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Abstract. Partial order reduction for timed systems is a challenging
topic due to the dependencies among events induced by time acting as
a global synchronization mechanism. So far, there has only been a lim-
ited success in finding practically applicable solutions yielding significant
state space reductions. We suggest a working and efficient method to fa-
cilitate stubborn set reduction for timed systems with urgent behaviour.
We first describe the framework in the general setting of timed labelled
transition systems and then instantiate it to the case of timed-arc Petri
nets. The basic idea is that we can employ classical untimed partial or-
der reduction techniques as long as urgent behaviour is enforced. Our
solution is implemented in the model checker TAPAAL and the feature
is now broadly available to the users of the tool. By a series of larger case
studies, we document the benefits of our method and its applicability to
real-world scenarios.

1 Introduction

Partial order reduction techniques for untimed systems, introduced by Gode-
froid, Peled, and Valmari in the nineties (see e.g. [6]), have since long proved
successful in combating the notorious state space explosion problem. For timed
systems, the success of partial order reduction has been significantly challenged
by the strong dependencies between events caused by time as a global synchro-
nizer. Only recently—and moreover in combination with approximate abstrac-
tion techniques—stubborn set techniques have demonstrated a true reduction
potential for systems modelled by timed automata [23].

We pursue an orthogonal solution to the current partial order approaches
for timed systems and, based on a stubborn set reduction [28, 39], we target a
general class of timed systems with urgent behaviour. In a modular modelling
approach for timed systems, urgency is needed to realistically model behaviour in
a component that should be unobservable to other components [36]. Examples
of such instantaneously evolving behaviours include, among others, cases like
behaviour detection in a part of a sensor (whose duration is assumed to be
negligible) or handling of release and completion of periodic tasks in a real-time
operating system. We observe that focusing on the urgent part of the behaviour
of a timed system allows us to exploit the full range of partial order reduction



techniques already validated for untimed systems. This leads to an exact and
broadly applicable reduction technique, which we shall demonstrate on a series of
industrial case studies showing significant space and time reduction. In order to
highlight the generality of the approach, we first describe our reduction technique
in the setting of timed labelled transition systems. We shall then instantiate it to
timed-arc Petri nets and implement and experimentally validate it in the model
checker TAPAAL [19].

Let us now briefly introduce the model of timed-arc Peri nets and explain
our reduction ideas. In timed-arc Petri nets, each token is associated with a
nonnegative integer representing its age and input arcs to transitions contain
intervals, restricting the ages of tokens available for transition firing (if an interval
is missing, we assume the default interval [0,∞] that accepts all token ages). In
Figure 1a we present a simple monitoring system modelled as a timed-arc Petri
net. The system consists of two identical sensors where sensor i, i ∈ {1, 2}, is
represented by the places bi and mi, and the transitions si and ri. Once a token
of age 0 is placed into the place bi, the sensor gets started by executing the
transition si and moving the token from place bi to mi where the monitoring
process starts. As the place bi has an associated age invariant ≤ 0, meaning that
all tokens in bi must be of age at most 0, no time delay is allowed and the firing
of si becomes urgent. In the monitoring place mi we have to delay one time unit
before the transition ri reporting the reading of the sensor becomes enabled.
Due to the age invariant ≤ 1 in the place mi, we cannot wait longer than one
time unit, after which ri becomes also urgent.

The places c1, c2 and c3 together with the transitions i1, i2 and t are used to
control the initialization of the sensors. At the execution start, only the transition
i1 is enabled and because it is an urgent transition (denoted by the white circle),
no delay is initially possible and i1 must be fired immediately while removing
the token of age 0 from c1 and placing a new token of age 0 into c2. At the
same time, the first sensor gets started as i1 also places a fresh token of age 0
into b1. Now the control part of the net can decide to fire without any delay the
transition i2 and start the second sensor, or it can delay one unit of time after
which i2 becomes urgent due to the age invariant ≤ 1 as the token in c2 is now
of age 1. If i2 is fired now, it will place a fresh token of age 0 into b2. However,
the token that is moved from c2 to c3 by the pair of transport arcs with the
diamond-shaped arrow tips preserves its age 1, so now we have to wait precisely
one more time unit before t becomes enabled. Moreover, before t can be fired,
the places m1 and m2 must be empty as otherwise the firing of t is disabled due
to inhibitor arcs with circle-shaped arrow tips.

In Figure 1b we represent the reachable state space of the simple monitoring
system where markings are represented using the notation like c3 : 1+b2 : 2 that
stands for one token of age 1 in place c3 and one token of age 2 in place b2. The
dashed boxes represent the markings that can be avoided during the state space
exploration when we apply our partial order reduction method for checking if
the termination transition t can become enabled from the initial marking. We
can see that the partial order reduction is applied such that it preserves at least
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(b) Reachable state space generated by the net in Figure 1a

Fig. 1: Simple Monitoring System

one path to all configurations where our goal is reached (transition t is enabled)
and where time is not urgent anymore (i.e. to the configurations that allow the
delay of 1 time unit). The basic idea of our approach is to apply the stubborn
set reduction on the commutative diamonds where time is not allowed to elapse.

