
Constraint-Based Synthesis of Coupling Proofs?

Aws Albarghouthi1 and Justin Hsu2,3

1 University of Wisconsin–Madison, Madison, WI
2 University College London, London, UK

3 Cornell University, Ithaca, NY

Abstract. Proof by coupling is a classical technique for proving prop-
erties about pairs of randomized algorithms by carefully relating (or
coupling) two probabilistic executions. In this paper, we show how to
automatically construct such proofs for probabilistic programs. First, we
present f -coupled postconditions, an abstraction describing two corre-
lated program executions. Second, we show how properties of f -coupled
postconditions can imply various probabilistic properties of the original
programs. Third, we demonstrate how to reduce the proof-search prob-
lem to a purely logical synthesis problem of the form ∃f.∀X.ϕ, making
probabilistic reasoning unnecessary. We develop a prototype implemen-
tation to automatically build coupling proofs for probabilistic properties,
including uniformity and independence of program expressions.

1 Introduction

In this paper, we aim to automatically synthesize coupling proofs for probabilistic
programs and properties. Originally designed for proving properties comparing
two probabilistic programs—so-called relational properties—a coupling proof de-
scribes how to correlate two executions of the given programs, simulating both
programs with a single probabilistic program. By reasoning about this combined,
coupled process, we can often give simpler proofs of probabilistic properties for
the original pair of programs.

A number of recent works have leveraged this idea to verify relational prop-
erties of randomized algorithms, including differential privacy [12, 10, 8], security
of cryptographic protocols [9], convergence of Markov chains [11], robustness of
machine learning algorithms [7], and more. Recently, Barthe et al. [6] showed
how to reduce certain non-relational properties—which describe a single prob-
abilistic program—to relational properties of two programs, by duplicating the
original program or by sequentially composing it with itself.

While coupling proofs can simplify reasoning about probabilistic properties,
they are not so easy to use; most existing proofs are carried out manually in
relational program logics using interactive theorem provers. In a nutshell, the
main challenge in a coupling proof is to select a correlation for each pair of cor-
responding sampling instructions, aiming to induce a particular relation between

? The full version of this paper is available at https://arxiv.org/abs/1804.04052.

2

the outputs of the coupled process; this relation then implies the desired rela-
tional property. Just like finding inductive invariants in proofs for deterministic
programs, picking suitable couplings in proofs can require substantial ingenuity.

To ease this task, we recently showed how to cast the search for coupling
proofs as a program synthesis problem [1], giving a way to automatically find
sophisticated proofs of differential privacy previously beyond the reach of au-
tomated verification. In the present paper, we build on this idea and present
a general technique for constructing coupling proofs, targeting uniformity and
probabilistic independence properties. Both are fundamental properties in the
analysis of randomized algorithms, either in their own right or as prerequisites
to proving more sophisticated guarantees; uniformity states that a randomized
expression takes on all values in a finite range with equal probability, while
probabilistic independence states that two probabilistic expressions are some-
how uncorrelated—learning the value of one reveals no additional information
about the value of the other.

Our techniques are inspired by the automated proofs of differential privacy we
considered previously [1], but the present setting raises new technical challenges.

Non-lockstep execution. To prove differential privacy, the behavior of a
single program is compared on two related inputs. To take advantage of the
identical program structure, previous work restricted attention to synchroniz-
ing proofs, where the two executions can be analyzed assuming they follow the
same control flow path. In contrast, coupling proofs for uniformity and inde-
pendence often require relating two programs with different shapes, possibly
following completely different control flows [6].

To overcome this challenge, we take a different approach. Instead of incre-
mentally finding couplings for corresponding pairs of sampling instructions—
requiring the executions to be tightly synchronized—we first lift all sampling
instructions to the front of the program and pick a coupling once and for all.
The remaining execution of both programs can then be encoded separately,
with no need for lockstep synchronization (at least for loop-free programs—
looping programs require a more careful treatment).

Richer space of couplings. The heart of a coupling proof is selecting—
among multiple possible options—a particular correlation for each pair of
random sampling instructions. Random sampling in differentially private pro-
grams typically use highly domain-specific distributions, like the Laplace dis-
tribution, which support a small number of useful couplings. Our prior work
leveraged this feature to encode a collection of primitive couplings into the syn-
thesis system. However, this is no longer possible when programs sample from
distributions supporting richer couplings, like the uniform distribution. Since
our approach coalesces all sampling instructions at the beginning of the pro-
gram (more generally, at the head of the loop), we also need to find couplings
for products of distributions.

We address this problem in two ways. First, we allow couplings of two sampling
instructions to be specified by an injective function f from one range to an-

3

other. Then, we impose requirements—encoded as standard logical constraints—
to ensure that f indeed represents a coupling; we call such couplings f -couplings.

More general class of properties. Finally, we consider a broad class of
properties rather than just differential privacy. While we focus on uniformity
and independence for concreteness, our approach can establish general equali-
ties between products of probabilities, i.e., probabilistic properties of the form

m∏
i=1

Pr[ei ∈ Ei] =

n∏
j=1

Pr[e′j ∈ E′j],

where ei and e′j are program expressions in the first and second programs
respectively, and Ei and E′j are predicates. As an example, we automatically
establish a key step in the proof of Bertrand’s Ballot theorem [20].

Paper Outline. After overviewing our technique on a motivating example
(Section 2), we detail our main contributions.

– Proof technique: We introduce f -coupled postconditions, a form of post-
condition for two probabilistic programs where random sampling instructions
in the two programs are correlated by a function f . Using f -coupled postcon-
ditions, we present proof rules for establishing uniformity and independence
of program variables, fundamental properties in the analysis of randomized
algorithms (Section 3).

– Reduction to constraint-based synthesis: We demonstrate how to au-
tomatically find coupling proofs by transforming our proof rules into logical
constraints of the form ∃f. ∀X.ϕ—a synthesis problem. A satisfiable con-
straint shows the existence of a function f—essentially, a compact encoding
of a coupling proof—implying the target property (Section 4).

