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Abstract. Computing reachability probabilities is at the heart of proba-
bilistic model checking. All model checkers compute these probabilities
in an iterative fashion using value iteration. This technique approximates
a fixed point from below by determining reachability probabilities for
an increasing number of steps. To avoid results that are significantly off,
variants have recently been proposed that converge from both below and
above. These procedures require starting values for both sides. We present
an alternative that does not require the a priori computation of starting
vectors and that converges faster on many benchmarks. The crux of our
technique is to give tight and safe bounds — whose computation is cheap

— on the reachability probabilities. Lifting this technique to expected re-
wards is trivial for both Markov chains and MDPs. Experimental results
on a large set of benchmarks show its scalability and efficiency.

1 Introduction

Markov decision processes (MDPs) [1,2] have their roots in operations research
and stochastic control theory. They are frequently used for stochastic and dynamic
optimization problems and are widely applicable in, e.g., stochastic scheduling and
robotics. MDPs are also a natural model in randomized distributed computing
where coin flips by the individual processes are mixed with non-determinism
arising from interleaving the processes’ behaviors. The central problem for MDPs
is to find a policy that determines what action to take in the light of what is
known about the system at the time of choice. The typical aim is to optimize
a given objective, such as minimizing the expected cost until a given number
of repairs, maximizing the probability of being operational for 1,000 steps, or
minimizing the probability to reach a “bad” state.

Probabilistic model checking [3,4] provides a scalable alternative to tackle
these MDP problems, see the recent surveys [5,6]. The central computational
issue in MDP model checking is to solve a system of linear inequalities. In absence
of non-determinism — the MDP being a Markov Chain (MC) — a linear equation
system is obtained. After appropriate pre-computations, such as determining
the states for which no policy exists that eventually reaches the goal state, the
(in)equation system has a unique solution that coincides with the extremal value
that is sought for. Possible solution techniques to compute such solutions include
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policy iteration, linear programming, and value iteration. Modern probabilistic
model checkers such as PRISM [7] and Storm [8] use value iteration by default.
This approximates a fixed point from below by determining the probabilities to
reach a target state within k steps in the k-th iteration. The iteration is typically
stopped if the difference between the value vectors of two successive (or vectors
that are further apart) is below the desired accuracy ε.

This procedure however can provide results that are significantly off, as the
iteration is stopped prematurely, e.g., since the probability mass in the MDP only
changes slightly in a series of computational steps due to a “slow” movement.
This problem is not new; similar problems, e.g., occur in iterative approaches to
compute long-run averages [9] and transient measures [10] and pop up in statistical
model checking to decide when to stop simulating for unbounded reachability
properties [11]. As recently was shown, this phenomenon does not only occur
for hypothetical cases but affects practical benchmarks of MDP model checking
too [12]. To remedy this, Haddad and Monmege [13] proposed to iteratively
approximate the (unique) fixed point from both below and above; a natural
termination criterion is to halt the computation once the two approximations
differ less than 2·ε. This scheme requires two starting vectors, one for each
approximation. For reachability probabilities, the conservative values zero and
one can be used. For expected rewards, it is non-trivial to find an appropriate
upper bound — how to “guess” an adequate upper bound to the expected reward
to reach a goal state? Baier et al. [12] recently provided an algorithm to solve
this issue.

This paper takes an alternative perspective to obtaining a sound variant of
value iteration. Our approach does not require the a priori computation of starting
vectors and converges faster on many benchmarks. The crux of our technique
is to give tight and safe bounds — whose computation is cheap and that are
obtained during the course of value iteration — on the reachability probabilities.
The approach is simple and can be lifted straightforwardly to expected rewards.
The central idea is to split the desired probability for reaching a target state into
the sum of

(i) the probability for reaching a target state within k steps and

(ii) the probability for reaching a target state only after k steps.

We obtain (i) via k iterations of (standard) value iteration. A second instance of
value iteration computes the probability that a target state is still reachable after k
steps. We show that from this information safe lower and upper bounds for (ii) can
be derived. We illustrate that the same idea can be applied to expected rewards,
topological value iteration [14], and Gauss-Seidel value iteration. We also discuss
in detail its extension to MDPs and provide extensive experimental evaluation
using our implementation in the model checker Storm [8]. Our experiments show
that on many practical benchmarks we need significantly fewer iterations, yielding
a speed-up of about 20% on average. More importantly though, is the conceptual
simplicity of our approach.
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(b) A sample MDP M.

Fig. 1. Example models.

2 Preliminaries

For a finite set S and vector x ∈ R|S|, let x[s] ∈ R denote the entry of x that
corresponds to s ∈ S. Let S′ ⊆ S and a ∈ R. We write x[S′] = a to denote that
x[s] = a for all s ∈ S′. Given x, y ∈ R|S|, x ≤ y holds iff x[s] ≤ y[s] holds for
all s ∈ S. For a function f : R|S| → R|S| and k ≥ 0 we write fk for the function
obtained by applying f k times, i.e., f0(x) = x and fk(x) = f(fk−1(x)) if k > 0.