Related Work. Our stubborn set reduction is based on the work of Valmari et
al. [28, 39]. We formulate their stubborn set method in the abstract framework of
labelled transition systems with time and add further axioms for time elapsing
in order to guarantee preservation of the reachability properties.

For Petri nets, Yoneda and Schlingloff [41] apply a partial order reduction
to one-safe time Petri nets, however, as claimed in [38], the method is mainly



suitable for small to medium models due to a computational overhead, confirmed
also in [29]. The experimental evaluation in [41] shows only one selected exam-
ple. Sloan and Buy [38] try to improve on the efficiency of the method, at the
expense of considering only a rather limited model of simple time Petri nets
where each transition has a statically assigned duration. Lilius [29] suggests to
instead use alternative semantics of timed Petri nets to remove the issues related
to the global nature of time, allowing him to apply directly the untimed partial
order approaches. However, the semantics is nonstandard and no experiments
are reported. Another approach is by Virbitskaite and Pokozy [40], who apply
a partial order method on the region graph of bounded time Petri nets. Region
graphs are in general not an efficient method for state space representation and
the method is demonstrated only on a small buffer example with no further
experimental validation. Recently, partial order techniques were suggested by
André, Chatain and Rodŕıguez for parametric time Petri nets [5], however, the
approach is working only for safe and acyclic nets. Boucheneb and Barkaoui [14,
13, 12] discuss a partial order reduction technique for timed Petri nets based on
contracted state class graphs and present a few examples on a prototype imple-
mentation (the authors do not refer to any publicly available tool). Their method
is different from ours as it aims at adding timing constrains to the independence
relation, but it does not exploit urgent behaviour. Moreover, the models of time
Petri nets and timed-arc Petri nets are, even on the simplest nets, incomparable
due to the different way to modelling time.

The fact that we are still lacking a practically applicable method for the time
Petri net model is documented by a missing implementation of the technique in
leading tools for time Petri net model checking like TINA [9] and Romeo [22].
We are not aware of any work on partial order reduction technique for the class
of timed-arc Petri nets that we consider in this paper. This is likely because
this class of nets provides even more complex timing behaviour, as we consider
unbounded nets where each token carries its timing information (and needs a
separate clock to remember the timing), while in time Petri nets timing is asso-
ciated only to a priory fixed number of transitions in the net.

In the setting of timed automata [3], early work on partial order reduction
includes Bengtsson et al. [8] and Minea [32] where they introduce the notion
of local as well as global clocks but provide no experimental evaluation. Dams
et al. [18] introduce the notion of covering in order to generalize dependencies
but also here no empirical evaluation is provided. Lugiez, Niebert et al. [30, 34]
study the notion of event zones (capturing time-durations between events) and
use it to implement Mazurkiewicz-trace reductions. Salah, Bozga and Maler [37]
introduce and implement an exact method based on merging zones resulting
from different interleavings. The method achieves performance comparable with
the approximate convex-hull abstraction which is by now superseded by the
exact LU-abstraction [7]. Most recently, Hansen et al. [23] introduce a variant
of stubborn sets for reducing an abstracted zone graph, thus in general offering
overapproximate analysis. Our technique is orthogonal to the other approaches
mentioned above; not only is the model different but also the application of our



reduction gives exact results and is based on new reduction ideas. Finally, the
idea of applying partial order reduction for independent events that happen at
the same time appeared also in [15] where the authors, however, use a static
method that declares actions as independent only if they do not communicate,
do not emit signals and do not access any shared variables. Our realization of
the method to the case of timed-arc Petri nets applies a dynamic (on-the-fly)
reduction, while executing a detailed timing analysis that allows us to declare
more transitions as independent—sometimes even in the case when they share
resources.

2 Partial Order Reduction for Timed Systems

We shall now describe the general idea of our partial order reduction technique
(based on stubborn sets [28, 39]) in terms of timed transition systems. We con-
sider real-time delays in the rest of this section, as these results are not spe-
cific only to discrete time semantics. Let A be a given set of actions such that
A ∩R≥0 = ∅ where R≥0 stands for the set of nonnegative real numbers.

Definition 1 (Timed Transition System). A timed transition system is a
tuple (S, s0,−→) where S is a set of states, s0 ∈ S is the initial state, and −→⊆
S × (A ∪R≥0)× S is the transition relation.

If (s, α, s′) ∈−→ we write s
α−→ s′. We implicitly assume that if s

0−→ s′ then
s = s′, i.e. zero time delays do not change the current state. The set of enabled

actions at a state s ∈ S is defined as En(s)
def
= {a ∈ A | ∃s′ ∈ S. s

a−→ s′}.
Given a sequence of actions w = α1α2α3 . . . αn ∈ (A ∪ R≥0)∗ we write s

w−→ s′

iff s
α1−→ . . .

αn−−→ s′. If there is a sequence w of length n such that s
w−→ s′, we

also write s −→n s′. Finally, let −→∗ be the reflexive and transitive closure of the
relation −→ such that s −→ s′ iff there is α ∈ R≥0 ∪A and s

α−→ s′.
For the rest of this section, we assume a fixed transition system (S, s0,−→)

and a set of goal states G ⊆ S. The reachability problem, given a timed transition
system (S, s0,−→) and a set of goal states G, is to decide whether there is s′ ∈ G
such that s0 −→∗ s′.