– Extension to looping programs: We extend our technique to reason
about loops, by requiring synchronization at the loop head and finding a
coupled invariant (Section 5).

– Implementation and evaluation: We implement our technique and eval-
uate it on several case studies, automatically constructing coupling proofs
for interesting properties of a variety of algorithms (Section 6).

We conclude by comparing our technique with related approaches (Section 7).

2 Overview and Illustration

2.1 Introducing f-Couplings

A Simple Example. We begin by illustrating f -couplings over two identi-
cal Bernoulli distributions, denoted by the following probability mass functions:
µ1(x) = µ2(x) = 0.5 for all x ∈ B (where B = {true, false}). In other words, the
distribution µi returns true with probability 0.5, and false with probability 0.5.

An f -coupling for µ1, µ2 is a function f : B → B from the domain of the
first distribution (B) to the domain of the second (also B); f should be injective

4

and satisfy the monotonicity property : µ1(x) 6 µ2(f(x)) for all x ∈ B. In other
words, f relates each element x ∈ B with an element f(x) that has an equal or
larger probability in µ2. For example, consider the function f¬ defined as

f¬(x) = ¬x.

This function relates true in µ1 with false in µ2, and vice versa. Observe that
µ1(x) 6 µ2(f¬(x)) for all x ∈ B, satisfying the definition of an f¬-coupling. We
write µ1 !f¬ µ2 when there is an f¬-coupling for µ1 and µ2.

Using f-Couplings. An f -coupling can imply useful properties about the
distributions µ1 and µ2. For example, suppose we want to prove that µ1(true) =
µ2(false). The fact that there is an f¬-coupling of µ1 and µ2 immediately implies
the equality: by the monotonicity property,

µ1(true) 6 µ2(f¬(true)) = µ2(false)

µ1(false) 6 µ2(f¬(false)) = µ2(true)

and therefore µ1(true) = µ2(false). More generally, it suffices to find an f -
coupling of µ1 and µ2 such that

{(x, f(x)) | x ∈ B}︸ ︷︷ ︸
Ψf

⊆ {(z1, z2) | z1 = true ⇐⇒ z2 = false},

where Ψf is induced by f ; in particular, the f¬-coupling satisfies this property.

2.2 Simulating a Fair Coin

fun fairCoin(p ∈ (0, 1))
x← false
y ← false
while x = y do

x ∼ bern(p)
y ∼ bern(p)

return x

Fig. 1: Simulating a fair
coin using an unfair one

Now, let’s use f -couplings to prove more interesting
properties. Consider the program fairCoin in Figure 1;
the program simulates a fair coin by flipping a pos-
sibly biased coin that returns true with probability
p ∈ (0, 1), where p is a program parameter. Our goal
is to prove that for any p, the output of the program
is a uniform distribution—it simulates a fair coin. We
consider two separate copies of fairCoin generating dis-
tributions µ1 and µ2 over the returned value x for
the same bias p, and we construct a coupling show-
ing µ1(true) = µ2(false), that is, heads and tails have
equal probability.

Constructing f-Couplings. At first glance, it is unclear how to construct
an f -coupling; unlike the distributions in our simple example, we do not have a
concrete description of µ1 and µ2 as uniform distributions (indeed, this is what
we are trying to establish). The key insight is that we do not need to construct
our coupling in one shot. Instead, we can specify a coupling for the concrete,
primitive sampling instructions in the body of the loop—which we know sample
from bern(p)—and then extend to a f -coupling for the whole loop and µ1, µ2.

5

For each copy of fairCoin, we coalesce the two sampling statements inside the
loop into a single sampling statement from the product distribution:

x, y ∼ bern(p)× bern(p)

We have two such joint distributions bern(p)× bern(p) to couple, one from each
copy of fairCoin. We use the following function fswap : B2 → B2:

fswap(x, y) = (y, x)

which exchanges the values of x and y. Since this is an injective function satis-
fying the monotonicity property

(bern(p)× bern(p))(x, y) 6 (bern(p)× bern(p))(fswap(x, y))

for all (x, y) ∈ B×B and p ∈ (0, 1), we have an fswap-coupling for the two copies
of bern(p)× bern(p).

Analyzing the Loop. To extend a fbody-coupling on loop bodies to the entire
loop, it suffices to check a synchronization condition: the coupling from fbody
must ensure that the loop guards are equal so the two executions synchronize at
the loop head. This holds in our case: every time the first program executes the
statement x, y ∼ bern(p)× bern(p), we can think of x, y as non-deterministically
set to some values (a, b), and the corresponding variables in the second program
as set to fswap(a, b) = (b, a). The loop guards in the two programs are equivalent
under this choice, since a = b is equivalent to b = a, hence we can analyze the
loops in lockstep. In general, couplings enable us to relate samples from a pair
of probabilistic assignments as if they were selected non-deterministically, often
avoiding quantitative reasoning about probabilities.

Our constructed coupling for the loop guarantees that (i) both programs exit
the loop at the same time, and (ii) when the two programs exit the loop, x takes
opposite values in the two programs. In other words, there is an floop-coupling
of µ1 and µ2 for some function floop such that

Ψfloop
⊆ {(z1, z2) | z1 = true ⇐⇒ z2 = false}, (1)

implying µ1(true) = µ2(false). Since both distributions are output distributions
of fairCoin—hence µ1 = µ2—we conclude that fairCoin simulates a fair coin.

Note that our approach does not need to construct floop concretely—this
function may be highly complex. Instead, we only need to show that Ψfloop

(or
some over-approximation) lies inside the target relation in Formula 1.

Achieving Automation. Observe that once we have fixed an fbody -coupling
for the sampling instructions inside the loop body, checking that the floop-
coupling satisfies the conditions for uniformity (Formula 1) is essentially a pro-
gram verification problem. Therefore, we can cast the problem of constructing
a coupling proof as a logical problem of the form ∃f. ∀X.ϕ, where f is the f -
coupling we need to discover and ∀X.ϕ is a constraint ensuring that (i) f indeed
represents an f -coupling, and (ii) the f -coupling implies uniformity. Thus, we
can use established synthesis-verification techniques to solve the resulting con-
straints (see, e.g., [27, 2, 13]).