2.1 Probabilistic Models and Measures

We briefly present probabilistic models and their properties. More details can be
found in, e.g., [15].

Definition 1 (Probabilistic Models). A Markov Decision Process (MDP) is
a tuple M = (S,Act ,P, sI , ρ), where

– S is a finite set of states, Act is a finite set of actions, sI is the initial state,
– P : S × Act × S → [0, 1] is a transition probability function satisfying∑

s′∈S P(s, α, s′) ∈ {0, 1} for all s ∈ S, α ∈ Act, and
– ρ : S ×Act → R is a reward function.
M is a Markov Chain (MC) if |Act | = 1.

Example 1. Fig. 1 shows an example MC and an example MDP.

We often simplify notations for MCs by omitting the (unique) action. For an
MDP M = (S,Act ,P, sI , ρ), the set of enabled actions of state s ∈ S is given by
Act(s) = {α ∈ Act |

∑
s′∈S P(s, α, s′) = 1}. We assume that Act(s) 6= ∅ for each

s ∈ S. Intuitively, upon performing action α at state s reward ρ(s, α) is collected
and with probability P(s, α, s′) we move to s′ ∈ S. Notice that rewards can be
positive or negative.

A state s ∈ S is called absorbing if P(s, α, s) = 1 for every α ∈ Act(s). A
path of M is an infinite alternating sequence π = s0α0s1α1 . . . where si ∈ S,
αi ∈ Act(si), and P(si, αi, si+1) > 0 for all i ≥ 0. The set of paths ofM is denoted
by PathsM. The set of paths that start at s ∈ S is given by PathsM,s. A finite
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path π̂ = s0α0 . . . αn−1sn is a finite prefix of a path ending with last(π̂) = sn ∈ S.

|π̂| = n is the length of π̂, PathsMfin is the set of finite paths of M, and PathsM,s
fin

is the set of finite paths that start at state s ∈ S. We consider LTL-like notations
for sets of paths. For k ∈ N ∪ {∞} and G,H ⊆ S let

H U≤kG = {s0α0s1 · · · ∈ PathsM,sI | s0, . . . , sj−1 ∈ H, sj ∈ G for some j ≤ k}

denote the set of paths that, starting from the initial state sI , only visit states in
H until after at most k steps a state in G is reached. Sets H U>kG and H U=kG
are defined similarly. We use the shorthands ♦≤kG := S U≤kG, ♦G := ♦≤∞G,
and �≤kG := PathsM,sI \ ♦≤k(S \G).

A (deterministic) scheduler for M is a function σ : PathsMfin → Act such

that σ(π̂) ∈ Act(last(π̂)) for all π̂ ∈ PathsMfin . The set of (deterministic) sched-

ulers for M is SM. σ ∈ SM is called positional if σ(π̂) only depends on the
last state of π̂, i.e., for all π̂, π̂′ ∈ PathsMfin we have last(π̂) = last(π̂′) implies

σ(π̂) = σ(π̂′). For MDP M and scheduler σ ∈ SM the probability measure

over finite paths is given by PrM,σ
fin : PathsM,sI

fin → [0, 1] with PrM,σ
fin (s0 . . . sn) =∏n−1

i=0 P(si, σ(s0 . . . si), si+1). The probability measure PrM,σ over measurable
sets of infinite paths is obtained via a standard cylinder set construction [15].

Definition 2 (Reachability Probability). The reachability probability of
MDP M = (S,Act ,P, sI , ρ), G ⊆ S, and σ ∈ SM is given by PrM,σ(♦G).

For k ∈ N∪{∞}, the function �≤kG : ♦G→ R yields the k-bounded reachability

reward of a path π = s0α0s1 · · · ∈ ♦G. We set �≤kG(π) =
∑j−1
i=0 ρ(si, αi), where

j = min({i ≥ 0 | si ∈ G} ∪ {k}). We write �G instead of �≤∞G.

Definition 3 (Expected Reward). The expected (reachability) reward of
MDP M = (S,Act ,P, sI , ρ), G ⊆ S, and σ ∈ SM with PrM,σ(♦G) = 1 is given
by the expectation EM,σ(�G) =

∫
π∈♦G �G(π) dPrM,σ(π).

We write PrM,σ
s and EM,σ

s for the probability measure and expectation obtained
by changing the initial state ofM to s ∈ S. IfM is a Markov chain, there is only
a single scheduler. In this case we may omit the superscript σ from PrM,σ and
EM,σ. We also omit the superscriptM if it is clear from the context. The maximal
reachability probability ofM and G is given by Prmax(♦G) = maxσ∈SM Prσ(♦G).
There is a a positional scheduler that attains this maximum [16]. The same holds
for minimal reachability probabilities and maximal or minimal expected rewards.