We now develop the theoretical foundations of stubborn sets for timed tran-
sition systems. A state s ∈ S is zero time if time can not elapse at s. We denote
the zero time property of a state s by the predicate zt(s) and define it as zt(s)

iff for all s′ ∈ S and all d ∈ R≥0 if s
d−→ s′ then d = 0. A reduction of a timed

transition system is a function St : S → 2A. A reduction defines a reduced tran-
sition relation −→

St
⊆−→ such that s

α−→
St

s′ iff s
α−→ s′ and α ∈ St(s) ∪ R≥0. For a

given state s ∈ S we define St(s)
def
= A \ St(s) as the set of all actions that are

not in St(s).

Definition 2 (Reachability Conditions). A reduction St on a timed transi-
tion system (S, s0,−→) is reachability preserving if it satisfies the following four
conditions.



(Z) ∀s ∈ S. ¬zt(s) =⇒ En(s) ⊆ St(s)

(D) ∀s, s′ ∈ S. ∀w ∈ St(s)
∗
. zt(s) ∧ s w−→ s′ =⇒ zt(s′)

(R) ∀s, s′ ∈ S. ∀w ∈ St(s)
∗
. zt(s) ∧ s w−→ s′ ∧ s 6∈ G =⇒ s′ 6∈ G

(W) ∀s, s′ ∈ S. ∀w ∈ St(s)
∗
. ∀a ∈ St(s). zt(s) ∧ s wa−−→ s′ =⇒ s

aw−−→ s′

Condition Z declares that in a state where a delay is possible, all enabled
actions become stubborn actions. Condition D guarantees that in order to enable
a time delay from a state where delaying is not allowed, a stubborn action
must be executed. Similarly, Condition R requires that a stubborn action must
be executed before a goal state can be reached from a non-goal state. Finally,
ConditionW allows us to commute stubborn actions with non-stubborn actions.
The following theorem shows that reachability preserving reductions generate
pruned transition systems where the reachability of goal states is preserved.

Theorem 1 (Shortest-Distance Reachability Preservation). Let St be a
reachability preserving reduction satisfying Z, D, R andW. Let s ∈ S. If s −→n s′

for some s′ ∈ G then also s −→
St

m s′′ for some s′′ ∈ G where m ≤ n.

Proof. We proceed by induction on n. Base step. If n = 0, then s = s′ and
m = n = 0. Inductive step. Let s0

α0−→ s1
α1−→ . . .

αn−−→ sn+1 where s0 6∈ G
and sn+1 ∈ G. Without loss of generality we assume that for all i, 0 ≤ i ≤ n,
we have αi 6= 0 (otherwise we can simply skip these 0-delay actions and get a
shorter sequence). We have two cases. Case ¬zt(s0): by condition Z we have

En(s0) ⊆ St(s0) and by the definition of −→
St

we have s0
α0−→
St

s1 since α0 ∈
En(s0) ∪ R≥0. By the induction hypothesis we have s1 −→

St

m s′′ with s′′ ∈ G

and m ≤ n and m + 1 ≤ n + 1. Case zt(s0): let w = α0α1 . . . αn and αi be
such that αi ∈ St(s0) and for all k < i holds that αk 6∈ St(s0), i.e. αi is the
first stubborn action in w. Such an αi has to exist otherwise sn+1 6∈ G due to
condition R. Because of condition D we get zt(sk) for all k, 0 ≤ k < i, otherwise
αi cannot be the first stubborn action in w. We can split w as w = uαiv with

u ∈ St(s0)
∗
. Since all states in the path to si are zero time, by W we can swap

αi as s0
αi−→ s′1

u−→ si
v−→ s′ with |uv| = n. Since αi ∈ St(s0) we get s0

αi−→
St

s′1

and by the induction hypothesis we have s′1 −→
St

m s′′ where s′′ ∈ G, m ≤ n, and

m+ 1 ≤ n+ 1. ut

3 Timed-Arc Petri Nets

We shall now define the model of timed-arc Petri nets (as informally described in
the introduction) together with a reachability logic and a few technical lemmas
needed later on. Let N0 = N ∪ {0} and N∞0 = N0 ∪ {∞}. We define the set of

well-formed closed time intervals as I def
= {[a, b] | a ∈ N0, b ∈ N∞0 , a ≤ b} and its

subset I inv def
= {[0, b] | b ∈ N∞0 } used in age invariants.

Definition 3 (Timed-Arc Petri Net). A timed-arc Petri net (TAPN) is a
9-tuple N = (P, T, Turg , IA,OA, g ,w ,Type, I ) where



– P is a finite set of places,
– T is a finite set of transitions such that P ∩ T = ∅,
– Turg ⊆ T is the set of urgent transitions,
– IA ⊆ P × T is a finite set of input arcs,
– OA ⊆ T × P is a finite set of output arcs,
– g : IA → I is a time constraint function assigning guards (time intervals)

to input arcs s.t.

