generic IPASIR-compatible
incremental SAT solver. It is natural to consider only incremental solvers since the
subproblems produced by instantiating NOBS variables are very similar to each other.
Currently, different GENIPAINTERVAL instances running in parallel are not configured
to share any information.

4 Experimental results

In all experiments described below we employed one node of the HPC-cluster “Aca-
demician V.M. Matrosov” 1 (2 × 18-core Intel Xeon E5-2695 CPUs and 128 Gb of
RAM). Each considered solver was launched on 1 node with 36 threads.

We benchmarked ALIAS against the Top 3 solvers from the SAT Competition 2017
Parallel track: SYRUP [3], PLINGELING [5] and PAINLESS-MAPLECOMSPS [10]. All
these solvers are portfolio. As IPASIR-based solvers for ALIAS we used the Top 3
solvers from the SAT Competition 2017 Incremental track: ABCDSAT [6], GLUCOSE
[2] and RISS [16]. The resulting parallel solvers are denoted as ALIAS-ABCDSAT,
ALIAS-GLUCOSE and ALIAS-RISS.

In preliminary experiments we compared the effectiveness of GBFS implementation
in ALIAS LS with that of SMAC tool [12] as blackbox heuristics for finding NOBS. For
all considered instances GBFS found backdoors with better runtime estimation, thus it
was used in all experiments below.

Each ALIAS solver works as follows: first ALIAS LS is launched with a specified
time limit. Once it found a good NOBS or exceeded the time limit, the best found
NOBS is then used to solve the instance for the remaining time (if any) by instantiating
backdoor variables and solving corresponding subproblems in parallel.

Two benchmark sets of hard SAT instances were considered. The first set consists
of instances, in which a relatively small SUPBS is known. It is formed by SAT encod-
ings of cryptanalysis instances for the alternating step generator (ASG) [11] and two
its modifications, MASG and MASG0 [25]. SAT instances for these problems were

1 Irkutsk Supercomputer Center of SB RAS, http://hpc.icc.ru
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taken from [27]: 10 for each of ASG-72, ASG-96, MASG-72 and MASG0-72 (40 in
total). Naturally, for ASG-72, MASG-72 and MASG0-72 there is a SUPBS of 72 vari-
ables and for ASG-96 a SUPBS of 96 variables (corresponding to secret keys). Thus,
ALIAS-based solvers were provided with this information. Each instance from this set
has exactly one satisfying assignment.

The second benchmark set contains hard small crafted SAT instances. To construct
it we first took all crafted instances with less than 500 variables from SAT Competitions
2007, 2009, 2011, 2014, 2016, 2017 and also challenge-105.cnf described in [24]. Then
we launched SYRUP, PLINGELING and PAINLESS-MAPLECOMSPS on each of them
with the time limit of 5000 seconds. It turned out that 33 instances were not solved in
time by any solver: 7 from SAT Competition 2007, 10 from SAT Competition 2009,
9 from SAT Competition 2011, 6 from SAT Competition 2014 and also challenge-
105.cnf. Thus, these 33 instances form the second benchmark set. For the instances
from the second benchmark set the ALIAS-based solvers were given only a trivial
SUPBS – the whole set of variables of a corresponding formula.

The 6 considered solvers were launched on two described sets (73 instances in total)
with the time limit of 1 day. The obtained results are presented in Figures 2a and 2b.
Note, that 26 out of 33 instances from the second benchmark set were not solved within
the time limit by any considered solver. Table 1 lists the instances from the second
set, which were solved within the time limit by at least one solver. This table also
contains data on found backdoors. For ASG-72, ASG-96, MASG-72 and MASG0-72
the information is presented for 1 instance out of 10, the results for other instances from
the series are similar. Here |B| is a size of a found backdoor, BT – time spent to find it,
RE – its runtime estimation (1), ST – the solving time using the found backdoor.

Table 1: Data on found backdoors. RE, BT, ST – time in seconds.
instance alias-glucose alias-abcd alias-riss

|B| RE BT ST |B| RE BT ST |B| RE BT ST
ASG-72-0 23 365 412 432 15 390 1713 210 20 308 330 103
MASG-72-0 19 347 348 7 19 330 443 44 19 380 585 38
MASG0-72-0 22 417 503 361 18 1167 2195 397 22 723 882 548
ASG-96-0 26 34548 13270 9177 26 36704 22605 42300 27 37661 12872 42583
mod4-2-9-u2 29 1.4e+6 86400 - 28 1.3e+5 19059 - 31 1.8e+5 24510 -
sgen1-sat-250 31 1.7e+5 15740 63220 33 3.2e+5 9379 - 29 1.8e+6 86400 -
sgen6-1200-5 26 1045 1503 14990 26 3684 3685 8092 24 2045 2050 5431
sgen6-1320-5 28 13974 4299 40934 28 16068 4623 45897 29 23388 3281 42833
sgen6-1440-5 29 39239 11896 70725 30 62516 18079 56168 31 144779 13092 -
sgen3-n240 31 1.0e+5 5505 37590 27 17504 7120 51026 30 73406 10341 31451
challenge-105 24 6121 6234 12780 25 3414 3422 22069 26 4840 4218 22033

On the first benchmark set the ALIAS-based solvers greatly outperform the com-
petitors. We also tested ALIAS on ASG tests with trivial SUPBS provided (instead
of much smaller nontrivial one) and it yielded much worse results. Hence, the knowl-
edge of a nontrivial SUPBS is a big advantage. On the second set the situation is more
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Fig. 2: Comparison of 3 ALIAS-based solvers with the Top 3 solvers from the SAT
Competition 2017 Parallel track

complex: there are instances which are solved by ALIAS-based solvers but not by the
competitors and vice versa. Among crafted instances only sgen3-n240-s78945233-sat
and sgen1-sat-250-100 are satisfiable.

It should be noted, that strictly speaking, the blackbox optimization procedure em-
ployed in ALIAS does not guarantee that the found backdoors are really NOBS (see
Section 2). It turned out, that for ASG-72, MASG-72 and MASG0-72 only few found
backdoors are NOBS. A possible reason for this is that these instances are quite simple
even for sequential solvers. Nevertheless, ALIAS-based solvers and their parallel com-
petitors showed comparable results on them. Meanwhile, for all ASG-96 instances the
found backdoors are NOBS, and here ALIAS-based solvers are clear winners. Note,
that in Figure 2a values from 31 to 40 on the x-axis correspond to the ASG-96 in-
stances. In the second benchmark set, for sgen6-1200-5-1 and challenge-105 the found
backdoors are indeed NOBS. For the remaining instances it was impractical to check it,
because it would take up to several weeks per instance.

5 Conclusion

The experiments show that the approach to solving hard SAT instances based on sam-
pling, while not a silver bullet, clearly has its applications. We believe that the presented
ALIAS tool may be useful in the study of hard SAT instances and sometimes can shed
the light on some aspects of their inner structure undetectable by state-of-the-art SAT
solvers.

Acknowledgements. We thank anonymous reviewers for their insightful comments
that made it possible to significantly improve the quality of presentation.

The research was funded by Russian Science Foundation (project No. 16-11-10046).
Stepan Kochemazov was additionally supported by Council for Grants of the President
of the Russian Federation (stipend no. SP-1829.2016.5).



8 S. Kochemazov, O. Zaikin

References
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