
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *
A
E
C

Exploiting Synchrony and Symmetry in
Relational Verification

Lauren Pick,
Grigory Fedyukovich[0000−0003−1727−4043],

Aarti Gupta

Princeton University, Princeton, USA
{lpick,grigoryf,aartig}@cs.princeton.edu

Abstract. Relational safety specifications describe multiple runs of the
same program or relate the behaviors of multiple programs. Approaches
to automatic relational verification often compose the programs and an-
alyze the result for safety, but a naively composed program can lead
to difficult verification problems. We propose to exploit relational spec-
ifications for simplifying the generated verification subtasks. First, we
maximize opportunities for synchronizing code fragments. Second, we
compute symmetries in the specifications to reveal and avoid redundant
subtasks. We have implemented these enhancements in a prototype for
verifying 𝑘-safety properties on Java programs. Our evaluation confirms
that our approach leads to a consistent performance speedup on a range
of benchmarks.

1 Introduction

The verification of relational program specifications is of wide interest, having
many applications. Relational specifications can describe multiple runs of the
same program or relate the behaviors of multiple programs. An example of the
former is the verification of security properties such as non-interference, where
different executions of the same program are compared to check whether there
is a leak of sensitive information. The latter is useful for checking equivalence or
refinement relationships between programs after applying some transformations
or during iterative development of different software versions.

There is a rich history of work on the relational verification of programs.
Representative efforts include those that target general analysis using relational
program logics and frameworks [8,31,5,27,4] or specific applications such as se-
curity verification [7,9,1], compiler validation [32,16], and differential program
analysis [19,22,23,17,21]. These efforts are supported by tools that range from
automatic verifiers to interactive theorem-provers. In particular, many auto-
matic verifiers are based on constructing a composition over the programs under
consideration, where the relational property over multiple runs (of the same or
different programs) is translated into a functional property over a single run of
a composed program. This has the benefit that standard techniques and tools
for program verification can then be applied.

However, it is also well known that a naively composed program can lead to
difficult verification problems for automatic verifiers. For example, a sequential
composition of two loops would require effective techniques for generating loop
invariants. In contrast, a parallel composition would provide potential for align-
ing the loop bodies, where relational invariants may be easier to establish than
a functional loop invariant. Examples of techniques that exploit opportunities
for such alignment include use of type-based analysis with self-composition [29],
allowing flexibility in composition to be a mix of sequential and parallel [6], ex-
ploiting structurally equivalent programs for compiler validation [32], lockstep
execution of loops in reasoning using Cartesian Hoare Logic [27], and merging
Horn clause rules for relational verification [13,24].

In this paper, we present a compositional framework that leverages rela-
tional specifications to further simplify the generated verification tasks on the
composed program. Our framework is motivated by two main strategies. The
first strategy, similar to the efforts mentioned above, is to exploit opportunities
for synchrony, i.e., aligning code fragments across which relational invariants
are easy to derive, perhaps due to functional similarity or due to similar code
structure, etc. Specifically, we choose to synchronize the programs at conditional
blocks as well as at loops. Similar to closely related efforts [6,27], we would like
to execute loops in lockstep so that relational invariants can be derived over
corresponding iterations over the loop bodies. Specifically, we propose a novel
technique that analyzes the relational specifications to infer, under reasonable
assumptions, maximal sets of loops that can be executed in lockstep. Synchro-
nizing at conditional blocks in addition to loops enables simplification due to
relational specifications and conditional guards that might result in infeasible
or redundant subtasks. Pruning of such infeasible subtasks has been performed
and noted as important in existing work [27], and synchronizing at conditional
blocks allows us to prune eagerly. More importantly, aligning different programs
at conditional statements sets up our next strategy.

Our second strategy is the exploitation of symmetry in relational specifica-
tions. Due to control flow divergences or non-lockstep executions of loops, even
different copies of the same program may proceed along different code fragments.
However, some of the resulting verification subtasks may be indistinguishable
from each other due to underlying symmetries among related fragments. We an-
alyze the relational specifications, expressed as formulas in first-order theories
(e.g., linear integer arithmetic) with multi-index variables, to discover symme-
tries and exploit them to prune away redundant subtasks. Prior works on use
of symmetry in model checking [15,11,20,14] are typically based on symmetric
states satisfying the same set of indexed atomic propositions, and do not con-
sider symmetries among different indices in specifications. To the best of our
knowledge, ours is the first work to extract such symmetries in relational spec-
ifications, and to use them for pruning redundant subtasks during relational
verification. For extracting these symmetries, we have lifted core ideas from
symmetry-discovery and symmetry-breaking in SAT formulas [12] to richer for-
mulas in first-order theories.

2

if (y𝑗 > 20) {

while (i𝑗 < 10) {

x𝑗 *= i𝑗;

i𝑗 ++;

}

} else {

while (i𝑗 < 10) {

x𝑗 ++;

i𝑗 ++;

}

}

𝑦1 > 20 ∧ 𝑦2 > 20 ∧ 𝑦3 > 20

𝑦1 > 20 ∧ 𝑦2 > 20 ∧ 𝑦3 ≤ 20

𝑦1 > 20 ∧ 𝑦2 ≤ 20 ∧ 𝑦3 > 20

𝑦1 > 20 ∧ 𝑦2 ≤ 20 ∧ 𝑦3 ≤ 20

𝑦1 ≤ 20 ∧ 𝑦2 > 20 ∧ 𝑦3 > 20

𝑦1 ≤ 20 ∧ 𝑦2 > 20 ∧ 𝑦3 ≤ 20

𝑦1 ≤ 20 ∧ 𝑦2 ≤ 20 ∧ 𝑦3 > 20

𝑦1 ≤ 20 ∧ 𝑦2 ≤ 20 ∧ 𝑦3 ≤ 20

Fig. 1: Example program (left), and eight possible control-flow decisions (right).

The strategies we propose for exploiting synchrony and symmetry via re-
lational specifications are fairly general in that they can be employed in vari-
ous verification methods. We provide a generic logic-based description of these
strategies at a high level (Sect. 4), and also describe a specific instantiation
in a verification algorithm based on forward analysis that computes strongest-
postconditions (Sect. 5). We have implemented our approach in a prototype
tool called Synonym built on top of the Descartes tool [27]. Our experimen-
tal evaluation (Sect. 6) shows the effectiveness of our approach in improving
the performance of verification in many examples (and a marginal overhead in
smaller examples). In particular, exploiting symmetry is crucial in enabling ver-
ification to complete for some properties, without which Descartes exceeds a
timeout on all benchmark examples.

2 Motivating Example

Consider three C-like integer programs {𝑃𝑗} of the form shown in Fig. 1 (left).
They are identical modulo renaming, and we use indices 𝑗 ∈ {1, 2, 3} as sub-
scripts to denote variables in the different copies. We assume that each variable
initially takes a nondeterministic value in each program.