• if (p, t) ∈ IA and t ∈ Turg then g((p, t)) = [0,∞],

– w : IA ∪OA→ N is a function assigning weights to input and output arcs,
– Type : IA ∪ OA → Types is a type function assigning a type to all arcs

where Types = {Normal , Inhib} ∪ {Transportj | j ∈ N} such that

• if Type(z) = Inhib then z ∈ IA and g(z) = [0,∞],
• if Type((p, t)) = Transportj for some (p, t) ∈ IA then there is exactly

one (t, p′) ∈ OA such that Type((t, p′)) = Transportj,
• if Type((t, p′)) = Transportj for some (t, p′) ∈ OA then there is exactly

one (p, t) ∈ IA such that Type((p, t)) = Transportj,
• if Type((p, t)) = Transportj = Type((t, p′)) then w((p, t)) = w((t, p′)),

– I : P → Iinv is a function assigning age invariants to places.

Note that for transport arcs we assume that they come in pairs (for each
type Transportj) and that their weights match. Also for inhibitor arcs and for
input arcs to urgent transitions, we require that the guards are [0,∞].

Before we give the formal semantics of the model, let us fix some notation.

Let N = (P, T, Turg , IA,OA, g ,w ,Type, I ) be a TAPN. We denote by •x
def
= {y ∈

P ∪ T | (y, x) ∈ IA ∪ OA, Type((y, x)) 6= Inhib} the preset of a transition

or a place x. Similarly, the postset is defined as x•
def
= {y ∈ P ∪ T | (x, y) ∈

(IA ∪ OA)}. We denote by ◦t
def
= {p ∈ P | (p, t) ∈ IA ∧ Type((p, t) = Inhib} the

inhibitor preset of a transition t. The inhibitor postset of a place p is defined as

p◦
def
= {t ∈ T | (p, t) ∈ IA ∧ Type((p, t) = Inhib}. Let B(R≥0) be the set of all

finite multisets over R≥0. A marking M on N is a function M : P −→ B(R≥0)
where for every place p ∈ P and every token x ∈ M(p) we have x ∈ I (p), in
other words all tokens have to satisfy the age invariants. The set of all markings
in a net N is denoted by M(N).

We write (p, x) to denote a token at a place p with the age x ∈ R≥0. Then
M = {(p1, x1), (p2, x2), . . . , (pn, xn)} is a multiset representing a marking M
with n tokens of ages xi in places pi. We define the size of a marking as |M | =∑
p∈P |M(p)| where |M(p)| is the number of tokens located in the place p. A

marked TAPN (N,M0) is a TAPN N together with an initial marking M0 with
all tokens of age 0.

Definition 4 (Enabledness). Let N = (P, T, Turg , IA,OA, g ,w ,Type, I ) be a
TAPN. We say that a transition t ∈ T is enabled in a marking M by the

multisets of tokens In = {(p, x1p), (p, x2p), . . . , (p, x
w((p,t))
p ) | p ∈ •t} ⊆ M and

Out = {(p′, x1p′), (p′, x2p′), . . . , (p′, x
w((t,p′))
p′ ) | p′ ∈ t•} if



– for all input arcs except the inhibitor arcs, the tokens from In satisfy the age
guards of the arcs, i.e.

∀p ∈ •t. xip ∈ g((p, t)) for 1 ≤ i ≤ w((p, t))

– for any inhibitor arc pointing from a place p to the transition t, the number
of tokens in p is smaller than the weight of the arc, i.e.

∀(p, t) ∈ IA.Type((p, t)) = Inhib ⇒ |M(p)| < w((p, t))

– for all input arcs and output arcs which constitute a transport arc, the age
of the input token must be equal to the age of the output token and satisfy
the invariant of the output place, i.e.

∀(p, t) ∈ IA.∀(t, p′) ∈ OA.Type((p, t)) = Type((t, p′)) = Transportj

⇒
(
xip = xip′ ∧ xip′ ∈ I (p′)

)
for 1 ≤ i ≤ w((p, t))

– for all normal output arcs, the age of the output token is 0, i.e.

∀(t, p′) ∈ OA.Type((t, p′)) = Normal ⇒ xip′ = 0 for 1 ≤ i ≤ w((t, p′)).

A given marked TAPN (N,M0) defines a timed transition system T (N)
def
=

(M(N),M0,−→) where the states are markings and the transitions are as follows.

– If t ∈ T is enabled in a marking M by the multisets of tokens In and Out
then t can fire and produce the marking M ′ = (M r In) ] Out where ]
is the multiset sum operator and r is the multiset difference operator; we

write M
t−→M ′ for this action transition.

– A time delay d ∈ N0 is allowed in M if
• (x + d) ∈ I(p) for all p ∈ P and all x ∈ M(p), i.e. by delaying d time

units no token violates any of the age invariants, and

• if M
t→M ′ for some t ∈ Turg then d = 0, i.e. enabled urgent transitions

disallow time passing.
By delaying d time units in M we reach the marking M ′ defined as M ′(p) =

{x+d | x ∈M(p)} for all p ∈ P ; we write M
d−→M ′ for this delay transition.

Note that the semantics above defines the discrete-time semantics as the
delays are restricted to nonnegative integers. It is well known that for timed-arc
Petri nets with nonstrict intervals, the marking reachability problem on discrete
and continuous time nets coincide [31]. This is, however, not the case for more
complex properties like liveness that can be expressed in the CTL logic (for
counter examples that can be expressed in CTL see e.g. [25]).