6

3 A Proof Rule for Coupling Proofs

In this section, we develop a technique for constructing couplings and formalize
proof rules for establishing uniformity and independence properties over program
variables. We begin with background on probability distributions and couplings.

3.1 Distributions and Couplings

Distributions. A function µ : B → [0, 1] defines a distribution over a countable
set B if

∑
b∈B µ(b) = 1. We will often write µ(A) for a subset A ⊆ B to mean∑

x∈A µ(x). We write dist(B) for the set of all distributions over B.
We will need a few standard constructions on distributions. First, the support

of a distribution µ is defined as supp(µ) = {b ∈ B | µ(b) > 0}. Second, for a
distribution on pairs µ ∈ dist(B1 × B2), the first and second marginals of µ,
denoted π1(µ) and π2(µ) respectively, are distributions over B1 and B2:

π1(µ)(b1) ,
∑
b2∈B2

µ(b1, b2) π2(µ)(b2) ,
∑
b1∈B1

µ(b1, b2).

Couplings. Let Ψ ⊆ B1 × B2 be a binary relation. A Ψ -coupling for distri-
butions µ1 and µ2 over B1 and B2 is a distribution µ ∈ dist(B1 × B2) with
(i) π1(µ) = µ1 and π2(µ) = µ2; and (ii) supp(µ) ⊆ Ψ . We write µ1 !Ψ µ2

when there exists a Ψ -coupling between µ1 and µ2.
An important fact is that an injective function f : B1 → B2 where µ1(b) 6

µ2(f(b)) for all b ∈ B1 induces a coupling between µ1 and µ2; this follows
from a general theorem by Strassen [28], see also [23]. We write µ1 !f µ2 for
µ1 !Ψf µ2, where Ψf = {(b1, f(b1)) | b1 ∈ B1}. The existence of a coupling
can imply various useful properties about the two distributions. The following
general fact will be the most important for our purposes—couplings can prove
equalities between probabilities.

Proposition 1. Let E1 ⊆ B1 and E2 ⊆ B2 be two events, and let Ψ= ,
{(b1, b2) | b1 ∈ E1 ⇐⇒ b2 ∈ E2}. If µ1 !Ψ= µ2, then µ1(E1) = µ2(E2).

3.2 Program Model

Our program model uses an imperative language with probabilistic assignments,
where we can draw a random value from primitive distributions. We consider the
easier case of loop-free programs first; we consider looping programs in Section 5.

Syntax. A (loop-free) program P is defined using the following grammar:

P := V ← exp (assignment)

| V ∼ dexp (probabilistic assignment)

| if bexp then P else P (conditional)

| P ;P (sequential composition)

7

where V is the set of variables that can appear in P , exp is an expression over
V , and bexp is a Boolean expression over V . A probabilistic assignment samples
from a probability distribution defined by expression dexp; for instance, dexp
might be bern(p), the Bernoulli distribution with probability p of returning true.
We use V I ⊆ V to denote the set of input program variables, which are never
assigned to. All other variables are assumed to be defined before use.

We make a few simplifying assumptions. First, distribution expressions only
mention input variables V I , e.g., in the example above, bern(p), we have p ∈ V I .
Also, all programs are in static single assignment (ssa) form, where each variable
is assigned to only once and are well-typed. These assumptions are relatively
minor; they can can be verified using existing tools, or lifted entirely at the cost
of slightly more complexity in our encoding.

Semantics. A state s of a program P is a valuation of all of its variables,
represented as a map from variables to values, e.g., s(x) is the value of x ∈ V
in s. We extend this mapping to expressions: s(exp) is the valuation of exp in s,
and s(dexp) is the probability distribution defined by dexp in s.

We use S to denote the set of all possible program states. As is standard [24],
we can give a semantics of P as a function JP K : S → dist(S) from states to
distributions over states. For an output distribution µ = JP K(s), we will abuse
notation and write, e.g., µ(x = y) to denote the probability of the event that
the program returns a state s where s(x = y) = true.

Self-Composition. We will sometimes need to simulate two separate execu-
tions of a program with a single probabilistic program. Given a program P , we
use Pi to denote a program identical to P but with all variables tagged with
the subscript i. We can then define the self-composition: given a program P , the
program P1;P2 first executes P1, and then executes the (separate) copy P2.

3.3 Coupled Postconditions

We are now ready to present the f -coupled postcondition, an operator for ap-
proximating the outputs of two coupled programs.

Strongest Postcondition. We begin by defining a standard strongest post-
condition operator over single programs, treating probabilistic assignments as
no-ops. Given a set of states Q ⊆ S, we define post as follows:

post(v ← exp, Q) = {s[v 7→ s(exp)] | s ∈ Q}
post(v ∼ dexp, Q) = Q

post(if bexp then P else P ′, Q) = {s′ | s ∈ Q, s′ ∈ post(P, s), s(bexp) = true}
∪ {s′ | s ∈ Q, s′ ∈ post(P ′, s), s(bexp) = false}

post(P ;P ′, Q) = post(P ′, post(P,Q))

where s[v 7→ c] is state s with variable v mapped to the value c.

f-Coupled Postcondition. We rewrite programs so that all probabilistic
assignments are combined into a single probabilistic assignment to a vector of

8

variables appearing at the beginning of the program, i.e., an assignment of the
form v ∼ dexp in P and v′ ∼ dexp′ in P ′, where v,v′ are vectors of variables. For
instance, we can combine x ∼ bern(0.5); y ∼ bern(0.5) into the single statement
x, y ∼ bern(0.5)× bern(0.5).