A relational verification problem (RVP) is a tuple consisting of programs
{𝑃𝑗}, a relational precondition pre, and a relational postcondition post . In the
example RVPs below, we consider the three conditionals, which in turn lead to
eight possible control-flow decisions (Fig. 1, right) in a composed program. Each
RVP reduces to subproblems for proving that post can be derived from pre for
each of these control-flow decisions. In the rest of the section, we demonstrate
the underlying ideas behind our approach to solve these subproblems efficiently.

Maximizing Lockstep Execution. Given an RVP (referred to as RVP1) with
precondition 𝑥1 < 𝑥3∧𝑥1 > 0∧ 𝑖1 > 0∧ 𝑖2 ≥ 𝑖1∧ 𝑖1 = 𝑖3 (pre) and postcondition
(𝑥1 < 𝑥3 ∨ 𝑦1 ̸= 𝑦3) ∧ 𝑖1 > 0 ∧ 𝑖2 ≥ 𝑖1 ∧ 𝑖1 = 𝑖3 (post), consider a control-flow
decision 𝑦1 > 20 ∧ 𝑦2 > 20 ∧ 𝑦3 > 20. This leads to another RVP, consisting of

3

three programs of the following form:

assume(y𝑗 > 20); while (i𝑗 < 10) { x𝑗 *= i𝑗; i𝑗++; }
where 𝑗 ∈ {1, 2, 3}, and the aforementioned pre and post . From pre, it follows
that 𝑖1 = 𝑖3 and 𝑖2 ≥ 𝑖1. We can thus infer that the first and third loops
are always executed the same number of times, while the second loop may be
executed for fewer iterations. This knowledge lets us infer a single relational
invariant for the first and third loops and handle the second loop separately.
Clearly, the relational invariant 𝑥1 < 𝑥3 ∧ 𝑖1 = 𝑖3 ∧ 𝑖1 ≤ 10 and the non-
relational invariant 𝑖2 ≤ 10 are enough to derive post . If we were to handle the
first and third loop separately, we would need complex nonlinear invariants such
as 𝑥1 =

𝑥1,init×𝑖1!
𝑖1,init !

and 𝑥3 =
𝑥3,init×𝑖3!

𝑖3,init !
, which involve auxiliary variables 𝑥𝑗,init

and 𝑖𝑗,init denoting the initial values of 𝑥𝑗 and 𝑖𝑗 respectively.

Symmetry-Breaking. For the same program, and an RVP (referred to as RVP2)
with precondition 𝑖1 > 0 ∧ 𝑖2 ≥ 𝑖1 ∧ 𝑖1 = 𝑖3 and postcondition 𝑖1 > 0 ∧ 𝑖2 ≥
𝑖1 ∧ 𝑖1 = 𝑖3, consider a control-flow decision 𝑦1 > 20 ∧ 𝑦2 > 20 ∧ 𝑦3 ≤ 20. We
generate another RVP involving the following set of programs:

assume(y1 > 20); while (i1 < 10) { x1 *= i1; i1++; }
assume(y2 > 20); while (i2 < 10) { x2 *= i2; i2++; }
assume(y3 ≤ 20); while (i3 < 10) { x3++; i3++; }

Similarly, decision 𝑦1 ≤ 20 ∧ 𝑦2 > 20 ∧ 𝑦3 > 20 generates yet another RVP over
the following:

assume(y1 ≤ 20); while (i1 < 10) { x1++; i1++; }
assume(y2 > 20); while (i2 < 10) { x2 *= i2; i2++; }
assume(y3 > 20); while (i3 < 10) { x3 *= i3; i3++; }

Both RVPs have the same precondition and postcondition as RVP2. We can
see that both RVPs differ only in their subscripts; by taking one and swapping
the subscripts 1 and 3 due to symmetry, we arrive at the other. Thus, knowing
the verification result for either RVP allows us to skip verifying the other one,
by discovering and exploiting such symmetries.

3 Background and Notation

Given a loop-free program over input variables �⃗� and output variables �⃗� (such
that �⃗� and �⃗� are disjoint), let Tr(�⃗�, �⃗�) denote its symbolic encoding.

Proposition 1. Given two loop-free programs, Tr1(�⃗�1, �⃗�1) and Tr2(�⃗�2, �⃗�2), a
precondition pre(�⃗�1, �⃗�2), and a postcondition post(�⃗�1, �⃗�2), the task of relational
verification is reduced to checking validity of the following formula.

pre(�⃗�1, �⃗�2) ∧ Tr1(�⃗�1, �⃗�1) ∧ Tr2(�⃗�2, �⃗�2) =⇒ post(�⃗�1, �⃗�2)

Given a program with one loop (i.e., a transition system) over input variables
�⃗� and output variables �⃗�, let Init(�⃗�, �⃗�) denote a symbolic encoding of the block

4

of code before the loop, Guard(�⃗�) denote the loop guard, and Tr(�⃗�, �⃗�) encode
the loop body. Here, �⃗� is the vector of local variables that are live at the loop
guard. For example, consider the program from our motivating example:

assume(y1 > 20); while (i1 < 10) { x1 *= i1; i1++; }
In its encoding, �⃗� = �⃗� = (𝑖1, 𝑥1, 𝑦1), �⃗� = (𝑖′1, 𝑥

′
1), Init(�⃗�, �⃗�) = 𝑦1 > 20,

Guard(�⃗�) = 𝑖′1 < 10, and Tr(�⃗�, �⃗�) = 𝑥′
1 = 𝑥1 × 𝑖1 ∧ 𝑖′1 = 𝑖1 + 1.

Proposition 2 (Naive parallel composition). Given two loopy programs,
⟨Init(�⃗�1, �⃗�1),Guard(�⃗�1),Tr(�⃗�1, �⃗�1)⟩ and ⟨Init(�⃗�2, �⃗�2),Guard(�⃗�2),Tr(�⃗�2, �⃗�2)⟩, a
precondition pre(�⃗�1, �⃗�2), and a postcondition post(�⃗�1, �⃗�2), the task of relational
verification is reduced to the task of finding (individual) inductive invariants 𝐼1
and 𝐼2:

pre(�⃗�1, �⃗�2) ∧ Init(�⃗�1, �⃗�1) =⇒ 𝐼1(�⃗�1)

pre(�⃗�1, �⃗�2) ∧ Init(�⃗�2, �⃗�2) =⇒ 𝐼2(�⃗�2)

𝐼1(�⃗�1) ∧Guard1(�⃗�1) ∧ Tr1(�⃗�1, �⃗�1) =⇒ 𝐼1(�⃗�1)

𝐼2(�⃗�1) ∧Guard2(�⃗�2) ∧ Tr2(�⃗�2, �⃗�2) =⇒ 𝐼2(�⃗�2)

𝐼1(�⃗�1) ∧ 𝐼2(�⃗�2) ∧ ¬Guard1(�⃗�1) ∧ ¬Guard2(�⃗�2) =⇒ post(�⃗�1, �⃗�2)

Note that the method of naive composition requires handling of multiple
invariants, which is known to be difficult. Furthermore, it might lose some im-
portant relational information specified in pre(�⃗�1, �⃗�2). One way to avoid this is
to exploit the fact that loops could be executed in lockstep.