Example 2. Consider the MDP M from Fig. 1(b). We are interested in the
maximal probability to reach state s4 given by Prmax(♦{s4}). Since s4 is not
reachable from s3 we have Prmax

s3 (♦{s4}) = 0. Intuitively, choosing action β
at state s0 makes reaching s3 more likely, which should be avoided in order
to maximize the probability to reach s4. We therefore assume a scheduler σ
that always chooses action α at state s0. Starting from the initial state s0,
we then eventually take the transition from s2 to s3 or the transition from s2
to s4 with probability one. The resulting probability to reach s4 is given by
Prmax(♦{s4}) = Prσ(♦{s4}) = 0.3/(0.1 + 0.3) = 0.75.
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2.2 Probabilistic Model Checking via Interval Iteration

In the following we present approaches to compute reachability probabilities and
expected rewards. We consider approximative computations. Exact computations
are handled in e.g. [17,18] For the sake of clarity, we focus on reachability
probabilities and sketch how the techniques can be lifted to expected rewards.

Reachability Probabilities. We fix an MDP M = (S,Act ,P, sI , ρ), a set of
goal states G ⊆ S, and a precision parameter ε > 0.

Problem 1. Compute an ε-approximation of the maximal reachability probability
Prmax(♦G), i.e., compute a value r ∈ [0, 1] with |r − Prmax(♦G)| < ε.

We briefly sketch how to compute such a value r via interval iteration [12,13,19].
The computation for minimal reachability probabilities is analogous.

W.l.o.g. it is assumed that the states in G are absorbing. Using graph algo-
rithms, we compute S0 = {s ∈ S | Prmax

s (♦G) = 0} and partition the state space
of M into S = S0 ∪· G ∪· S? with S? = S \ (G ∪ S0). If sI ∈ S0 or sI ∈ G, the
probability Prmax(♦G) is 0 or 1, respectively. From now on we assume sI ∈ S?.

We say that M is contracting with respect to S′ ⊆ S if Prσs (♦S′) = 1 for all
s ∈ S and for all σ ∈ SM. We assume that M is contracting with respect to
G ∪ S0. Otherwise, we apply a transformation on the so-called end components1

of M, yielding a contracting MDP M′ with the same maximal reachability
probability as M. Roughly, this transformation replaces each end component
of M with a single state whose enabled actions coincide with the actions that
previously lead outside of the end component. This step is detailed in [13,19].

We have x∗[s] = Prmax
s (♦G) for s ∈ S and the unique fixpoint x∗ of the

function f : R|S| → R|S| with f(x)[S0] = 0, f(x)[G] = 1, and

f(x)[s] = max
α∈Act(s)

∑
s′∈S

P(s, α, s′) · x[s′]

for s ∈ S?. Hence, computing Prmax(♦G) reduces to finding the fixpoint of f .
A popular technique for this purpose is the value iteration algorithm [1].

Given a starting vector x ∈ R|S| with x[S0] = 0 and x[G] = 1, standard value
iteration computes fk(x) for increasing k until maxs∈S |fk(x)[s]−fk−1(x)[s]| < ε
holds for a predefined precision ε > 0. As pointed out in, e.g., [13], there is no
guarantee on the preciseness of the result r = fk(x)[sI ], i.e., standard value
iteration does not give any evidence on the error |r − Prmax(♦G)|. The intuitive
reason is that value iteration only approximates the fixpoint x∗ from one side,
yielding no indication on the distance between the current result and x∗.

Example 3. Consider the MDP M from Fig. 1(b). We invoked standard value
iteration in PRISM [7] and Storm [8] to compute the reachability probability
Prmax(♦{s4}). Recall from Example 2 that the correct solution is 0.75. With

1 Intuitively, an end component is a set of states S′ ⊆ S such that there is a scheduler
inducing that from any s ∈ S′ exactly the states in S′ are visited infinitely often.
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(absolute) precision ε = 10−6 both model checkers returned 0.7248. Notice that
the user can improve the precision by considering, e.g., ε = 10−8 which yields
0.7497. However, there is no guarantee on the preciseness of a given result.

The interval iteration algorithm [13,12,19] addresses the impreciseness of value
iteration. The idea is to approach the fixpoint x∗ from below and from above. The
first step is to find starting vectors x`, xu ∈ R|S| satisfying x`[S0] = xu[S0] = 0,
x`[G] = xu[G] = 1, and x` ≤ x∗ ≤ xu. As the entries of x∗ are probabilities, it is
always valid to set x`[S?] = 0 and xu[S?] = 1. We have fk(x`) ≤ x∗ ≤ fk(xu) for
any k ≥ 0. Interval iteration computes fk(x`) and fk(xu) for increasing k until
maxs∈S |fk(x`)[s]−fk(xu)[s]| < 2ε. For the result r = 1/2·(fk(x`)[sI ]+f

k(xu)[sI ])
we obtain that |r − Prmax(♦G)| < ε, i.e., we get a sound approximation of the
maximal reachability probability.

Example 4. We invoked interval iteration in PRISM and Storm to compute the
reachability probability Prmax(♦{s4}) for the MDP M from Fig. 1(b). Both
implementations correctly yield an ε-approximation of Prmax(♦{s4}), where we
considered ε = 10−6. However, both PRISM and Storm required roughly 300,000
iterations for convergence.

Expected Rewards. Whereas [13,19] only consider reachability probabilities,
[12] extends interval iteration to compute expected rewards. Let M be an MDP
and G be a set of absorbing states such thatM is contracting with respect to G.