Let B,B′ be the domains of v and v′, f : B → B′ be a function, and
Q ⊆ S × S′ be a set of pairs of input states, where S and S′ are the states of P
and P ′, respectively. We define the f -coupled postcondition operator cpost as

cpost(P, P ′, Q, f) = {(post(P, s), post(P ′, s′)) | (s, s′) ∈ Q′}
where Q′ = {(s[v 7→ b], s′[v′ 7→ f(b)]) | (s, s′) ∈ Q, b ∈ B},

assuming that ∀(s, s′) ∈ Q. s(dexp) !f s′(dexp′). (2)

The intuition is that the values drawn from sampling assignments in both pro-
grams are coupled using the function f . Note that this operation non-deterministically
assigns v from P with some values b, and v′ with f(b). Then, the operation sim-
ulates the executions of the two programs. Formula 2 states that there is an
f -coupling for every instantiation of the two distributions used in probabilistic
assignments in both programs.

Example 1. Consider the simple program P defined as x ∼ bern(0.5);x = ¬x
and let f¬(x) = ¬x. Then, cpost(P, P,Q, f¬) is {(s, s′) | s(x) = ¬s′(x)}.

The main soundness theorem shows there is a probabilistic coupling of the
output distributions with support contained in the coupled postcondition (we
defer all proofs to the full version of this paper).

Theorem 1. Let programs P and P ′ be of the form v ∼ dexp;PD and v′ ∼
dexp′;P ′D, for deterministic programs PD, P

′
D. Given a function f : B → B′

satisfying Formula 2, for every (s, s′) ∈ S × S′ we have JP K(s) !Ψ JP ′K(s′),
where Ψ = cpost(P, P ′, (s, s′), f).

3.4 Proof Rules for Uniformity and Independence

We are now ready to demonstrate how to establish uniformity and independence
of program variables using f -coupled postconditions. We will continue to assume
that random sampling commands have been lifted to the front of each program,
and that f satisfies Formula 2.

Uniformity. Consider a program P and a variable v∗ ∈ V of finite, non-
empty domain B. Let µ = JP K(s) for some state s ∈ S. We say that variable v∗

is uniformly distributed in µ if µ(v∗ = b) = 1
|B| for every b ∈ B.

The following theorem connects uniformity with f -coupled postconditions.

Theorem 2 (Uniformity). Consider a program P with v ∼ dexp as its first
statement and a designated return variable v∗ ∈ V with domain B. Let Q =
{(s, s) | s ∈ S} be the input relation. If we have

∃f. cpost(P, P,Q, f) ⊆ {(s, s′) ∈ S × S | s(v∗) = b ⇐⇒ s′(v∗) = b′}

9

for all b, b′ ∈ B, then for any input s ∈ S the final value of v∗ is uniformly
distributed over B in JP K(s).

The intuition is that in the two f -coupled copies of P , the first v∗ is equal to
b exactly when the second v∗ is equal to b′. Hence, the probability of returning
b in the first copy and b′ in the second copy are the same. Repeating for every
pair of values b, b′, we conclude that v∗ is uniformly distributed.

Example 2. Recall Example 1 and let b = true and b′ = false. We have

cpost(P, P,Q, f¬) ⊆ {(s, s′) ∈ S × S | s(x) = b ⇐⇒ s′(x) = b′}.

This is sufficient to prove uniformity (the case with b = b′ is trivial).

Independence. We now present a proof rule for independence. Consider a
program P and two variables v∗, w∗ ∈ V with domains B and B′, respectively.
Let µ = JP K(s) for some state s ∈ S. We say that v∗, w∗ are probabilistically
independent in µ if µ(v∗ = b∧w∗ = b′) = µ(v∗ = b) · µ(w∗ = b′) for every b ∈ B
and b′ ∈ B′.

The following theorem connects independence with f -coupled postconditions.
We will self-compose two tagged copies of P , called P1 and P2.

Theorem 3 (Independence). Assume a program P and define the relation

Q = {(s, s1 ⊕ s2) | s ∈ S, si ∈ Si, s(v) = si(vi), for all v ∈ V I},

where ⊕ takes the union of two maps with disjoint domains. Fix some w∗, v∗ ∈ V
with domains B,B′, and assume that for all b ∈ B, b′ ∈ B′, there exists a
function f such that cpost(P, (P1;P2), Q, f) is contained in

{(s′, s′1 ⊕ s′2) | s′(v∗) = b ∧ s′(w∗) = b′ ⇐⇒ s′1(v∗1) = b ∧ s′2(w∗2) = b′}.

Then, w∗, v∗ are independently distributed in JP K(s) for all inputs s ∈ S.

The idea is that under the coupling, the probability of P returning v∗ =
b∧w∗ = b′ is the same as the probability of P1 returning v∗ = b and P2 returning
w∗ = b′, for all values b, b′. Since P1 and P2 are two independent executions of
P by construction, this establishes independence of v∗ and w∗.

4 Constraint-Based Formulation of Proof Rules

In Section 3, we formalized the problem of constructing a coupling proof using
f -coupled postconditions. We now automatically find such proofs by posing the
problem as a constraint, where a solution gives a function f establishing our
desired property.

10

4.1 Generating Logical and Probabilistic Constraints

Logical Encoding. We first encode program executions as formulas in first-
order logic, using the following encoding function:

enc(v ← exp) , v = exp

enc(v ∼ dexp) , true

enc(if bexp then P else P ′) , (bexp ⇒ enc(P)) ∧ (¬bexp ⇒ enc(P ′))

enc(P ;P ′) , enc(P) ∧ enc(P ′)

We assume a direct correspondence between expressions in our language and
the first-order theory used for our encoding, e.g., linear arithmetic. Note that
the encoding disregards probabilistic assignments, encoding them as true; this
mimics the semantics of our strongest postcondition operator post. Probabilistic
assignments will be handled via a separate encoding of f -couplings.

As expected, enc reflects the strongest postcondition post.

Lemma 1. Let P be a program and let ρ be any assignment of the variables. An
assignment ρ′ agreeing with ρ on all input variables V I satisfies the constraint
enc(P)[ρ′/V] precisely when post(P, {ρ}) = {ρ′}, treating ρ, ρ′ as program states.