Proposition 3 (Lockstep composition). Given two loopy programs,
⟨Init(�⃗�1, �⃗�1),Guard(�⃗�1),Tr(�⃗�1, �⃗�1)⟩ and ⟨Init(�⃗�2, �⃗�2),Guard(�⃗�2),Tr(�⃗�2, �⃗�2)⟩, a
precondition pre(�⃗�1, �⃗�2), and a postcondition post(�⃗�1, �⃗�2). Let both loops iter-
ate exactly the same number of times, then the task of relational verification
is reduced to the task of finding one (relational) inductive invariant 𝐼:

pre(�⃗�1, �⃗�2) ∧ Init(�⃗�1, �⃗�1) ∧ Init(�⃗�2, �⃗�2) =⇒ 𝐼(�⃗�1, �⃗�2)

𝐼(�⃗�1, �⃗�2) ∧Guard1(�⃗�1) ∧ Tr1(�⃗�1, �⃗�1) ∧Guard2(�⃗�2) ∧ Tr2(�⃗�2, �⃗�2) =⇒ 𝐼(�⃗�1, �⃗�2)

𝐼(�⃗�1, �⃗�2) ∧ ¬Guard1(�⃗�1) ∧ ¬Guard2(�⃗�2) =⇒ post(�⃗�1, �⃗�2)

In this paper, we do not focus on a specific method for deriving these invari-
ants – a plethora of suitable methods have been proposed in the literature, and
any of these could be used.

4 Leveraging Relational Specifications

In this section, we describe the main components of our compositional framework
where we leverage relational specifications to simplify the verification subtasks.
We first describe our novel algorithm for inferring maximal sets of loops that can
be executed in lockstep (Sect. 4.1). Next, we describe our technique for handling
conditionals (Sect. 4.2). While this is similar to other prior work, the main
purpose here is to set the stage for our novel methods for exploiting symmetry
(Sect. 4.3).

5

4.1 Synchronizing loops

Given a set of loopy programs, we would like to determine which ones can be
executed in lockstep. As mentioned earlier, relational invariants over lockstep
loops are often easier to derive than loop invariants over a single copy.

Our algorithm CheckLockstep takes as input a set of loopy programs
{𝑃1, . . . , 𝑃𝑘} and outputs a set of maximal classes of programs that can be
executed in lockstep. The algorithm partitions its input set of programs and
recursively calls CheckLockstep on the partitions.

First, CheckLockstep infers a relational inductive invariant over the loop
bodies, synthesizing 𝐼(�⃗�1, . . . , �⃗�𝑘) in the following:

𝑝𝑟𝑒(�⃗�1, . . . , �⃗�𝑘) ∧
𝑘⋀︁

𝑖=1

Init(�⃗�𝑖, �⃗�𝑖) =⇒ 𝐼(�⃗�1, . . . , �⃗�𝑘)

𝐼(�⃗�1, . . . , �⃗�𝑘) ∧
𝑘⋀︁

𝑖=1

Guard 𝑖(�⃗�𝑖) ∧ Tr 𝑖(�⃗�𝑖, �⃗�𝑖) =⇒ 𝐼(�⃗�1, . . . , �⃗�𝑘)

CheckLockstep then poses the following query:

¬

(︃(︁
𝐼(�⃗�1, . . . , �⃗�𝑘) ∧

𝑘⋁︁
𝑖=1

¬Guard(�⃗�𝑖)
)︁

=⇒
𝑘⋀︁

𝑖=1

¬Guard(�⃗�𝑖)

)︃
(1)

The left-hand side of the implication holds whenever one of the loops has ter-
minated (the relational invariant holds, and at least one of the loop conditions
must be false), and the right-hand side holds only if all of the loops have termi-
nated. If the formula is unsatisfiable, then the termination of one loop implies
the termination of all loops, and all loops can be executed simultaneously [27].
In this case, the entire set of input programs is one maximal class, and the set
containing the set of all input programs is returned.

Otherwise, CheckLockstep gets a satisfying assignment and partitions the
input programs into a set Terminated and a set Unfinished . The Terminated
set contains all programs 𝑃𝑖 whose guards Guard(�⃗�𝑖) are false in the model
for the formula, and the Unfinished set contains the remaining programs. The
CheckLockstep algorithm is then called recursively on both Terminated and
Unfinished , with its final result being the union of the two sets returned by these
recursive calls.

The following theorem assumes that any relational invariant 𝐼(�⃗�1, . . . , �⃗�𝑘),
generated externally and used by the algorithm, is stronger than any relational
invariant 𝐼(�⃗�1, . . . , �⃗�𝑖−1, �⃗�𝑖+1, . . . , �⃗�𝑘) that could be synthesized over the same
set of 𝑘 loops with the 𝑖th loop removed.

Theorem 1. For any call to CheckLockstep, it always partitions its set of
input programs such that for all 𝑃𝑖 ∈ Terminated and 𝑃𝑗 ∈ Unfinished, 𝑃𝑖 and
𝑃𝑗 cannot be executed in lockstep.

Proof. Assume that CheckLockstep has partitioned its set of programs into
the Terminated and Unfinished sets. Let 𝑃𝑖 ∈ Terminated , 𝑃𝑗 ∈ Unfinished be

6

arbitrary programs. Based on how the partitioning is performed, we know that
there is a model for Eq. 1 such that Guard(�⃗�𝑖) does not hold and Guard(�⃗�𝑗)
does. We can thus conclude that the following formula is satisfiable:

¬
(︁
𝐼(�⃗�1, . . . , �⃗�𝑘) ∧ ¬Guard(�⃗�𝑖) =⇒ ¬Guard(�⃗�𝑗)

)︁
From the assumption on our invariant synthesizer, we conclude that the following
is also satisfiable, indicating that 𝑃𝑖 and 𝑃𝑗 cannot be executed in lockstep:

¬
(︁
𝐼(�⃗�𝑖, �⃗�𝑗) ∧ ¬Guard(�⃗�𝑖) =⇒ ¬Guard(�⃗�𝑗)

)︁
where 𝐼(�⃗�𝑖, �⃗�𝑗) is the relational invariant for 𝑃𝑖 and 𝑃𝑗 that our invariant syn-
thesizer infers.

4.2 Synchronizing conditionals

Let two programs have forms if Q𝑖 then R𝑖 else S𝑖, where 𝑖 ∈ {1, 2} and R𝑖
and S𝑖 are arbitrary blocks of code and could possibly have loops. Let them be
a part of some RVP, which reduces to applying Prop. 1, 2, or 3, depending on
the content of each block of code, to four pairs of programs. As we have seen in
previous sections, each of the four verification tasks could be expensive. In order
to reduce the number of verification tasks where possible, we use the relational
preconditions to filter out pairs of programs for which verification conclusions
can be derived trivially.