Problem 2. Compute an ε-approximation of the maximal expected reachability
reward Emax(�G), i.e., compute a value r ∈ R with |r − Emax(�G)| < ε.

We have x∗[s] = Emax
s (�G) for the unique fixpoint x∗ of g : R|S| → R|S| with

g(x)[G] = 0 and g(x)[s] = max
α∈Act(s)

ρ(s, α) +
∑
s′∈S

P(s, α, s′) · x[s′]

for s /∈ G. As for reachability probabilities, interval iteration can be applied to
approximate this fixpoint. The crux lies in finding appropriate starting vectors
x`, xu ∈ R|S| guaranteeing x` ≤ x∗ ≤ xu. To this end, [12] describe graph based
algorithms that give an upper bound on the expected number of times each
individual state s ∈ S \G is visited. This then yields an approximation of the
expected amount of reward collected at the various states.

3 Sound Value Iteration for MCs

We present an algorithm for computing reachability probabilities and expected
rewards as in Problems 1 and 2. The algorithm is an alternative to the interval
iteration approach [20,12] but (i) does not require an a priori computation
of starting vectors x`, xu ∈ R|S| and (ii) converges faster on many practical
benchmarks as shown in Section 5. For the sake of simplicity, we first restrict to
computing reachability probabilities on MCs.

6



In the following, let D = (S,P, sI , ρ) be an MC, G ⊆ S be a set of absorbing
goal states and ε > 0 be a precision parameter. We consider the partition
S = S0 ∪· G∪· S? as in Section 2.2. The following theorem captures the key insight
of our algorithm.

Theorem 1. For MC D let G and S? be as above and k ≥ 0 with Prs(�≤kS?) < 1
for all s ∈ S?. We have

Pr(♦≤kG) + Pr(�≤kS?) · min
s∈S?

Prs(♦≤kG)

1− Prs(�≤kS?)

≤ Pr(♦G) ≤Pr(♦≤kG) + Pr(�≤kS?) ·max
s∈S?

Prs(♦≤kG)

1− Prs(�≤kS?)
.

Theorem 1 allows us to approximate Pr(♦G) by computing for increasing k ∈ N
– Pr(♦≤kG), the probability to reach a state in G within k steps, and
– Pr(�≤kS?), the probability to stay in S? during the first k steps.

This can be realized via a value-iteration based procedure. The obtained bounds on
Pr(♦G) can be tightened arbitrarily since Pr(�≤kS?) approaches 0 for increasing
k. In the following, we address the correctness of Theorem 1, describe the details
of our algorithm, and indicate how the results can be lifted to expected rewards.

3.1 Approximating Reachability Probabilities

To approximate the reachability probability Pr(♦G), we consider the step bounded
reachability probability Pr(♦≤kG) for k ≥ 0 and provide a lower and an upper
bound for the ‘missing’ probability Pr(♦G) − Pr(♦≤kG). Note that ♦G is the
disjoint union of the paths that reach G within k steps (given by ♦≤kG) and the
paths that reach G only after k steps (given by S? U>kG).

Lemma 1. For any k ≥ 0 we have Pr(♦G) = Pr(♦≤kG) + Pr(S? U>kG).

A path π ∈ S? U>kG reaches some state s ∈ S? after exactly k steps. This yields
the partition S? U>kG =

⋃· s∈S?
(S? U=k{s} ∩ ♦G). It follows that

Pr(S? U>kG) =
∑
s∈S?

Pr(S? U=k{s}) · Prs(♦G).

Consider `, u ∈ [0, 1] with ` ≤ Prs(♦G) ≤ u for all s ∈ S?, i.e., ` and u are lower
and upper bounds for the reachability probabilities within S?. We have∑

s∈S?

Pr(S? U=k{s}) · Prs(♦G) ≤
∑
s∈S?

Pr(S? U=k{s}) · u = Pr(�≤kS?) · u.

We can argue similar for the lower bound `. With Lemma 1 we get the following.

Proposition 1. For MC D with G, S?, `, u as above and any k ≥ 0 we have

Pr(♦≤kG) + Pr(�≤kS?) · ` ≤ Pr(♦G) ≤ Pr(♦≤kG) + Pr(�≤kS?) · u.
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Remark 1. The bounds for Pr(♦G) given by Proposition 1 are similar to the
bounds obtained after performing k iterations of interval iteration with starting
vectors x`, xu ∈ R|S|, where x`[S?] = ` and xu[S?] = u.

We now discuss how the bounds ` and u can be obtained from the step bounded
probabilities Prs(♦≤kG) and Prs(�≤kS?) for s ∈ S?. We focus on the upper
bound u. The reasoning for the lower bound ` is similar.

Let smax ∈ S? be a state with maximal reachability probability, that is
smax ∈ arg maxs∈S?

Prs(♦G). From Proposition 1 we get

Prsmax
(♦G) ≤ Prsmax

(♦≤kG) + Prsmax
(�≤kS?) · Prsmax

(♦G).