3.1 Reachability Logic and Interesting Sets of Transitions

We now describe a logic for expressing the properties of markings based on the
number of tokens in places and transition enabledness, inspired by the logic
used in the Model Checking Contest (MCC) Property Language [27]. Let N =
(P, T, Turg , IA,OA, g ,w ,Type, I ) be a TAPN. The formulae of the logic are given
by the abstract syntax:



Formula ϕ AM (ϕ) AM (¬ϕ)

deadlock (•t)• ∪ •(◦t) for some t ∈ En(M) ∅

t
•p for some p ∈ •t where M(p) < w((p, t)) or
p• for some p ∈ ◦t where M(p) ≥ w((p, t))

(•t)• ∪ •(◦t)

e1 < e2 decrM (e1) ∪ incrM (e2) AM (e1 ≥ e2)

e1 ≤ e2 decrM (e1) ∪ incrM (e2) AM (e1 > e2)

e1 > e2 incrM (e1) ∪ decrM (e2) AM (e1 ≤ e2)

e1 ≥ e2 incrM (e1) ∪ decrM (e2) AM (e1 < e2)

e1 = e2
decrM (e1) ∪ incrM (e2) if evalM (e1) > evalM (e2)
incrM (e1) ∪ decrM (e2) if evalM (e1) < evalM (e2)

AM (e1 6= e2)

e1 6= e2 incrM (e1) ∪ decrM (e1) ∪ incrM (e2) ∪ decrM (e2) AM (e1 = e2)

ϕ1 ∧ ϕ2 AM (ϕi) for some i ∈ {1, 2} where M 6|= ϕi AM (¬ϕ1 ∨ ¬ϕ2)

ϕ1 ∨ ϕ2 AM (ϕ1) ∪AM (ϕ2) AM (¬ϕ1 ∧ ¬ϕ2)

Table 1: Interesting transitions of ϕ (assuming M 6|= ϕ, otherwise AM (ϕ) = ∅)

Expression e incrM (e) decrM (e)

c ∅ ∅
p •p p•

e1 + e2 incrM (e1) ∪ incrM (e2) decrM (e1) ∪ decrM (e2)

e1 − e2 incrM (e1) ∪ decrM (e2) decrM (e1) ∪ incrM (e2)

e1 ∗ e2
incrM (e1) ∪ decrM (e1) ∪
incrM (e2) ∪ decrM (e2)

incrM (e1) ∪ decrM (e1) ∪
incrM (e2) ∪ decrM (e2)

Table 2: Increasing and decreasing transitions of expression e

ϕ ::= deadlock | t | e1 ./ e2 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ

e ::= c | p | e1 ⊕ e2

where t ∈ T , ./ ∈ {<,≤,=, 6=, >,≥}, c ∈ Z, p ∈ P , and ⊕ ∈ {+,−, ∗}. Let Φ be
the set of all such formulae and let EN be the set of arithmetic expressions over
the net N . The semantics of ϕ in a marking M ∈M(N) is given by

M |= deadlock if En(M) = ∅
M |= t if t ∈ En(M)

M |= e1 ./ e2 if evalM (e1) ./ evalM (e2)

assuming a standard semantics for Boolean operators and where the semantics
of arithmetic expressions in a marking M is as follows: evalM (c) = c, evalM (p) =
|M(p)|, and evalM (e1 ⊕ e2) = evalM (e1)⊕ evalM (e2).

Let ϕ be a formula. We are interested in the question, whether we can reach
from the initial marking some of the goal markings from Gϕ = {M ∈ M(N) |
M |= ϕ}. In order to guide the reduction such that transitions that lead to the
goal markings are included in the generated stubborn set, we define the notion



of interesting transitions for a marking M relative to ϕ, and we let AM (ϕ) ⊆ T
denote the set of interesting transitions. Formally, we shall require that whenever
M

w−→M ′ via a sequence of transitions w = t1t2 . . . tn ∈ T ∗ where M 6∈ Gϕ and
M ′ ∈ Gϕ, then there must exist i, 1 ≤ i ≤ n, such that ti ∈ AM (ϕ).

Table 1 gives a possible definition of AM (ϕ). Let us remark that the definition
is at several places nondeterministic, allowing for a variety of sets of interesting
transitions. Table 1 uses the functions incrM : EN → 2T and decrM : EN → 2T

defined in Table 2. These functions take as input an expression e, and return all
transitions that can possibly, when fired, increase resp. decrease the evaluation
of e. The following lemma formally states the required property of the functions
incrM and decrM .

Lemma 1. Let N = (P, T, Turg , IA,OA, g ,w ,Type, I ) be a TAPN and M ∈
M(N) a marking. Let e ∈ EN and let M

w−→M ′ where w = t1t2 . . . tn ∈ T ∗.

– If evalM (e) < evalM ′(e) then there is i, 1 ≤ i ≤ n, such that ti ∈ incrM (e).
– If evalM (e) > evalM ′(e) then there is i, 1 ≤ i ≤ n, such that ti ∈ decrM (e).

We finish this section with the main technical lemma, showing that at least
one interesting transition must be fired before we can reach a marking satisfying
a given reachability formula.

Lemma 2. Let N = (P, T, Turg , IA,OA, g ,w ,Type, I ) be a TAPN, let M ∈
M(N) be its marking and let ϕ ∈ Φ be a given formula. If M 6|= ϕ and M

w−→M ′

where w ∈ AM (ϕ)
∗

then M ′ 6|= ϕ.