For 𝑘 programs of the form if Q𝑖 then R𝑖 else S𝑖 for 𝑖 ∈ {1, . . . , 𝑘} and
precondition 𝑝𝑟𝑒(�⃗�1, . . . , �⃗�𝑘), we can simultaneously generate all possible com-
binations of decisions by querying a solver for all truth assignments to the Q𝑖s:

pre(�⃗�1, . . . , �⃗�𝑘) ∧
𝑘⋀︁

𝑖=1

𝑄𝑖 (2)

We can then use the result of this All-SAT query to generate sets of programs
in subtasks. For each assignment 𝑗, where each 𝑄𝑖 is assigned a Boolean value 𝑣𝑖,
the following set is generated: {assume(V1); U1, . . . , assume (V𝑘); U𝑘} where
for each 𝑖 ∈ {1, . . . , 𝑘}, if 𝑣𝑖 = true, then V𝑖 = Q𝑖 and U𝑖 = R𝑖, else Vi = ¬Qi
and U𝑖 = S𝑖. We need to apply our verification algorithm on only the resulting
sets of programs. For example, in our above RVP, if Q1 is equivalent to Q2 in all
solutions, then the RVP reduces to verification of just two pairs of programs:

assume(Q1); R1 and assume(Q2); R2

assume(¬Q1); S1 and assume(¬Q2); S2

4.3 Discovering and exploiting symmetries

Using the All-SAT query from Eq. 2 allows us to prune trivial RVPs. However,
as we have seen in Sect. 2, some of the remaining RVPs could be regarded as
equivalent due to symmetry. First, we discuss how to identify symmetries in
formulas syntactically, and then we show how to use such symmetries.

7

Algorithm 1 Algorithm for constructing a graph to find symmetries.

1: procedure MakeGraph(𝐹)
2: (𝑉,𝐸)← ({𝑣Id1 , . . . , 𝑣Id𝑘 },∅) where each 𝑣Id𝑖 has color(𝑣Id𝑖) = Id
3: for 𝑑 ∈ Clauses(𝐹) do (𝑉,𝐸)←MakeColoredAST(𝑑) ∪ (𝑉,𝐸)

4: for 𝑣 ∈ 𝑉 with 𝑥𝑖 ∈ vars(color(v)) do
5: 𝑉 ← (𝑉 ∖ {𝑣}) ∪ {Recolor(𝑣, 𝑣[𝑥𝑖 ↦→ 𝑥])}
6: 𝐸 ← 𝐸 ∪ {(𝑣, 𝑣Id𝑖)}

Id

21

Id

22

Id

23

Id

24

(𝑥,L)

13

(𝑥,R)

14

𝑥

15

𝑥

16

𝑥

12

𝑥

11

(𝑥,R)

10

(𝑥,L)

9

(𝑥,L)

18

(𝑧,R)

19

(𝑥,L)

20

(𝑧,R)

21

<

3

=

4

<

5

=

6

<

7

<

8

⋁︀0 ⋁︀1 ⋁︀2

Fig. 2: Graph with vertex names (outside the vertices) and colors (inside the vertices).

4.3.1 Identifying symmetries in formulas

Formally, symmetries in formulas are defined as permutations. Note that any per-
mutation 𝜋 of set {1, . . . , 𝑘} can be lifted to be a permutation of set {�⃗�1, . . . , �⃗�𝑘}.

Definition 1 (Symmetry). Let �⃗�1, . . . , �⃗�𝑘 be vectors of the same size over dis-
joint sets of variables. A symmetry 𝜋 of a formula 𝐹 (�⃗�1, . . . , �⃗�𝑘) is a permutation
of set {�⃗�𝑖 | 1 ≤ 𝑖 ≤ 𝑘} such that 𝐹 (�⃗�1, . . . , �⃗�𝑘) ⇐⇒ 𝐹 (𝜋(�⃗�1), . . . , 𝜋(�⃗�𝑘)).

The task of finding symmetries within a set of formulas can be performed
syntactically by first canonicalizing the formulas, converting the formulas into
a graph representation of their syntax, and then using a graph automorphism
algorithm to find the symmetries of the graph. We demonstrate how this can be
done for a formula 𝜙 over Linear Integer Arithmetic with the following example.

Let 𝜙 = (𝑥1 ≤ 𝑥2 ∧ 𝑥3 ≤ 𝑥4) ∧ (𝑥1 < 𝑧2 ∨ 𝑥3 < 𝑧4). Note that this formula
is symmetric under a permutation of the subscripts that simultaneously swaps
1 with 3 and 2 with 4. Let {(𝑥1, 𝑧1), (𝑥2, 𝑧2), (𝑥3, 𝑧3), (𝑥4, 𝑧4)} be the vectors of
variables. We identify a vector by its subscript (e.g., we identify (𝑥1, 𝑧1) by 1).

Our algorithm starts with canonicalizing the formula: 𝜙 = (𝑥1 < 𝑥2 ∨ 𝑥1 =
𝑥2) ∧ (𝑥3 < 𝑥4 ∨ 𝑥3 = 𝑥4) ∧ (𝑥1 < 𝑧2 ∨ 𝑥3 < 𝑧4). It then constructs a colored
graph for the canonicalized formula with the procedure in Alg. 1. The algorithm

8

initializes a graph by the set of 𝑘 vertices 𝑣Id1 , . . . , 𝑣Id𝑘 with color Id (vertices 21-
24 in Fig. 2), where 𝑘 is the number of identifiers. It then (Line 3) adds to the
graph the union of the abstract syntax trees (AST) for the formula’s conjuncts,
where each vertex has a color corresponding to the type of its AST node. If a
parent vertex has a color of an ordering-sensitive operation or predicate, then
the children should have colors that include a tag to indicate their ordering (e.g.,
vertices 9 and 10 in Fig. 2 have colors with tags because their parent has color
<, but vertices 11 and 12 do not have tags because their parent has color =).
Next (Line 4), the algorithm performs an appropriate renaming of vertex colors
so that each indexed variable name 𝑥𝑖 is replaced with a non-indexed version
𝑥, while simultaneously adding edges from each vertex with a renamed color to
𝑣Id𝑖 . The resulting graph for 𝜙 is shown in Fig. 2. Finally, the algorithm applies
a graph automorphism finder to get the following automorphism (in addition to
the identity automorphism), which is shown here in a cyclic notation where (𝑥 𝑦)
means that 𝑥 ↦→ 𝑦 and 𝑦 ↦→ 𝑥 (vertices that map to themselves are omitted):

(0 1)(3 5)(4 6)(7 8)(9 13)(10 14)(11 15)(12 16)(17 19)(18 20)(21 23)(22 24)

We are only interested in permutations of the vectors, so we project out the
relevant parts of the permutation (21 23)(22 24) and map them back to our
vector identifiers to get the following permutation on the identifiers:

𝜋 = {1 ↦→ 3, 2 ↦→ 4, 3 ↦→ 1, 4 ↦→ 2}

4.3.2 Exploiting symmetries

We now define the notion of symmetric RVPs and application of symmetry-
breaking to generate a single representative per equivalence class of RVPs.