We solve the inequality for Prsmax(♦G) (assuming Prs(�≤kS?) < 1 for all s ∈ S?):

Prsmax(♦G) ≤ Prsmax
(♦≤kG)

1− Prsmax(�≤kS?)
≤ max

s∈S?

Prs(♦≤kG)

1− Prs(�≤kS?)
.

Proposition 2. For MC D let G and S? be as above and k ≥ 0 such that
Prs(�≤kS?) < 1 for all s ∈ S?. For every ŝ ∈ S? we have

min
s∈S?

Prs(♦≤kG)

1− Prs(�≤kS?)
≤ Prŝ(♦G) ≤ max

s∈S?

Prs(♦≤kG)

1− Prs(�≤kS?)
.

Theorem 1 is a direct consequence of Propositions 1 and 2.

3.2 Extending the Value Iteration Approach

Recall the standard value iteration algorithm for approximating Pr(♦G) as
discussed in Section 2.2. The function f : R|S| → R|S| for MCs simplifies to
f(x)[S0] = 0, f(x)[G] = 1, and f(x)[s] =

∑
s′∈S P(s, s′) · x[s′] for s ∈ S?.

We can compute the k-step bounded reachability probability at every state
s ∈ S by performing k iterations of value iteration [15, Remark 10.104]. More
precisely, when applying f k times on starting vector x ∈ R|S| with x[G] = 1
and x[S \G] = 0 we get Prs(♦≤kG) = fk(x)[s]. The probabilities Prs(�≤kS?)
for s ∈ S can be computed similarly. Let h : R|S| → R|S| with h(y)[S \ S?] = 0
and h(y)[s] =

∑
s′∈S P(s, s′) · y[s′] for s ∈ S?. For starting vector y ∈ R|S| with

y[S?] = 1 and y[S \ S?] = 0 we get Prs(�≤kS?) = hk(y)[s].
Algorithm 1 depicts our approach. It maintains vectors xk, yk ∈ R|S| which,

after k iterations of the loop, store the k-step bounded probabilities Prs(♦≤kG)
and Prs(�≤kS?), respectively. Additionally, the algorithm considers lower bounds
`k and upper bounds uk such that the following invariant holds.

Lemma 2. After executing the loop of Algorithm 1 k times we have for all s ∈ S?

that xk[s] = Prs(♦≤kG), yk[s] = Prs(�≤kS?), and `k ≤ Prs(♦G) ≤ uk.

The correctness of the algorithm follows from Theorem 1. Termination is guaran-
teed since Pr(♦(S0 ∪G)) = 1 and therefore limk→∞ Pr(�≤kS?) = Pr(�S?) = 0.

8



Input :MC D = (S,P, sI , ρ), absorbing states G ⊆ S, precision ε > 0
Output : r ∈ R with |r − Pr(♦G)| < ε

1 S? ← S \
(
{s ∈ S | Prs(♦G) = 0} ∪G

)
2 initialize x0, y0 ∈ R|S| with x0[G] = 1, x0[S \G] = 0, y0[S?] = 1, y0[S \ S?] = 0
3 `0 ← −∞; u0 ← +∞
4 k ← 0
5 repeat
6 k ← k + 1
7 xk ← f(xk−1); yk ← h(yk−1)
8 if yk[s] < 1 for all s ∈ S? then

9 `k ← max(`k−1,mins∈S?

xk[s]
1−yk[s]

); uk ← min(uk−1,maxs∈S?

xk[s]
1−yk[s]

)

10 until yk[sI ] · (uk − `k) < 2 · ε
11 return xk[sI ] + yk[sI ] · `k+uk2

Algorithm 1: Sound value iteration for MCs.

Theorem 2. Algorithm 1 terminates for any MC D, goal states G, and precision
ε > 0. The returned value r satisfies |r − Pr(♦G)| < ε.

Example 5. We apply Algorithm 1 for the MC in Fig. 1(a) and the set of goal
states G = {s4}. We have S? = {s0, s1, s2}. After k = 3 iterations it holds that

x3[s0] = 0.00003 x3[s1] = 0.003 x3[s2] = 0.3

y3[s0] = 0.99996 y3[s1] = 0.996 y3[s2] = 0.6

Hence, x3[s]
1−y3[s] = 3

4 = 0.75 for all s ∈ S?. We get `3 = u3 = 0.75. The algorithm

converges for any ε > 0 and returns the correct solution x3[s0]+y3[s0]·0.75 = 0.75.

3.3 Sound Value Iteration for Expected Rewards

We lift our approach to expected rewards in a straightforward manner. Let G ⊆ S
be a set of absorbing goal states of MC D such that
Pr(♦G) = 1. Further let S? = S \ G. For k ≥ 0 we observe that the ex-
pected reward E(�G) can be split into the expected reward collected within
k steps and the expected reward collected only after k steps, i.e., E(�G) =
E(�≤kG) +

∑
s∈S?

Pr(S? U=k{s}) · Es(�G). Following a similar reasoning as in
Section 3.1 we can show the following.

