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Abstract12

The availability of efficient answer set solvers (e.g., clasp and its descendants [8, 2]) gave Answer13

set programming (ASP) a leading role in languages for knowledge representation and reasoning.14

The simple syntax is surely one of the main strengths of the paradigm; moreover the stable models15

semantics intuitively resembles the human reasoning process in a clean and logical way. ASP is16

regarded as the computational embodiment of non-monotonic reasoning because of its simple17

syntax and elegant non-monotonic semantics. The popularity of ASP is demonstrated by the18

increasing number of authors publishing ASP-based research work in artificial intelligence as well19

as non-logic programming venues, and its use as a natural alternative to other paradigms (e.g.,20

SAT solving). Most of the answer set solvers are currently developed as two-phases procedures21

(save some exceptions — e.g., [3, 11]) . The first stage is called grounding and computes the22

equivalent propositional logic program of an input logic program, instantiating each rule over23

the domain of its variables. Modern solvers also apply some simplifications and heuristics to24

the program, in order to ease the computation during the second stage. The computation of25

the answer sets of a logic program is carried out by the solving stage, which also deals with the26

non-deterministic reasoning involved in the model.27

ASP encoding of sophisticated applications in real-world domains (e.g., planning, phylogenetic28

inference) highlighted the strengths and weaknesses of this paradigm. Most of the times, the29

technology underlying the ASP solvers, lacks the ability to keep up with the demand of complex30

applications. This has been, for example, highlighted in a study on the use of ASP to address31

complex planning problems [13, 5, 6]. With respect to these studies, it is clear that one of the32

main limitations of this paradigm resides in the grounding process and the ability to compute the33

stable models of large ground programs. This limitation is even more obvious when the whole34

computation is performed in-memory.35

This work tries to partially solve the problem of processing large ground programs that can36

exceed capabilities for in-memory computation—using parallelism and distributed computing.37

We aim to study, analyse and develop a fully distributed answer set solver and use a distributed38

environment to efficiently represent and reason over large programs whose grounding would be39

prohibitive for a single general-purpose machine. We popose a solver that uses MapReduce, a40

distributed programming paradigm, mainly used to work with huge volumes of data on structured41

networks of computers (workers) [4]. Implementations of the MapReduce model (e.g., [4]) are42

usually executed on clusters to take full advantage of the parallel nature of the architecture. The43

paradigm provides a basic interface consisting of two methods: map(·) that maps a function over44

a collection of objects and outputs a collection of “key-value” tuples; reduce(·) that takes as input45

a collection of key-value pairs and merges the values of all entries with the same key; the merging46

operation is user-defined.47
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23:2 MASP-Reduce

An inspiration for the work proposed here comes from the proposal by Konczak et al. [9, 10],48

which addresses the problem of finding the answer sets of a ground normal logic program by49

means of computing the admissible colorings of the relative Rule Dependency Graph (RDG).50

This is done by defining a set of operators on the RDG of a program. These operators deal with51

the non-deterministic coloring of nodes and the deterministic propagation of colors. [1] used this52

technique in the development of the NoMoRe (Non-monotonic Reasoning with Logic Programs)53

solver. This implementation is purely sequential and in-memory.54

In this research we investigate the above-mentioned graph coloring approach and extended55

it so as to include weight constraint rules. We investigate its mapping to MapReduce and other56

distributed programming paradigms that build over MapReduce. The solver we are developing,57

called MASP-Reduce, is written in Scala [12, 7], it uses Apache Spark [14] as a library for58

distributed computation, and it natively works on the Hadoop Distributed File System (HDFS).59

The library gives access to a complete set of primitives for theMapReduce programming paradigm,60

and on top of this, it implements GraphX, a distributed direct multigraph with a complete and61

easy-to-use interface [14].62

The development of MASP-Reduce is heavily based on the concept of rule dependency graph63

of ASP programs. Graphs turn out to be a good data structure for distributed programming,64

since they can directly exploit the underlying network configuration. Up to now, the software65

is comprehensive of a solver and of a graph generator that converts a ground program in a rule66

dependency graph (see Figure below). As a future work, we plan to implement a distributed67

grounder taking full advantage of the MapReduce paradigm, so that the Grounding block is68

incorporated into the Parallelization block.69
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We tested the solver both in a local environment (a notebook) and in a distributed environ-71

ment, namely four nodes of a cluster, where each node is a 12-core Intel CPUs, with each core dual72

hyperthreaded for a total of 48 OS-visible processors per node; each node has 256GB of RAM,73

∼3TB of hard disk local storage and ∼512GB solid state local storage. The implementation74

works on simple examples. However, during the development we encountered a few challenges75

that prevented us from providing a full testing phase report. Spark is presented as an easy and76

ready-to-use tool for distributed programming; this might be true in a few cases, but most of the77

times one needs to fine-tune the system in order to reach an optimal configuration; this tuning78

process takes into account a vast number of parameters, and is mostly program-specific—and it79

is work in progress for our project.80

As far as we know, this is the first work addressing the implementation of a distributed81

answer set solver using MapReduce paradigm and non-standard graph coloring as answer set82

characterization. This deeply influenced own roadmap, which couldn’t take advices from previous83

works, leading to an incremental approach to development.84

The system is still far from complete; we are planning on working on the development of a85

distributed grounder in the next few months. We are also considering the implementation of a86

few coloring heuristics and learning techniques to improve the performances of the solver.87
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