4 Partial Order Reductions for TAPN

We are now ready to state the main theorem that provides sufficient syntax-
driven conditions for a reduction in order to guarantee preservation of reacha-
bility. Let N = (P, T, Turg , IA,OA, g ,w ,Type, I ) be a TAPN, let M ∈M(N) be
a marking of N , and let ϕ ∈ Φ be a formula. We recall that AM (ϕ) is the set of
interesting transitions as defined earlier.

Theorem 2 (Reachability Preserving Closure). Let St be a reduction such
that for all M ∈M(N) it satisfies the following conditions.

1 If ¬zt(M) then En(M) ⊆ St(M).
2 If zt(M) then AM (ϕ) ⊆ St(M).
3 If zt(M) then either

(a) there is t ∈ Turg ∩ En(M) ∩ St(M) where •(◦t) ⊆ St(M), or
(b) there is p ∈ P where I (p) = [a, b] and b ∈M(p) such that t ∈ St(M) for

every t ∈ p• where b ∈ g((p, t)).
4 For all t ∈ St(M) \ En(M) either

(a) there is p ∈ •t such that |{x ∈M(p) | x ∈ g((p, t))}| < w((p, t)) and
– t′ ∈ St(M) for all t′ ∈ •p where there is p′ ∈ •t′ with Type((t′, p)) =

Type((p′, t′)) = Transportj and where g((p′, t′)) ∩ g((p, t)) 6= ∅, and
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– if 0 ∈ g((p, t)) then also •p ⊆ St(M), or
(b) there is p ∈ ◦t where |M(p)| ≥ w((p, t)) such that

– t′ ∈ St(M) for all t′ ∈ p• where M(p) ∩ g((p, t′)) 6= ∅.
5 For all t ∈ St(M) ∩ En(M) we have

(a) t′ ∈ St(M) for every t′ ∈ p• where p ∈ •t and g((p, t)) ∩ g((p, t′)) 6= ∅,
and

(b) (t•)◦ ⊆ St(M).

Then St satisfies Z, D, R, and W.

Let us now briefly discuss the conditions of Theorem 2. Clearly, Condition 1
ensures that if time can elapse, we include all enabled transitions into the stub-
born set and Condition 2 guarantees that all interesting transitions (those that
can potentially make the reachability proposition true) are included as well.

Condition 3 makes sure that that if time elapsing is disabled then any tran-
sition that can possibly enable time elapsing will be added to the stubborn set.
There are two situations how time progress can be disabled. Either, there is an
urgent enabled transition, like the transition t in Figure 2a. Since t2 can add
a token to p2 and by that inhibit t, Condition 3a makes sure that t2 is added
into the stubborn set in order to satisfy D. As t1 can remove the token of age
3 from p1 and hence disable t, we must add t1 to the stubborn set too (guar-
anteed by Condition 5a). The other situation when time gets stopped is when a
place with an age invariant contains a token that disallows time passing, like in
Figure 2b where time is disabled because the place p has a token of age 5, which
is the maximum possible age of tokens in p due to the age invariant. Since t2
can remove the token of age 5 from p, we include it to the stubborn set due to
Condition 3b. On the other hand t1 does not have to be included in the stubborn
set as its firing cannot remove the token of age 5 from p.

Condition 4 makes sure that an disabled stubborn transition can never be
enabled by a non-stubborn transition. There are two reasons why a transition is
disabled. Either, as in Figure 3a where t is disabled, there is an insufficient num-
ber of tokens of appropriate age to fire the transition. In this case, Condition 4a
makes sure that transitions that can add tokens of a suitable age via transport
arcs are included in the stubborn set. This is the case for the transition t1 in our
example, as [2, 5] has a nonempty intersection with [4, 6]. On the other hand, t3
does not have to be added. As the transition t2 only adds fresh tokens of age 0
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to p via normal arcs, there is no need to add t2 into the stubborn set either. The
other reason for a transition to be disabled is due to inhibitor arcs, as shown on
the transition t in Figure 3b. Condition 4b makes sure that t1 is added to the
stubborn set, as it can enable t (the interval [6, 8] has a nonempty intersection
with the tokens of age 6 and 7 in the place p). As this is not the case for t2, this
transition can be left out from the stubborn set.

Finally, Condition 5 guarantees that enabled stubborn transitions can never
disable any non-stubborn transitions. For an illustration, take a look at Figure 4a
and assume that t is an enabled stubborn transition. Firing of t can remove
the token of age 4 from p and disable t2, hence t2 must become stubborn by
Condition 5a in order to satisfy W. On the other hand, the intervals [6, 8] and
[2, 5] have empty intersection, so there is no need to declare t1 as a stubborn
transition. Moreover, firing of t can also disable the transition t3 due to the
inhibitor arc, so we must add t3 to the stubborn set by Condition 5b.

The conditions of Theorem 2 can be turned into an iterative saturation al-
gorithm for the construction of stubborn sets as shown in Algorithm 1. When
running this algorithm for the net in our running example, we can reduce the
state space exploration for fireability of the transition t as depicted in Figure 1b.
Our last theorem states that the algorithm returns stubborn subsets of enabled
transitions that satisfy the four conditions of Theorem 1 and hence we preserve
the reachability property as well as the minimum path to some reachable goal.