Theorem 3. For MC D let G and S? be as before and k ≥ 0 such that
Prs(�≤kS?) < 1 for all s ∈ S?. We have

E(�≤kG) + Pr(�≤kS?) · min
s∈S?

Es(�≤kG)

1− Prs(�≤kS?)

≤ E(�G) ≤E(�≤kG) + Pr(�≤kS?) ·max
s∈S?

Es(�≤kG)

1− Prs(�≤kS?)
.
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Recall the function g : R|S| → R|S| from Section 2.2, given by g(x)[G] = 0 and
g(x)[s] = ρ(s) +

∑
s′∈S P(s, s′) · x[s′] for s ∈ S?. For s ∈ S and x ∈ R|S| with

x[S] = 0 we have Es(�≤kG) = gk(x)[s]. We modify Algorithm 1 such that it
considers function g instead of function f . Then, the returned value r satisfies
|r − E(�G)| < ε.

3.4 Optimizations.

Algorithm 1 can make use of initial bounds `0, u0 ∈ R with `0 ≤ Prs(♦G) ≤ u0 for
all s ∈ S?. Such bounds could be derived, e.g., from domain knowledge or during
preprocessing [12]. The algorithm always chooses the largest available lower bound
for `k and the lowest available upper bound for uk, respectively. If Algorithm 1
and interval iteration are initialized with the same bounds, Algorithm 1 always
requires as most as many iterations compared to interval iteration (cf. Remark 1).

Gauss-Seidel value iteration [1,12] is an optimization for standard value
iteration and interval iteration that potentially leads to faster convergence. When
computing f(x)[s] for s ∈ S?, the idea is to consider already computed results
f(x)[s′] from the current iteration. Formally, let ≺ ⊆ S × S be some strict total
ordering of the states. Gauss-Seidel value iteration considers instead of function
f the function f≺ : R|S| → R|S| with f≺[S0] = 0, f≺[G] = 1, and

f≺(x)[s] =
∑
s′≺s

P(s, s′) · f≺(x)[s′] +
∑
s′ 6≺s

P(s, s′) · x[s′].

Values f≺(x)[s] for s ∈ S are computed in the order defined by ≺. This idea can
also be applied to our approach. To this end, we replace f by f≺ and h by h≺,
where h≺ is defined similarly. More details are given in [21].

Topological value iteration [14] employs the graphical structure of the MC D.
The idea is to decompose the states S of D into strongly connected components2

(SCCs) that are analyzed individually. The procedure can improve the runtime of
classical value iteration since for a single iteration only the values for the current
SCC have to be updated. A topological variant of interval iteration is introduced
in [12]. Given these results, sound value iteration can be extended similarly.

4 Sound Value Iteration for MDPs

We extend sound value iteration to compute reachability probabilities in MDPs.
Assume an MDP M = (S,Act ,P, sI , ρ) and a set of absorbing goal states G.
For simplicity, we focus on maximal reachability probabilities, i.e., we compute
Prmax(♦G). Minimal reachability probabilities and expected rewards are analo-
gous. As in Section 2.2 we consider the partition S = S0 ∪· G ∪· S? such that M
is contracting with respect to G ∪ S0.

2 S′ ⊆ S is a connected component if s can be reached from s′ for all s, s′ ∈ S′. S′ is a
strongly connected component if no superset of S′ is a connected component.
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s0 s1 s2

s4s3

s6s5

α 0.8

β

0.40.3

0.3

0.2

0.9

0.1

0.1

0.9

1 1

1 1

(a) Sample MDP M.

Prσαs0 Pr
σβα
s0 Pr

σββ
s0 Prσs1 Prσs2

♦≤1G 0 0.3 0.3 0.1 0.1

�≤1S? 0.8 0.4 0.4 0.9 0

♦≤2G 0.1 0.3 0.42 0.1 0.1

�≤2S? 0.72 0.32 0.16 0 0

(b) Step bounded probabilities for M.

Fig. 2. Example MDP with corresponding step bounded probabilities.

4.1 Approximating Maximal Reachability Probabilities

We argue that our results for MCs also hold for MDPs under a given scheduler
σ ∈ SM. Let k ≥ 0 such that Prσs (�≤kS?) < 1 for all s ∈ S?. Following the
reasoning as in Section 3.1 we get

Prσ(♦≤kG) + Prσ(�≤kS?) · min
s∈S?

Prσs (♦≤kG)

1− Prσs (�≤kS?)
≤ Prσ(♦G) ≤ Prmax(♦G).

Next, assume an upper bound u ∈ R with Prmax
s (♦G) ≤ u for all s ∈ S?. For

a scheduler σmax ∈ SM that attains the maximal reachability probability, i.e.,
σmax ∈ arg maxσ∈SM Prσ(♦G) it holds that

Prmax(♦G) = Prσmax(♦G) ≤ Prσmax(♦≤kG) + Prσmax(�≤kS?) · u
≤ max
σ∈SM

(
Prσ(♦≤kG) + Prσ(�≤kS?) · u

)
.

We obtain the following theorem which is the basis of our algorithm.