Definition 2 (Symmetric RVPs). Two RVPs:
⟨𝑃𝑠, pre(�⃗�1, . . . , �⃗�𝑘), post(�⃗�1, . . . , �⃗�𝑘)⟩ and ⟨𝑃𝑠′, pre(�⃗�1, . . . , �⃗�𝑘), post(�⃗�1, . . . , �⃗�𝑘)⟩,
where 𝑃𝑠 = {𝑃1, . . . , 𝑃𝑘}, and 𝑃𝑠′ = {𝑃 ′

1, . . . , 𝑃
′
𝑘}, are called symmetric under

a permutation 𝜋 iff

1. 𝜋 is a symmetry of formula pre(�⃗�1, . . . , �⃗�𝑘) ∧ post(�⃗�1, . . . , �⃗�𝑘)
2. for every 𝑃𝑖 ∈ 𝑃𝑠 and 𝑃𝑗 ∈ 𝑃𝑠′, if 𝜋(𝑖) = 𝑗, then 𝑃𝑖 and 𝑃𝑗 have the same

number of inputs and outputs and have logically equivalent encodings for the
same set of input variables �⃗�𝑖 and output variables �⃗�𝑖

As we have seen in Sect. 4.3.1, identification of symmetries could be made
purely on the syntactic level of the relational preconditions and postconditions.
For each detected symmetry, it remains to check equivalence between the corre-
sponding programs’ encodings, which can be formulated as an SMT problem.

To exploit symmetries, we propose a simple but intuitive approach. First,
we identify the set of symmetries using pre ∧ post . Then, we solve the All-SAT
query from Eq. 2 and get a reduced set R of RVPs (i.e., one without all trivial
problems). For each RVP 𝑖 ∈ R, we perform the relational verification only if no
symmetric RVP 𝑗 ∈ R has already been verified. Thus, the most expensive part
of the routine, checking equivalence of RVPs, is performed on demand and only
on a subset of all possible pairs ⟨RVP 𝑖,RVP 𝑗⟩.

9

Alternatively, in some cases (e.g., for parallelizing the algorithm) it might
help to identify all symmetric RVPs prior to solving the All-SAT query from
Eq. 2. From this set, we can generate symmetry-breaking predicates (SBPs) [12]
and conjoin them to Eq. 2. Constrained with SBPs, this query will have fewer
models, and will contain a single representative per equivalence class of RVPs.
We describe how to construct SBPs in more detail in the next section.

4.3.3 Generating Symmetry-Breaking Predicates (SBPs)

SBPs have previously been applied in pruning the search space explored by SAT
solvers. Traditionally, techniques construct SBPs based on symmetries in truth
assignments to the literals in the formula, but SBP-construction can be adapted
to be based on symmetries in truth assignments to conditionals, allowing us to
break symmetries in our setting.

We can construct an SBP by treating each condition the way a literal is
treated in existing SBP constructions. In particular, we can construct the com-
mon Lex-Leader SBP used for predicate logic [12], which in our case will force a
solver to choose the lexicographically least representative per equivalence class
for a particular ordering of the conditions. For the ordering of conditions where
Q𝑖 ≤ Q𝑗 iff 𝑖 ≤ 𝑗 and a set of symmetries 𝑆 over {1, . . . , 𝑘}, we can construct
a Lex-Leader SBP 𝑆𝐵𝑃 (𝑆) =

⋀︀
𝜋∈𝑆 𝑃𝑃 (𝜋) with the more efficient predicate

chaining construction [2], where we have that

𝑃𝑃 (𝜋) = 𝑝min(𝐼) ∧
⋀︁
𝑖∈𝐼

𝑝𝑖 =⇒ 𝑔prev(i,I) =⇒ 𝑙𝑖 ∧ 𝑝next(i,I)

and that 𝐼 is the support of 𝜋 with the last condition for each cycle removed,
min(𝐼) is the minimal element of 𝐼, prev(𝑖, 𝐼) is the maximal element of 𝐼 still
less than 𝑖 or 0 if there is none, next(𝑖, 𝐼) is the minimal element of 𝐼 still greater
than 𝑖 or 0 if there is none, 𝑝0 = 𝑔0 = true, 𝑝𝑖 is a fresh predicate for 𝑖 ̸= 0,
𝑔𝑖 = Q𝜋(𝑖) =⇒ Q𝑖 for 𝑖 ̸= 0, and 𝑙𝑖 = Q𝑖 =⇒ Q𝜋(𝑖).

After constructing the SBP, we conjoin it to the All-SAT query in Eq. 2. Our
solver now generates sets of programs that, when combined with the relational
precondition and postcondition, form a set of irredundant RVPs.

Example. Let us consider how SBPs can be applied to RVP2 from Sect. 2 to
avoid generating two of the eight RVPs we would otherwise generate.

First, we see that our three programs are all copies the same program and
are at the same program point, so they will have the same encoding. Next, we
find the set of permutations 𝑆 over {1, 2, 3} such that for each 𝜋 ∈ 𝑆, we have
that 𝑖1 > 0 ∧ 𝑖2 ≥ 𝑖1 ∧ 𝑖1 = 𝑖3 iff 𝑖𝜋(1) > 0 ∧ 𝑖𝜋(2) ≥ 𝑖𝜋(1) ∧ 𝑖𝜋(1) = 𝑖𝜋(3). In this
case, we have that 𝑆 is the set of permutations {{1 ↦→ 1, 2 ↦→ 2, 3 ↦→ 3}, {1 ↦→
3, 2 ↦→ 2, 3 ↦→ 3}}. Now, we construct a Lex-Leader SBP (using the predicate
chaining construction described above):

𝑝1 ∧ (𝑝1 =⇒ ((𝑦1 > 20) =⇒ (𝑦2 > 20)))

where 𝑝1 is a fresh predicate. Conjoining this SBP to Eq. 2, leads to the RVPs
arising from the control-flow decisions 𝑦1 > 20 ∧ 𝑦2 > 20 ∧ 𝑦3 ≤ 20 and 𝑦1 >
20 ∧ 𝑦2 ≤ 20 ∧ 𝑦3 ≤ 20 no longer being generated.

10

5 Instantiation of Strategies in Forward Analysis

We now describe an instantiation of our proposed strategies in a verification al-
gorithm based on forward analysis using a strongest-postcondition computation.
Other instantiations, e.g., on top of a Horn solver based on Property-Directed
Reachability [24] are possible, but outside the scope of this work.

1: procedure Verify(pre,Current , Ifs,Loops, post)
2: while Current ̸= ∅ do
3: if ProcessStatement(pre, 𝑃𝑖, Ifs,Loops, post) = safe then return safe

4: if Loops ̸= ∅ then HandleLoops(pre,Loops, post)
5: else if Ifs ̸= ∅ then HandleIfs(pre, Ifs,Loops, post)
6: else return unsafe

Given an RVP in the form of a Hoare triple {Pre} 𝑃1|| · · · ||𝑃𝑘 {Post}, where ||
denotes parallel composition, the top-level Verify procedure takes as input the
relational specification pre = Pre and post = Post , the set of input programs
Current = {𝑃1, . . . , 𝑃𝑘}, and empty sets Loops and Ifs. It uses a strongest-
postcondition computation to compute the next Hoare triple at each step until
it can conclude the validity of the original Hoare triple.