Theorem 3. Algorithm 1 terminates and returns St(M) ∩ En(M) for some re-
duction St that satisfies Z, D, R, and W.



Algorithm 1: Construction of a reachability preserving stubborn set

input : N = (P, T, Turg , IA,OA, g ,w ,Type, I ), M ∈M(N), ϕ ∈ Φ
output : St(M) ∩ En(M)

1 if ¬zt(M) then
2 return En(M);

3 X := ∅; Y := AM (ϕ);
4 if Turg ∩ En(M) 6= ∅ then
5 pick any t ∈ Turg ∩ En(M);
6 if t /∈ Y then
7 Y := Y ∪ {t};
8 Y := Y ∪ •(◦t);
9 else

10 pick any p ∈ P where I (p) = [a, b] and b ∈M(p)
11 forall t ∈ p• do
12 if b ∈ g((p, t)) then
13 Y := Y ∪ {t};

14 while Y 6= ∅ do
15 pick any t ∈ Y ;
16 if t /∈ En(M) then
17 if ∃p ∈ •t. |{x ∈M(p) | x ∈ g((p, t))}| < w((p, t)) then
18 pick any such p;
19 forall t′ ∈ •p \X do
20 forall p′ ∈ •t′ do
21 if Type((t′, p)) = Type((p′, t′)) =

Transportj ∧ g((p′, t′)) ∩ g((p, t)) 6= ∅ then
22 Y := Y ∪ {t′};

23 if 0 ∈ g((p, t)) then
24 Y := Y ∪ (•p \X);

25 else
26 pick any p ∈ ◦t s.t. |M(p)| ≥ w((p, t));
27 forall t′ ∈ p• \X do
28 if M(p) ∩ g((p, t′)) 6= ∅ then
29 Y := Y ∪ {t′};

30 else
31 forall p ∈ •t do
32 Y := Y ∪ ({t′ ∈ p•|g((p, t)) ∩ g((p, t′)) 6= ∅} \X);

33 Y := Y ∪ ((t•)◦ \X);

34 Y := Y \ {t};
35 X := X ∪ {t};
36 return X ∩ En(M);



5 Implementation and Experiments

We implemented our partial order method in C++ and integrated it within the
model checker TAPAAL [19] and its discrete time engine verifydtapn [4, 11].
We evaluate our partial order reduction on a wide range of case studies.

PatientMonitoring. The patient monitoring system [17] models a medical
system that through sensors periodically scans patient’s vital functions, making
sure that abnormal situations are detected and reported within given deadlines.
The timed-arc Petri net model was described in [17] for two sensors monitoring
patients pulse rate and oxygen saturation level. We scale the case study by
adding additional sensors. BloodTransfusion. This case study models a larger
blood transfusion workflow [16], the benchmarking case study of the little-JIL
language. The timed-arc Petri net model was described in [10] and we verify that
the workflow is free of deadlocks (unless all sub-workflows correctly terminate).
The problem is scaled by the number of patients receiving a blood transfusion.
FireAlarm. This case study uses a modified (due to trade secrets) fire alarm
system owned by a German company [20, 21]. It models a four-channel round-
robin frequency-hopping transmission scheduling in order to ensure a reliable
communication between a number of wireless sensors (by which the case study
is scaled) and a central control unit. The protocol is based on time-division
multiple access (TDMA) channel access and we verify that for a given frequency-
jammer, it takes never more than three cycles before a fire alarm is communicated
to the central unit. BAwPC. Business Activity with Participant Completion
(BAwPC) is a web-service coordination protocol from WS-BA specification [33]
that ensures a consistent agreement on the outcome of long-running distributed
applications. In [26] it was shown that the protocol is flawed and a correct,
enhanced variant was suggested. We model check this enhanced protocol and
scale it by the capacity of the communication buffer. Fischer. Here we consider
a classical Fischers protocol for ensuring mutual exclusion for a number of timed
processes. The timed-arc Petri net model is taken from [2] and it is scaled by the
number of processes. LynchShavit. This is another timed-based mutual exclusion
algorithm by Lynch and Shavit, with the timed-arc Petri net model taken from [1]
and scaled by the number of processes. MPEG2. This case study describes the
workflow of the MPEG-2 video encoding algorithm run on a multicore processor
(the timed-arc Petri net model was published in [35]) and we verify the maximum
duration of the workflow. The model is scaled by the number of B frames in the
IBnP frame sequence. AlternatingBit. This is a classical case study of alternating
bit protocol, based on the timed-arc Petri net model given in [24]. The purpose
of the protocol is to ensure a safe communication between a sender and a receiver
over an unreliable medium. Messages are time-stamped in order to compensate
(via retransmission) for the possibility of losing messages. The case study is
scaled by the maximum number of messages in transfer.