Theorem 4. For MDP M let G, S?, and u be as above. Assume σ ∈ SM

and k ≥ 0 such that σ ∈ arg maxσ′∈SM Prσ
′
(♦≤kG) + Prσ

′
(�≤kS?) · u and

Prσs (�≤kS?) < 1 for all s ∈ S?. We have

Prσ(♦≤kG) + Prσ(�≤kS?) · min
s∈S?

Prσs (♦≤kG)

1− Prσs (�≤kS?)

≤Prmax(♦G) ≤ Prσ(♦≤kG) + Prσ(�≤kS?) · u.

Similar to the results for MCs it also holds that Prmax(♦G) ≤ maxσ∈SM ûσk with

ûσk := Prσ(♦≤kG) + Prσ(�≤kS?) ·max
s∈S?

Prσs (♦≤kG)

1− Prσs (�≤kS?)
.

However, this upper bound can not trivially be embedded in a value iteration
based procedure. Intuitively, in order to compute the upper bound for iteration
k, one can not necessarily build on the results for iteration k − 1.

11



Input :MDP M = (S,Act ,P, sI , ρ), absorbing states G ⊆ S, precision ε > 0
Output : r ∈ R with |r − Prmax(♦G)| < ε

1 S0 ← {s ∈ S | Prmax
s (♦G) = 0}

2 assert that M is contracting with respect to G ∪ S0

3 S? ← S \ (S0 ∪G)

4 initialize x0, y0 ∈ R|S| with x0[G] = 1, x0[S \G] = 0, y0[S?] = 1, y0[S \ S?] = 0
5 `0 ← −∞; u0 ← +∞; d0 ← −∞
6 k ← 0
7 repeat
8 k ← k + 1

9 initialize xk, yk ∈ R|S| with xk[G] = 1, xk[S0] = 0, yk[S \ S?] = 0
10 dk ← dk−1

11 foreach s ∈ S? do
12 α← findAction(xk−1, yk−1, s, uk−1)
13 dk ← max(dk, decisionValue(xk−1, yk−1, s, α))
14 xk[s]←

∑
s′∈S P(s, α, s′) · xk−1[s′]

15 yk[s]←
∑
s′∈S P(s, α, s′) · yk−1[s′]

16 if yk[s] < 1 for all s ∈ S? then

17 `k ← max(`k−1,mins∈S?

xk[s]
1−yk[s]

)

18 uk ← min(uk−1,max(dk,maxs∈S?

xk[s]
1−yk[s]

))

19 until yk[sI ] · (uk − `k) < 2 · ε
20 return xk[sI ] + yk[sI ] · `k+uk2

Algorithm 2: Sound value iteration for MDPs

Example 6. Consider the MDP M given in Fig. 2(a). Let G = {s3, s4} be the
set of goal states. We therefore have S? = {s0, s1, s2}. In Fig. 2(b) we list step
bounded probabilities with respect to the possible schedulers, where σα, σβα,
and σββ refer to schedulers with σα(s0) = α and for γ ∈ {α, β}, σβγ(s0) = β
and σβγ(s0βs0) = γ. Notice that the probability measures Prσs1 and Prσs2 are
independent of the considered scheduler σ. For step bounds k ∈ {1, 2} we get
– maxσ∈SM ûσ1 = ûσα1 = 0 + 0.8 ·max(0, 1, 0) = 0.8 and
– maxσ∈SM ûσ2 = û

σββ
2 = 0.42 + 0.16 ·max(0.5, 0.19, 1) = 0.5.

4.2 Extending the Value Iteration Approach

The idea of our algorithm is to compute the bounds for Prmax(♦G) as in Theorem 4
for increasing k ≥ 0. Algorithm 2 outlines the procedure. Similar to Algorithm 1
for MCs, vectors xk, yk ∈ R|S| store the step bounded probabilities Prσks (♦≤kG)
and Prσks (�≤kS?) for any s ∈ S. In addition, schedulers σk and upper bounds
uk ≥ maxs∈S?

Prmax
s (♦G) are computed in a way that Theorem 4 is applicable.

Lemma 3. After executing k iterations of Algorithm 2 we have for all s ∈ S?

that xk[s] = Prσks (♦≤kG), yk[s] = Prσks (�≤kS?), and `k ≤ Prmax
s (♦G) ≤ uk,

where σk ∈ arg maxσ∈SM Prσs (♦≤kG) + Prσs (�≤kS?) · uk.

12



1 function findAction(x, y, s, u)
2 if u 6=∞ then
3 return α ∈ arg maxα∈Act(s)

∑
s′∈S P(s, α, s′) · (x[s′] + y[s′] · u)

4 else
5 return α ∈ arg maxα∈Act(s)

∑
s′∈S P(s, α, s′) · (y[s′])

Algorithm 3: Computation of optimal action.

The lemma holds for k = 0 as x0, y0, and u0 are initialized accordingly. For k > 0
we assume that the claim holds after k − 1 iterations, i.e., for xk−1, yk−1, uk−1
and scheduler σk−1. The results of the kth iteration are obtained as follows.