Synchronization. Throughout verification, the algorithm maintains three dis-
joint sets of programs: one for programs that are currently being processed
(Current), one for programs that have been processed up until a loop (Loops),
and one for programs that have been processed up until a conditional statement
(Ifs). The algorithm processes statements in each program independently, with
ProcessStatement choosing an arbitrary interleaving of statements from the
programs in Current . When the algorithm encounters the end of a program in
its call to ProcessStatement, it removes this program from the Current set.
At this point, the algorithm returns safe if the current Hoare triple is proven
valid. When a program has reached a point of control-flow divergence and is
processed by ProcessStatement, it is removed from Current and added to
the appropriate set (Loops or Ifs).

Handling Loops. Once all programs are in the Loops or Ifs sets (i.e. Current =
∅), the algorithm handles the programs in the Loops set if it is nonempty. Han-
dleLoops behaves like CheckLockstep but computes postconditions where
possible; when a set of loops are able to be executed in lockstep, HandleLoops
computes their postconditions before placing the programs into the Terminated
set. After all loops have been placed in the Terminated set and a new precondi-
tion pre ′ has been computed, rather than returning Terminated , HandleLoops
invokes Verify(pre ′,Terminated , Ifs,∅, post).

Handling Conditionals. When Current = Loops = ∅, Verify handles condi-
tional statements. HandleIfs exploits symmetries by using the All-SAT query
with Lex-Leader SBPs as described in Sect. 4 and calls Verify on each gener-
ated verification problem.

11

6 Implementation and Evaluation

To evaluate the effectiveness of increased lockstep execution of loops and symmetry-
breaking, we implemented our algorithm from Sect. 5 on top of the Descartes
tool for verifying 𝑘-safety properties, i.e., RVPs over 𝑘 identical Java programs.
We implemented two variants: Syn uses only synchrony (i.e., no symmetry is
used), while Synonym uses both. All implementations (including Descartes)
use the same guess-and-check invariant generator (the same originally used by
Descartes, but modified to generate more candidate invariants). In Synonym,
we compute symmetries in preconditions and postconditions only when all pro-
gram copies are the same. For our examples, it sufficed to compute symmetries
simply by checking if each possible permutation leads to equivalent formulas1.
We compare the performance of our prototype implementations to Descartes2.
We use two metrics for comparison: the time taken and the number of Hoare
triples processed by the verification procedure. All experiments were conducted
on a MacBook Pro, with a 2.7GHz Intel Core i5 processor and 8GB RAM.

6.1 Stackoverflow Benchmarks

The first set of benchmarks we consider are the Stackoverflow benchmarks orig-
inally used to evaluate Descartes. These implement (correctly or incorrectly)
the Java Comparator or Comparable interface, and check whether or not their
compare functions satisfy the following properties:

P1: ∀𝑥, 𝑦.sgn(compare(𝑥, 𝑦)) = −sgn(compare(𝑦, 𝑥))
P2: ∀𝑥, 𝑦, 𝑧.(compare(𝑥, 𝑦) > 0 ∧ compare(𝑦, 𝑧) > 0) =⇒ compare(𝑥, 𝑧) > 0
P3 ∀𝑥, 𝑦, 𝑧.(compare(𝑥, 𝑦) = 0) =⇒ (sgn(compare(𝑥, 𝑧)) = sgn(compare(𝑦, 𝑧)))

(One of the original 34 Stackoverflow examples is excluded from our eval-
uation here because of the inability of the invariant generator to produce a
suitable invariant.) We compare the results of running Syn and Synonym vs.
Descartes for each property in Table 1. (Expanded versions and plots of these
results are available in an extended version of the paper [26].)

Because property P1 contains a symmetry, we notice an improvement in
terms of number of Hoare triples with the use of symmetry for this property;
however, the overhead of computing symmetries leads to Synonym perform-
ing more slowly than Syn even for some examples that exhibit reduced Hoare
triple counts. Property P1 is also the easiest to prove (all implementations can
verify each example in under 0.3 seconds), so the overheads contribute more

1 Our implementation includes the syntactic symmetry-finding algorithm from
Sect. 4.3.1, though we do not use it for evaluation here due to its high overhead
in using an external tool for finding graph automorphisms.

2 While there are several tools for relational verification (e.g. Rosette/Unbound [25],
VeriMapRel [13], Reve [17], MoCHi [17], SymDiff [22]), most of these do not
handle Java programs, and to the best of our knowledge, none of these tools has
support for 𝑘-safety verification for 𝑘 greater than 2.

12

Table 1: Stackoverflow Benchmarks.
Total times (in seconds) and Hoare triple counts (HTC) for Stackoverflow benchmarks,
where for each property, the results for Syn and Synonym are divided into those for
examples where they exhibit a factor of improvement over Descartes that is greater or
equal to 1 (top) and those for which they do not (bottom). Improv reports the factor of
improvement over Descartes, where the number of examples is given in parentheses.

Prop
Descartes Syn Synonym

Time HTC Time Improv HTC Improv Time Improv HTC Improv

P1 3.11 4422
1.91 1.39 (27) 2255 1.69 (27) 1.82 1.32 (25) 2401 1.82 (32)

0.57 0.789 (6) 752 0.809 (6) 0.87 0.816 (8) 48 0.979 (1)

P2 24.6 13434
7.83 2.62 (20) 3285 3.081 (16) 7.31 2.80 (19) 3224 3.140 (16)

4.98 0.823 (13) 4638 0.714 (17) 5.1 0.816 (14) 4638 0.714 (17)

P3 18.85 10938
5.22 2.92 (20) 1565 4.36 (16) 5.22 2.91 (19) 1537 4.74 (16)

6.18 0.584 (13) 6600 0.623 (17) 6.16 0.594 (14) 6600 0.623 (17)

significantly to the runtime. For examples on which our implementations do not
perform as well as Descartes, we perform reasonably closely to Descartes.
These examples are typically smaller, and again overheads play a larger role in
our poorer performance.

6.2 Modified Stackoverflow Benchmarks

The original Stackoverflow examples are fairly small, with all implementations
taking under 6 seconds to verify any example. To assess how we perform on larger
examples, we modified several of the larger Stackoverflow comparator examples
to be longer, take more arguments, and contain more control-flow decisions.
The resulting functions take three arguments and pick the “largest” object’s id,
where comparison among objects is performed based on the original Stackover-
flow example code. (Ties are broken by choosing the least id.) We check whether
these pick functions satisfy the following properties that allow reordering input
arguments:

P13: ∀𝑥, 𝑦, 𝑧.pick(𝑥, 𝑦, 𝑧) = pick(𝑦, 𝑥, 𝑧)
P14: ∀𝑥, 𝑦, 𝑧.pick(𝑥, 𝑦, 𝑧) = pick(𝑦, 𝑥, 𝑧) ∧ pick(𝑥, 𝑦, 𝑧) = pick(𝑧, 𝑦, 𝑥)

Note that P13 allows swapping the first two input arguments, while P14
allows any permutation of inputs, a useful hyperproperty.