Uniformity Constraints. We can encode the conditions in Theorem 2 for
showing uniformity as a logical constraint. For a program P and a copy P1, with
first statements v ∼ dexp and v1 ∼ dexp1, we define the constraints:

∀a, a′.∃f. ∀V, V1.
(V I = V I1 ∧ v1 = f(v) ∧ enc(P) ∧ enc(P1))

=⇒ (v∗ = a ⇐⇒ v∗1 = a′)

V I = V I1 =⇒ dexp !f dexp1

(3)

(4)

Note that this is a second-order formula, as it quantifies over the uninterpreted
function f . The left side of the implication in Formula 3 encodes an f -coupled
execution of P and P1, starting from equal initial states. The right side of this
implication encodes the conditions for uniformity, as in Theorem 2.

Formula 4 ensures that there is an f -coupling between dexp and dexp1 for any
initial state; recall that dexp may mention input variables V I . The constraint
dexp !f dexp1 is not a standard logical constraint—intuitively, it is satisfied if
dexp !f dexp1 holds for some interpretation of f , dexp, and dexp1.

Example 3. The constraint

∃f. ∀p, p′. p = p′ ⇒ bern(p) !f bern(p′)

holds by setting f to the identity function id, since for any p = p′ we have an
f -coupling bern(p) !id bern(p′).

11

Example 4. Consider the program x ∼ bern(0.5); y = ¬x. The constraints for
uniformity of y are

∀a, a′.∃f. ∀V, V1.(x1 = f(x) ∧ y = ¬x ∧ y1 = ¬x1) =⇒ (y = a ⇐⇒ y1 = a′)

bern(0.5) !f bern(0.5).

Since there are no input variables, V I = V I1 is equivalent to true.

Theorem 4 (Uniformity constraints). Fix a program P and variable v∗ ∈
V . Let ϕ be the uniformity constraints in Formulas 3 and 4. If ϕ is valid, then
v∗ is uniformly distributed in JP K(s) for all s ∈ S.

Independence Constraints. Similarly, we can characterize independence
constraints using the conditions in Theorem 3. After transforming the program
P1;P2 to start with the single probabilistic assignment statement v1,2 ∼ dexp1,2,
combining probabilistic assignments in P1 and P2, we define the constraints:

∀a, a′.∃f. ∀V, V1, V2.
(V I = V I1 = V I2 ∧ v1,2 = f(v) ∧ enc(P) ∧ enc(P1;P2))

=⇒ (v∗ = a ∧ w∗ = a′ ⇐⇒ v∗1 = a ∧ w∗2 = a′)

V I = V I1 = V I2 =⇒ dexp !f dexp1,2

(5)

(6)

Theorem 5 (Independence constraints). Fix a program P and two vari-
ables v∗, w∗ ∈ V . Let ϕ be the independence constraints from Formulas 5 and 6.
If ϕ is valid, then v∗, w∗ are independent in JP K(s) for all s ∈ S.

4.2 Constraint Transformation

To solve our constraints, we transform our constraints into the form ∃f. ∀X.ϕ,
where ϕ is a first-order formula. Such formulas can be viewed as synthesis prob-
lems, and are often solvable automatically using standard techniques.

We perform our transformation in two steps. First, we transform our con-
straint into the form ∃f. ∀X.ϕp, where ϕp still contains the coupling constraint.
Then, we replace the coupling constraint with a first-order formula by logically
encoding primitive distributions as uninterpreted functions.

Quantifier Reordering. Our constraints are of the form ∀a, a′.∃f. ∀X.ϕ. In-
tuitively, this means that for every possible value of a, a′, we want one function f
satisfying ∀X.ϕ. We can pull the existential quantifier ∃f to the outermost level
by extending the function with additional parameters for a, a′, thus defining a
different function for every interpretation of a, a′. For the uniformity constraints
this transformation yields the following formulas:

∃g.∀a, a′.∀V, V1.
(V I = V I1 ∧ v1 = g(a, a′,v) ∧ enc(P) ∧ enc(P1))

=⇒ (v∗ = a ⇐⇒ v∗1 = a′)

V I = V I1 =⇒ dexp !g(a,a′,−) dexp1

(7)

(8)

12

where g(a, a′,−) is the function after partially applying g.

Transforming Coupling Constraints. Our next step is to eliminate cou-
pling constraints. To do so, we use the definition of f -coupling, which states
that µ1 !f µ2 if (i) f is injective and (ii) ∀x. µ1(x) 6 µ2(f(x)). The first
constraint (injectivity) is straightforward. For the second point (monotonicity),
we can encode distribution expressions—which represent functions to reals—
as uninterpreted functions, which we then further constrain. For instance, the
coupling constraint bern(p) !f bern(p′) can be encoded as

∀x, y. x 6= y ⇒ f(x) 6= f(y) (injectivity)

∀x. h(x) 6 h′(f(x)) (monotonicity)

∀x. ite(x = true, h(x) = p, h(x) = 1− p) (bern(p) encoding)

∀x. ite(x = true, h′(x) = p′, h′(x) = 1− p′) (bern(p′) encoding)

where h, h′ : B → R>0 are uninterpreted functions representing the probability
mass functions of bern(p) and bern(p′); note that the third constraint encodes
the distribution bern(p), which returns true with probability p and false with
probability 1− p, and the fourth constraint encodes bern(p′).

Note that if we cannot encode the definition of the distribution in our first-
order theory (e.g., if it requires non-linear constraints), or if we do not have a
concrete description of the distribution, we can simply elide the last two con-
straints and under-constrain h and h′. In Section 6 we use this feature to prove
properties of a program encoding a Bayesian network, where the primitive dis-
tributions are unknown program parameters.

Theorem 6 (Transformation soundness). Let ϕ be the constraints generated
for some program P . Let ϕ′ be the result of applying the above transformations
to ϕ. If ϕ′ is valid, then ϕ is valid.

Constraint Solving. After performing these transformations, we finally arrive
at constraints of the form ∃g.∀a, a′.∀V. ϕ, where ϕ is a first-order formula. These
exactly match constraint-based program synthesis problems. In Section 6, we use
smt solvers and enumerative synthesis to handle these constraints.