All experiments were run on AMD Opteron 6376 Processors with 500 GB
memory. In Table 3 we compare the time to verify a model without (NORMAL)
and with (POR) partial order reduction, the number of explored markings (in
thousands) and the percentage of time and memory reduction. We can observe



Time (seconds) Markings ×1000 Reduction

Model NORMAL POR NORMAL POR %Time %Markings

PatientMonitoring 3 5.88 0.35 333 28 94 92
PatientMonitoring 4 22.06 0.48 1001 36 98 96
PatientMonitoring 5 80.76 0.65 3031 44 99 99
PatientMonitoring 6 305.72 0.85 9248 54 100 99
PatientMonitoring 7 5516.93 5.75 130172 318 100 100

BloodTransfusion 2 0.32 0.41 48 43 -28 11
BloodTransfusion 3 7.88 6.45 792 546 18 31
BloodTransfusion 4 225.18 109.30 14904 7564 51 49
BloodTransfusion 5 5256.01 1611.14 248312 94395 69 62

FireAlarm 10 28.95 14.17 796 498 51 37
FireAlarm 12 116.97 17.51 1726 526 85 70
FireAlarm 14 598.89 21.65 5367 554 96 90
FireAlarm 16 5029.25 29.48 19845 582 99 97
FireAlarm 18 27981.90 34.55 77675 610 100 99
FireAlarm 20 154495.29 41.47 308914 638 100 100
FireAlarm 80 > 2 days 602.71 - 1522 - -
FireAlarm 125 > 2 days 1957.00 - 2260 - -

BAwPC 2 0.21 0.41 19 16 -95 15
BAwPC 4 3.45 4.04 193 125 -17 35
BAwPC 6 23.01 17.08 900 452 26 50
BAwPC 8 73.73 39.29 2294 952 47 58
BAwPC 10 135.62 60.66 3819 1412 55 63
BAwPC 12 173.09 73.53 4736 1665 58 65

Fischer-9 3.24 2.37 281 233 27 17
Fischer-11 12.68 8.73 923 738 31 20
Fischer-13 42.52 28.53 2628 2041 33 22
Fischer-15 121.31 77.50 6700 5066 36 24
Fischer-17 313.69 198.36 15622 11536 37 26
Fischer-19 748.52 456.30 33843 24469 39 28
Fischer-21 1622.69 985.07 68934 48904 39 29

LynchShavit 9 3.98 3.31 282 234 17 17
LynchShavit 11 15.73 12.19 925 740 23 20
LynchShavit 13 51.08 37.97 2631 2043 26 22
LynchShavit 15 146.63 103.63 6703 5069 29 24
LynchShavit 17 384.52 258.09 15626 11540 33 26
LynchShavit 19 907.60 597.68 33848 24474 34 28
LynchShavit 21 2011.58 1307.72 68940 48910 35 29

MPEG2 3 13.17 15.43 2188 2187 -17 0
MPEG2 4 109.62 125.45 15190 15180 -14 0
MPEG2 5 755.54 840.84 87568 87478 -11 0
MPEG2 6 4463.19 5092.58 435023 434354 -14 0

AlternatingBit 20 9.17 9.51 617 617 -4 0
AlternatingBit 30 48.20 49.13 2804 2804 -2 0
AlternatingBit 40 161.18 162.94 8382 8382 -1 0
AlternatingBit 50 408.34 408.86 19781 19781 0 0

Table 3: Experiments with and without partial order reduction (POR)



clear benefits of our technique on PatientMonitoring, BloodTransfusion and Fire-
Alarm where we are both exponentially faster and explore only a fraction of all
reachable markings. For example in FireAlarm, we are able to verify its cor-
rectness for all 125 sensors, as it is required by the German company [21]. This
would be clearly unfeasible without the use of partial order reduction.

In BAwPC, we can notice that for the smallest instances, there is some
computation overhead from computing the stubborn sets, however, it clearly
pays off for the larger instances where the percentages of reduced state space are
closely followed by the percentages of the verification times and in fact improve
with the larger instances. Fischer and LynchShavit case studies demonstrate that
even moderate reductions of the state space imply considerable reduction in the
running time and computing the stubborn sets is well worth the extra effort.

MPEG2 is an example of a model that allows only negligible reduction of
the state space size, and where we observe an actual slowdown in the running
time due to the computation of the stubborn sets. Nevertheless, the overhead
stays constant in the range of about 15%, even for increasing instance sizes.
Finally, AlternatingBit protocol does not allow for any reduction of the state
space (even though it contains age invariants) but the overhead in the running
time is negligible.

We observed similar performance of our technique also for the cases where
the reachability property does not hold and a counter example can be generated.

6 Conclusion

We suggested a simple, yet powerful and application-ready partial order reduc-
tion for timed systems. The reduction comes into effect as soon as the timed sys-
tem enters an urgent configuration where time cannot elapse until a nonempty
sequence of transitions gets executed. The method is implemented and fully inte-
grated, including GUI support, into the open-source tool TAPAAL. We demon-
strated its practical applicability on several case studies and conclude that com-
puting the stubborn sets causes only a minimal overhead while providing large
benefits for reducing the state space in numerous models. The method is not
specific to stubborn reduction technique only and it preserves the shortest exe-
cution sequences. Moreover, once the time gets urgent, other classical (untimed)
partial order approaches should be applicable too. Our method was instantiated
to (unbounded) timed-arc Petri nets with discrete time semantics, however, we
claim that the technique allows for general application to other modelling for-
malisms like timed automata and timed Petri nets, as well as an extension to
continuous time. We are currently working on adapting the theory and providing
an efficient implementation for UPPAAL-style timed automata with continuous
time semantics.
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