The results from running property P13 are shown in Table 2. We see here
that for these larger examples, Hoare triple counts are more reliably correlated
with the time taken to perform verification. Syn outperforms Descartes on 14
of the 16 examples, and Synonym outperforms both Descartes and Syn on
all 16 examples.

The results from running property P14 are shown in Table 3. For this prop-
erty, note thatDescartes is unable to verify any of the examples within a one-
hour timeout. Meanwhile, Syn is able to verify 10 of the 16 examples without
exceeding the timeout. Exploiting symmetries here exhibits an obvious improve-
ment, with Synonym not only being able to verify the same examples as Syn,

13

Table 2: Verifying P13 for Modified Stackoverflow examples. Times (in seconds) and
Hoare triple counts (HTC).

Example
Descartes Syn Synonym

Time HTC Time HTC Time HTC

ArrayInt-pick3-false-simple 1.71 2573 1 1355 0.64 682

ArrayInt-pick3-false 1.55 2591 1.06 1439 0.8 724

ArrayInt-pick3-true-simple 1.71 2573 1.03 1355 0.65 682

ArrayInt-pick3-true 1.55 2591 1.08 1439 0.81 724

Chromosome-pick3-false-simple 0.9 1115 0.9 883 0.53 446

Chromosome-pick3-false 2.51 2891 2.94 3019 1.59 1514

Chromosome-pick3-true-simple 0.9 1115 0.9 883 0.53 446

Chromosome-pick3-true 2.51 2891 2.96 3019 1.59 1514

PokerHand-pick3-false-part1 5.87 5825 0.42 359 0.46 359

PokerHand-pick3-false-part2 9.74 10589 0.85 323 0.86 323

PokerHand-pick3-false 16.91 16475 0.73 159 0.79 159

PokerHand-pick3-true-part1 5.83 5825 3.98 3503 2.4 1756

PokerHand-pick3-true-part2 9.8 10565 7.36 5933 4.53 2971

PokerHand-pick3-true 17.25 16475 12.1 9293 7.34 4651

Solution-pick3-false 76.4 99910 25.05 20645 20.42 10327

Solution-pick3-true 64.5 99910 19.66 20645 15.21 10327

Total 219.64 283914 82.02 74252 59.15 37605

Improvement 1 1 2.68 3.8237 3.713 7.5499

Table 3: Verifying P14 for Modified Stackoverflow examples. Times (in seconds) and
Hoare triple counts (HTC). - indicates that no sufficient invariant could be inferred.

Example
Descartes Syn Synonym

Time HTC Time HTC Time HTC

ArrayInt-pick3-false-simple TO TO 4.12 1938 4.66 1734

ArrayInt-pick3-false TO TO 4.92 2017 6.03 1500

ArrayInt-pick3-true-simple TO TO 321.15 140593 170.43 58586

ArrayInt-pick3-true TO TO 366.98 149125 240.25 62141

Chromosome-pick3-false-simple TO TO 47.8 14097 1.67 834

Chromosome-pick3-false TO TO 264.21 93052 4.91 3043

Chromosome-pick3-true-simple TO TO 299.51 79613 135.56 33179

Chromosome-pick3-true TO TO TO TO 848.22 225044

PokerHand-pick3-false-part1 TO TO 0.57 391 0.73 391

PokerHand-pick3-false-part2 TO TO 0.81 228 0.81 228

PokerHand-pick3-false - - - - - -

PokerHand-pick3-true-part1 TO TO 2277.03 819553 1272.58 341486

PokerHand-pick3-true-part2 TO TO - - - -

PokerHand-pick3-true - - - - - -

Solution-pick3-false TO TO TO TO TO TO

Solution-pick3-true TO TO TO TO TO TO

with consistently faster performance on the larger examples, but also being able
to verify an additional example within an hour.

14

Summary of experimental results. Our experiments indicate that our perfor-
mance improvements are consistent: on all Descartes benchmarks (in Table 1,
which are all small) our techniques either have low overhead or show some im-
provement despite the overhead; and on modified (bigger) programs they lead
to significant improvements. In particular, we report (Table 2) speedups up to
21.4x (on an example where the property doesn’t hold) and 4.2x (on an example
where it does). More importantly, we report (Table 3) that Descartes times
out on 14 examples, where of these Synonym times out for 2 and cannot infer
an invariant for one example.

7 Related Work

The work most closely related to ours is by Sousa and Dillig [27], which pro-
posed Cartesian Hoare Logic (CHL) for proving 𝑘-safety properties and the tool
Descartes for automated reasoning in CHL. In addition to the core program
logic, CHL includes additional proof rules for loops, referred to as Cartesian
Loop Logic (CLL). A generalization of CHL, called Quantitative Cartesian Hoare
Logic was subsequently used by Chen et al. [10] to detect side-channel vulnera-
bilities in cryptographic implementations.

In terms of comparison, neither CHL nor CLL force alignment at conditional
statements or take advantage of symmetries. We believe our algorithm for iden-
tifying a maximal set of lockstep loops is also novel and can be used in other
methods that do not rely on CHL/CLL. On the other hand, CLL proof rules
allow not only fully lockstep loops, but also partially lockstep loops. Although
we did not consider it here, our maximal lockstep-loop detection algorithm can
be combined with their partial lockstep execution to further improve the ef-
ficiency of verification. For example, applying the Fusion 2 rule from CLL to
our example while loops generated from RVP1 (Sect. 2) would result in three
subproblems and require reasoning twice about the second copy’s loop finishing
later. When combined with maximal lockstep-loop detection, we could generate
just two subproblems: one where the first and third loops terminate first, and
another where the second loop terminates first.

Other automatic efforts for relational verification typically use some kind of
product programs [6,22,28,17,21,13,24], with a possible reduction to Horn solv-
ing [17,21,13,24]. Similarly to our strategy for synchrony, most of them attempt
to leverage similarity (structural or functional) in programs to ease verifica-
tion. However, we have seen less focus on leveraging relational specifications
themselves to simplify verification tasks, although this varies according to the
verification method used. Some efforts do not reason over product programs
at all, relying on techniques based on decomposition [3] or customized theories
with theorem proving [4,30] instead. To the best of our knowledge, none of these
efforts exploit symmetry in programs or in relational specifications.

On the other hand, symmetry has been used very successfully in model check-
ing parametric finite state systems [15,11,20] and concurrent programs [14]. Our
work differs from these efforts in two main respects. First, the parametric sys-

15

tems considered in these efforts have components that interact with each other
or share variables. Second, the correctness specifications are also parametric,
usually single-index or double-index properties in a propositional (temporal)
logic. In contrast, in our RVPs, the individual programs are independent and
do not share any common variables. The only interaction between them is via
relational specifications. Furthermore, we discover symmetries in these relational
specifications over multi-index variables, expressed as formulas in first-order the-
ories (e.g., linear integer arithmetic). We then exploit these symmetries to prune
redundant RVPs during verification.