5 Dealing with Loops

So far, we have only considered loop-free programs. In this section, we our ap-
proach to programs with loops.

f-Coupled Postconditions and Loops. We consider programs of the form

while bexp P b

where P b is a loop-free program that begins with the statement v ∼ dexp; our
technique can also be extended to handle nested loops. We assume all programs
terminate with probability 1 for any initial state; there are numerous systems for

13

verifying this basic property automatically (see, e.g., [15–17]). To extend our f -
coupled postconditions, we let cpost(P, P ′, Q, f) be the smallest set I satisfying:

Q ⊆ I (initiation)

cpost(P b, P b′, Ien, f) ⊆ I (consecution)

I ⊆ {s(bexp) = s′(bexp′) | s ∈ S, s′ ∈ S′} (synchronization)

where Ien , {(s, s′) ∈ I | s(bexp) = true}.
Intuitively, the set I is the least inductive invariant for the two coupled

programs running with synchronized loops. Theorem 1, which establishes that
f -coupled postconditions result in couplings over output distributions, naturally
extends to a setting with loops.

Constraint Generation. To prove uniformity, we generate constraints much
like the loop-free case except that we capture the invariant I, modeled as a
relation over the variables of both programs, using a Constrained Horn-Clause
(chc) encoding. As is standard, we use V ′, V ′1 to denote primed copies of program
variables denoting their value after executing the body, and we assume that
enc(P b) encodes a loop-free program as a transition relation from states over V
to states over V ′.

∀a, a′.∃f, I. ∀V, V1, V
′, V ′1 .

V I = V I
1 =⇒ I(V, V1) (initiation)

I(V, V1) ∧ bexp ∧ v′1 = f(v′) ∧ enc(P b) ∧ enc(P b
1) =⇒ I(V ′, V ′1) (consecution)

I(V, V1) =⇒ bexp = bexp1 (synchronization)

I(V, V1) =⇒ dexp !f dexp1 (coupling)

I(V, V1) ∧ ¬bexp =⇒ (v∗ = a ⇐⇒ v∗1 = a′) (uniformity)

The first three constraints encode the definition of cpost; the last two ensure
that f constructs a coupling and that the invariant implies the uniformity condi-
tion when the loop terminates. Using the technique presented in Section 4.2, we
can transform these constraints into the form ∃f, I. ∀X.ϕ. That is, in addition
to discovering the function f , we need to discover the invariant I.

Proving independence in looping programs poses additional challenges, as di-
rectly applying the self-composition construction from Section 3 requires relating
a single loop with two loops. When the number of loop iterations is determin-
istic, however, we may simulate two sequentially composed loops with a single
loop that interleaves the iterations (known as synchronized or cross product [29,
4]) so that we reduce the synthesis problem to finding a coupling for two loops.

6 Implementation and Evaluation

We now discuss our implementation and five case studies used for evaluation.

14

fun fairCoin(p ∈ (0, 1))
x← false
y ← false
while x = y do

x ∼ bern(p)
y ∼ bern(p)

return x

fun fairDie
x← false
y ← false
z ← false
while x = y = z do

x ∼ bern(0.5)
y ∼ bern(0.5)
z ∼ bern(0.5)

return (x, y, z)

fun noisySum(n, p ∈ (0, 1))
sum ← 0
for i = 1, . . . , n do

noise[i] ∼ bern(p)
sum ← sum + noise[i]

return sum

fun bayes(µ, µ′, µ′′)
x ∼ µ
y ∼ µ′

z ∼ µ′′

w ← f(x, y)
w′ ← g(y, z)
return (w,w′)

fun ballot(n)
tie← false
xA ← 0
xB ← 0
for i = 1, . . . , n do

r ∼ bern(0.5)
if r = 0 then

xA ← xA + 1
else

xB ← xB + 1

if i = 1 then
first ← r

if xA = xB then
tie ← true

return (first, tie)

Fig. 2: Case study programs

Implementation. To solve formulas of the form ∃f. ∀X.ϕ, we implemented
a simple solver using a guess-and-check loop: We iterate through various inter-
pretations of f , insert them into the formula, and check whether the resulting
formula is valid. In the simplest case, we are searching for a function f from
n-tuples to n-tuples. For instance, in Section 2.2, we discovered the function
f(x, y) = (y, x). Our implementation is parameterized by a grammar defining
an infinite set of interpretations of f , which involves permuting the arguments
(as above), conditionals, and other basic operations (e.g., negation for Boolean
variables). For checking validity of ∀X.ϕ given f , we use the Z3 smt solver [19]
for loop-free programs. For loops, we use an existing constrained-Horn-clause
solver based on the MathSAT smt solver [18].

Benchmarks and Results. As a set of case studies for our approach, we use
5 different programs collected from the literature and presented in Figure 2. For
these programs, we prove uniformity, (conditional) independence properties, and
other probabilistic equalities. For instance, we use our implementation to prove
a main lemma for the Ballot theorem [20], encoded as the program ballot.

Figure 3 shows the time and number of loop iterations required by our imple-
mentation to discover a coupling proof. The small number of iterations and time
needed demonstrates the simplicity of the discovered proofs. For instance, the
ballot theorem was proved in 3 seconds and only 4 iterations, while the fairCoin
example (illustrated in Section 2.2) required only two iterations and 1.4 seconds.
In all cases, the size of the synthesize function f in terms of depth of its ast is
no more than 4. We describe these programs and properties in a bit more detail.

Case Studies: Uniformity (fairCoin, fairDie). The first two programs pro-
duce uniformly random values. Our approach synthesizes a coupling proof cer-
tifying uniformity for both of these programs. The first program fairCoin, which
we saw in Section 2.2, produces a fair coin flip given access to biased coin flips
by repeatedly flipping two coins while they are equal, and returning the result
of the first coin as soon as the flips differ. Note that the bias of the coin flip is
a program parameter, and not fixed statically. The synthesized coupling swaps
the result of the two samples, mapping the values of (x, y) to (y, x).

15

Program Iters. Time(s)

fairCoin 2 1.4
fairDie 9 6.1
noisySum 4 0.2
bayes 5 0.4
ballot 4 3.0

Fig. 3: Statistics

The second program fairDie gives a different con-
struction for simulating a roll of a fair die given fair coin
flips. Three fair coins are repeatedly flipped as long as
they are all equal; the returned triple is the binary rep-
resentation of a number in {1, . . . , 6}, the result of the
simulated roll. The synthesized coupling is a bijection
on triples of booleans B×B×B; fixing any two possi-
ble output triples (b1, b2, b3) and (b′1, b

′
2, b
′
3) of distinct

booleans, the coupling maps (b1, b2, b3) 7→ (b′1, b
′
2, b
′
3)

and vice versa, leaving all other triples unchanged.

Case Studies: Independence (noisySum, bayes). In the next two programs,
our approach synthesizes coupling proofs of independence and conditional in-
dependence of program variables in the output distribution. The first program,
noisySum, is a stylized program inspired from privacy-preserving algorithms that
sum a series of noisy samples; for giving accuracy guarantees, it is often impor-
tant to show that the noisy draws are probabilistically independent. We show
that any pair of samples are independent.

The second program, bayes, models a simple Bayesian network with three
independent variables x, y, z and two dependent variables w and w′, computed
from (x, y) and (y, z) respectively. We want to show that w and w′ are indepen-
dent conditioned on any value of y; intuitively, w and w′ only depend on each
other through the value of y, and are independent otherwise. We use a constraint
encoding similar to the encoding for showing independence to find a coupling
proof of this fact. Note that the distributions µ, µ′, µ′′ of x, y, z are unknown
parameters, and the functions f and g are also uninterpreted. This illustrates
the advantage of using a constraint-based technique—we can encode unknown
distributions and operations as uninterpreted functions.

Case Studies: Probabilistic Equalities (ballot). As we mentioned in Sec-
tion 1, our approach extends naturally to proving general probabilistic equalities
beyond uniformity and independence. To illustrate, we consider a lemma used
to prove Bertrand’s Ballot theorem [20]. Roughly speaking, this theorem consid-
ers counting ballots one-by-one in an election where there are nA votes cast for
candidate A and nB votes cast for candidate B, where nA, nB are parameters.
If nA > nB (so A is the winner) and votes are counted in a uniformly random
order, the Ballot theorem states that the probability that A leads throughout
the whole counting process—without any ties—is precisely (nA−nB)/(nA+nB).

One way of proving this theorem, sometimes called André’s reflection princi-
ple, is to show that the probability of counting the first vote for A and reaching
a tie is equal to the probability of counting the first vote for B and reaching
a tie. We simulate the counting process slightly differently—instead of drawing
a uniform order to count the votes, our program draws uniform samples for
votes—but the original target property is equivalent to the equality

Pr[first1 = 0 ∧ tie1 ∧ ψ(xA1, xB1)] = Pr[first2 = 1 ∧ tie2 ∧ ψ(xA2, xB2)] (9)

16

with ψ(xAi, xBi) is xAi = nA ∧ xBi = nB . Our approach synthesizes a coupling
and loop invariant showing that the coupled post-condition is contained in

{(s1, s2) | s1(first = 0 ∧ tie ∧ ψ(xA, xB)) ⇐⇒ s2(first = 0 ∧ tie ∧ ψ(xA, xB))},

giving Formula (9) by Proposition 1 (see Barthe et al. [6] for more details).

7 Related Work

Probabilistic programs have been a long-standing target of formal verification.
We compare with two of the most well-developed lines of research: probabilistic
model checking and deductive verification via program logics or expectations.

Probabilistic Model Checking. Model checking has proven to be a powerful
tool for verifying probabilistic programs, capable of automated proofs for various
probabilistic properties (typically encoded in probabilistic temporal logics); there
are now numerous mature implementations (see, e.g., [21] or [3, Ch. 10] for
more details). In comparison, our approach has the advantage of being fully
constraint-based. This gives it a number of unique features: (i) it applies to
programs with unknown inputs and variables over infinite domains; (ii) it applies
to programs sampling from distributions with parameters, or even ones sampling
from unknown distributions modeled as uninterpreted functions in first-order
logic; (iii) it applies to distributions over infinite domains; and (iv) the generated
coupling proofs are compact. At the same time, our approach is specialized to
the coupling proof technique and is likely to be more incomplete.

Deductive Verification. Compared to general deductive verification systems
for probabilistic programs, like program logics [26, 5, 22, 14] or techniques reason-
ing by pre-expectations [25], the main benefit of our technique is automation—
deductive verification typically requires an interactive theorem prover to manip-
ulate complex probabilistic invariants. In general, the coupling proof method lim-
its reasoning about probabilities and distributions to just the random sampling
commands; in the rest of the program, the proof can avoid quantitative reasoning
entirely. As a result, our system can work with non-probabilistic invariants and
achieve full automation. Our approach also smoothly handles properties involv-
ing the probabilities of multiple events, like probabilistic independence, unlike
techniques that analyze probabilistic events one-by-one.

Acknowledgements. We thank Samuel Drews, Calvin Smith, and the anony-
mous reviewers for their helpful comments. Justin Hsu was partially supported
by ERC grant #679127 and NSF grant #1637532. Aws Albarghouthi was sup-
ported by NSF grants #1566015, #1704117, and #1652140.

References

1. Albarghouthi, A., Hsu, J.: Synthesizing coupling proofs of differential privacy. Pro-
ceedings of the ACM on Programming Languages 2(POPL), 58:1–58:30 (2018),
http://doi.acm.org/10.1145/3158146

17

2. Alur, R., Bodik, R., Juniwal, G., Martin, M.M., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Formal Methods in Computer-Aided Design (FMCAD), Portland, Oregon. pp. 1–8.
IEEE (2013)

3. Baier, C., Katoen, J.P., Larsen, K.G.: Principles of model checking. MIT Press
(2008)

4. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: International Symposium on Formal Methods (FM), Limerick, Ireland. Lecture
Notes in Computer Science, vol. 6664, pp. 200–214. Springer-Verlag (2011), https:
//software.imdea.org/˜ckunz/rellog/long-rellog.pdf

5. Barthe, G., Espitau, T., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.Y.: A pro-
gram logic for probabilistic programs. In: European Symposium on Programming
(ESOP), Thessaloniki, Greece (2018), https://justinh.su/files/papers/ellora.
pdf, to appear.