There are also some similarities between relational verification and verifica-
tion of concurrent/parallel programs. In the latter, a typical verifier [18] would
use visible operations (i.e., synchronization operations or communication on
shared state) as synchronizing points in the composed program. In our work,
this selection is made based on the structure of the component programs and
the ease of utilizing or deriving relational assertions for the code fragments.
Furthermore, one does not need to consider different orderings in interleavings
of programs in the RVPs. Since these fragments are independent, it suffices to
explore any one ordering. Instead, we exploit symmetries in the relational asser-
tions to prune away redundant RVPs.

Finally, specific applications may impose additional synchrony requirements
pertaining to visibility. For example, one may want to check for information
leaks from private inputs to public outputs not only at the end of a program
but at other specified intermediate points, or information leakage models for
side-channel attacks may check for leaks based on given observer models [1].
Such requirements can be viewed as relational specifications at selected synchro-
nizing points in the composed program. Again, we can leverage these relational
specifications to simplify the resulting verification subproblems.

8 Conclusions and Future Work

We have proposed novel techniques for improving relational verification, which
has several applications including security verification, program equivalence check-
ing, and regression verification. Our two key ideas are maximizing the amount
of code that can be synchronized and identifying symmetries in relational spec-
ifications to avoid redundant subtasks. Our prototype implementation on top of
the Descartes verification tool leads to consistent improvements on a range of
benchmarks. In the future, we would be interested in implementing these ideas
on top of a Horn-based relational verifier (e.g., [25]) and extending it to work
with recursive data structures. We are also interested in developing an algorithm
for finding symmetries in formulas that does not rely on an external graph au-
tomorphism tool.

Acknowledgements. We gratefully acknowledge the help from Marcelo Sousa
and Işil Dillig on their Descartes tool, which provides the base for our pro-
totype development and experimental comparison. This work was supported in
part by NSF Grant 1525936.

16

References

1. J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi. Verifying
constant-time implementations. In USENIX, pages 53–70. USENIX Association,
2016.

2. F. A. Aloul, K. A. Sakallah, and I. L. Markov. Efficient symmetry breaking for
boolean satisfiability. IEEE Trans. Computers, 55(5):549–558, 2006.

3. T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi, and S. Wei. De-
composition instead of self-composition for proving the absence of timing channels.
In PLDI, pages 362–375, 2017.

4. K. Asada, R. Sato, and N. Kobayashi. Verifying relational properties of functional
programs by first-order refinement. Sci. Comput. Program., 137:2–62, 2017.

5. A. Banerjee, D. A. Naumann, and M. Nikouei. Relational logic with framing and
hypotheses. In IARCS, volume 65 of LIPIcs, pages 11:1–11:16. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016.

6. G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using product
programs. In FM, volume 6664 of LNCS, pages 200–214. Springer, 2011.

7. G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. In CSFW, pages 100–114. IEEE, 2004.

8. N. Benton. Simple relational correctness proofs for static analyses and program
transformations. In POPL, pages 14–25, 2004.

9. L. Beringer and M. Hofmann. Secure information flow and program logics. In
CSF, pages 233–248. IEEE Computer Society, 2007.

10. J. Chen, Y. Feng, and I. Dillig. Precise detection of side-channel vulnerabilities
using quantitative cartesian hoare logic. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’17, pages 875–890,
2017.

11. E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic model
checking. In CAV, pages 450–462, 1993.

12. J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy. Symmetry-breaking
predicates for search problems. In KR, pages 148–159, 1996.

13. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Relational Verification
Through Horn Clause Transformation. In SAS, volume 9837 of LNCS, pages 147–
169, 2016.

14. A. F. Donaldson, A. Kaiser, D. Kroening, and T. Wahl. Symmetry-aware predicate
abstraction for shared-variable concurrent programs. In CAV, pages 356–371, 2011.

15. E. A. Emerson and A. P. Sistla. Symmetry and model checking. In CAV, pages
463–478, 1993.

16. G. Fedyukovich, A. Gurfinkel, and N. Sharygina. Property directed equivalence
via abstract simulation. In CAV, volume 9780, Part II, pages 433–453. Springer,
2016.

17. D. Felsing, S. Grebing, V. Klebanov, P. Rümmer, and M. Ulbrich. Automating
regression verification. In ASE, pages 349–360. ACM, 2014.

18. P. Godefroid. Verisoft: A tool for the automatic analysis of concurrent reactive
software. In CAV, pages 476–479, 1997.

19. B. Godlin and O. Strichman. Regression verification. In DAC, pages 466–471.
ACM, 2009.

20. C. N. Ip and D. L. Dill. Verifying systems with replicated components in murphi.
In CAV, pages 147–158, 1996.

17

21. M. Kiefer, V. Klebanov, and M. Ulbrich. Relational program reasoning using
compiler IR. In VSTTE, volume 9971 of LNCS, pages 149–165. Springer, 2016.

22. S. K. Lahiri, K. L. McMillan, R. Sharma, and C. Hawblitzel. Differential assertion
checking. In FSE, pages 345–355. ACM, 2013.

23. F. Logozzo, S. K. Lahiri, M. Fähndrich, and S. Blackshear. Verification modulo
versions: towards usable verification. In PLDI, page 32. ACM, 2014.

24. D. Mordvinov and G. Fedyukovich. Synchronizing Constrained Horn Clauses. In
LPAR, volume 46 of EPiC Series in Computing, pages 338–355. EasyChair, 2017.

25. D. Mordvinov and G. Fedyukovich. Verifying Safety of Functional
Programs with Rosette/Unbound. CoRR, abs/1704.04558, 2017.
https://github.com/dvvrd/rosette.

26. L. Pick, G. Fedyukovich, and A. Gupta. Exploiting synchrony and sym-
metry in relational verification (extended version of CAV 2018 paper).
https://cs.princeton.edu/%7Eaartig/papers/synonym-cav18.pdf.

27. M. Sousa and I. Dillig. Cartesian hoare logic for verifying k-safety properties. In
PLDI, pages 57–69. ACM, 2016.

28. O. Strichman and M. Veitsman. Regression verification for unbalanced recursive
functions. In FM, volume 9995 of LNCS, pages 645–658, 2016.

29. T. Terauchi and A. Aiken. Secure information flow as a safety problem. In SAS,
volume 3672 of LNCS, pages 352–367. Springer, 2005.

30. H. Unno, S. Torii, and H. Sakamoto. Automating induction for solving horn clauses.
In CAV, Part II, volume 10427 of LNCS, pages 571–591. Springer, 2017.

31. H. Yang. Relational separation logic. Theoretical Computer Science, 375(1-3):308–
334, 2007.

32. A. Zaks and A. Pnueli. CoVaC: Compiler Validation by Program Analysis of the
Cross-Product. In FM, volume 5014 of LNCS, pages 35–51. Springer, 2008.

18