6. Barthe, G., Espitau, T., Grégoire, B., Hsu, J., Strub, P.Y.: Proving uniformity
and independence by self-composition and coupling. In: International Conference
on Logic for Programming, Artificial Intelligence and Reasoning (LPAR), Maun,
Botswana. EPiC Series in Computing, vol. 46, pp. 385–403 (2017), https://arxiv.
org/abs/1701.06477

7. Barthe, G., Espitau, T., Grégoire, B., Hsu, J., Strub, P.: Proving expected sensitiv-
ity of probabilistic programs. Proceedings of the ACM on Programming Languages
2(POPL), 57:1–57:29 (2018), http://doi.acm.org/10.1145/3158145

8. Barthe, G., Fong, N., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.Y.: Advanced
probabilistic couplings for differential privacy. In: ACM SIGSAC Conference on
Computer and Communications Security (CCS), Vienna, Austria (2016), https:
//arxiv.org/abs/1606.07143

9. Barthe, G., Fournet, C., Grégoire, B., Strub, P.Y., Swamy, N., Zanella-Béguelin,
S.: Probabilistic relational verification for cryptographic implementations. In:
ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages
(POPL), San Diego, California. pp. 193–206 (2014), https://research.microsoft.
com/en-us/um/people/nswamy/papers/rfstar.pdf

10. Barthe, G., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.Y.: Proving differential
privacy via probabilistic couplings. In: IEEE Symposium on Logic in Computer
Science (LICS), New York, New York. pp. 749–758 (2016), http://arxiv.org/abs/
1601.05047

11. Barthe, G., Grégoire, B., Hsu, J., Strub, P.Y.: Coupling proofs are probabilis-
tic product programs. In: ACM SIGPLAN–SIGACT Symposium on Principles
of Programming Languages (POPL), Paris, France. pp. 161–174 (2017), http:
//arxiv.org/abs/1607.03455

12. Barthe, G., Köpf, B., Olmedo, F., Zanella-Béguelin, S.: Probabilistic relational rea-
soning for differential privacy. ACM Transactions on Programming Languages and
Systems 35(3), 9 (2013), http://software.imdea.org/˜bkoepf/papers/toplas13.pdf

13. Beyene, T., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based ap-
proach to solving games on infinite graphs. In: ACM SIGPLAN–SIGACT Sympo-
sium on Principles of Programming Languages (POPL), San Diego, California. pp.
221–233 (2014)

14. Chadha, R., Cruz-Filipe, L., Mateus, P., Sernadas, A.: Reasoning about probabilis-
tic sequential programs. Theoretical Computer Science 379(1), 142–165 (2007)

15. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilis-
tic programs through Positivstellensatz’s. In: International Conference on Com-
puter Aided Verification (CAV), Toronto, Ontario. Lecture Notes in Computer

18

Science, vol. 9779, pp. 3–22. Springer-Verlag (2016), https://doi.org/10.1007/
978-3-319-41528-4_1

16. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analy-
sis of qualitative and quantitative termination problems for affine probabilis-
tic programs. In: ACM SIGPLAN–SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), Saint Petersburg, Florida. pp. 327–342 (2016),
https://doi.acm.org/10.1145/2837614.2837639

17. Chatterjee, K., Novotný, P., Žikelić, D.: Stochastic invariants for probabilistic ter-
mination. In: ACM SIGPLAN–SIGACT Symposium on Principles of Programming
Languages (POPL), Paris, France. pp. 145–160 (2017), https://doi.acm.org/10.
1145/3009837.3009873

18. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), Rome, Italy. Lecture Notes in Computer
Science, vol. 7795, pp. 93–107. Springer-Verlag (2013)

19. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), Budapest, Hungary. Lecture Notes in Computer Science, vol. 4963, pp.
337–340. Springer-Verlag (2008)

20. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1.
Wiley, third edn. (1968)

21. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: International School on Formal Methods for the
Design of Computer, Communication and Software Systems. pp. 53–113. Springer
(2011)

22. den Hartog, J.: Probabilistic extensions of semantical models. Ph.D. thesis, Vrije
Universiteit Amsterdam (2002)

23. Hsu, J.: Probabilistic Couplings for Probabilistic Reasoning. Ph.D. thesis, Univer-
sity of Pennsylvania (2017), https://arxiv.org/abs/1710.09951

24. Kozen, D.: Semantics of probabilistic programs. Journal of Computer and System
Sciences 22(3), 328–350 (1981), https://www.sciencedirect.com/science/article/
pii/0022000081900362

25. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Transactions on Programming Languages and Systems 18(3), 325–353 (1996), dl.
acm.org/ft_gateway.cfm?id=229547

26. Rand, R., Zdancewic, S.: VPHL: A verified partial-correctness logic for probabilis-
tic programs. In: Conference on the Mathematical Foundations of Programming
Semantics (MFPS), Nijmegen, The Netherlands (2015)

27. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs. In: International Conference on Architectural
Support for Programming Langauages and Operating Systems (ASPLOS), San
Jose, California. pp. 404–415 (2006), http://doi.acm.org/10.1145/1168857.1168907

28. Strassen, V.: The existence of probability measures with given marginals. The
Annals of Mathematical Statistics pp. 423–439 (1965), https://projecteuclid.org/
euclid.aoms/1177700153

29. Zaks, A., Pnueli, A.: CoVaC: Compiler validation by program analysis of the cross-
product. In: International Symposium on Formal Methods (FM), Turku, Finland.
Lecture Notes in Computer Science, vol. 5014, pp. 35–51. Springer-Verlag (2008),
https://llvm.org/pubs/2008-05-CoVaC.pdf