The function findAction illustrated in Algorithm 3 determines the choices of
a scheduler σk ∈ arg maxσ∈SM Prσs (♦≤kG) + Prσs (�≤kS?) · uk−1 for s ∈ S?. The
idea is to consider at state s an action σk(s) = α ∈ Act(s) that maximizes

Prσks (♦≤kG) + Prσks (�≤kS?) · uk−1 =
∑
s′∈S

P(s, α, s′)·(xk−1[s′] + yk−1[s′] · uk−1).

For the case where no real upper bound is known (i.e., uk−1 =∞) we implicitly
assume a sufficiently large value for uk−1 such that Prσs (♦≤kG) becomes negli-
gible. Upon leaving state s, σk mimics σk−1, i.e., we set σk(sαs1α1 . . . sn) =
σk−1(s1α1 . . . sn). After executing Line 15 of Algorithm 2 we have xk[s] =
Prσks (♦≤kG) and yk[s] = Prσks (�≤kS?).

It remains to derive an upper bound uk. To ensure that Lemma 3 holds we
require (i) uk ≥ maxs∈S?

Prmax
s (♦G) and (ii) uk ∈ Uk, where

Uk = {u ∈ R | σk ∈ arg max
σ∈SM

Prσs (♦≤kG) + Prσs (�≤kS?) · u for all s ∈ S?}.

Intuitively, the set Uk ⊆ R consists of all possible upper bounds u for which
σk is still optimal. Uk ⊆ is convex as it can be represented as a conjunction of
inequalities with U0 = R and u ∈ Uk if and only if u ∈ Uk−1 and for all s ∈ S?

with σk(s) = α and for all β ∈ Act(s) \ {α}∑
s′∈S

P(s, α, s′)·(xk−1[s′] + yk−1[s′] · u) ≥
∑
s′∈S

P(s, β, s′)·(xk−1[s′] + yk−1[s′] · u).

The algorithm maintains the so-called decision value dk which corresponds to the
minimum of Uk (or −∞ if the minimum does not exist). Algorithm 4 outlines the
procedure to obtain the decision value at a given state. Our algorithm ensures
that uk is only set to a value in [dk, uk−1] ⊆ Uk.

Lemma 4. After executing Line 18 of Algorithm 2: uk ≥ maxs∈S?
Prmax

s (♦G).

To show that uk is a valid upper bound, let smax ∈ arg maxs∈S?
Prmax

s (♦G) and
u∗ = Prmax

smax
(♦G). From Theorem 4, uk−1 ≥ u∗, and uk−1 ∈ Uk we get

u∗ ≤ max
σ∈SM

Prσsmax
(♦≤kG) + Prσsmax

(�≤kS?) · uk−1

= Prσksmax
(♦≤kG) + Prσksmax

(�≤kS?) · uk−1 = xk[smax] + yk[smax] · uk−1
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1 function decisionValue(x, y, s, α)
2 d← −∞
3 foreach β ∈ Act(s) \ {α} do
4 y∆ ←

∑
s′∈S(P(s, α, s′)−P(s, β, s′)) · y[s′]

5 if y∆ > 0 then
6 x∆ ←

∑
s′∈S(P(s, β, s′)−P(s, α, s′)) · x[s′]

7 d← max(d, x∆/y∆)

8 return d

Algorithm 4: Computation of decision value.

which yields a new upper bound xk[smax] + yk[smax] · uk−1 ≥ u∗. We repeat this
scheme as follows. Let v0 := uk−1 and for i > 0 let vi := xk[smax] +yk[smax] ·vi−1.
We can show that vi−1 ∈ Uk implies vi ≥ u∗. Assuming yk[smax] < 1, the sequence

v0, v1, v2, . . . converges to v∞ := limi→∞ vi = xk[smax]
1−yk[smax]

. We distinguish three

cases to show that uk = min(uk−1,max(dk,maxs∈S?

xk[s]
1−yk[s] )) ≥ u

∗.

– If v∞ > uk−1, then also maxs∈S?

xk[s]
1−yk[s] > uk−1. Hence uk = uk−1 ≥ u∗.

– If dk ≤ v∞ ≤ uk−1, we can show that vi ≤ vi−1. It follows that for all i > 0,

vi−1 ∈ Uk, implying vi ≥ u∗. Thus we get uk = maxs∈S?

xk[s]
1−yk[s] ≥ v∞ ≥ u

∗.

– If v∞ < dk then there is an i ≥ 0 with vi ≥ dk and u∗ ≤ vi+1 < dk. It follows
that uk = dk ≥ u∗.

Example 7. Reconsider the MDPM from Fig. 2(a) and goal states G = {s3, s4}.
The maximal reachability probability is attained for a scheduler that always
chooses β at state s0, which results in Prmax(♦G) = 0.5. We now illustrate how
Algorithm 2 approximates this value by sketching the first two iterations. For
the first iteration findAction yields action α at s0. We obtain:

x1[s0] = 0, x1[s1] = 0.1, x1[s2] = 0.1, y1[s0] = 0.8, y1[s1] = 0.9, y1[s2] = 0,

d1 = 0.3/(0.8− 0.4) = 0.75, `1 = min(0, 1, 0) = 0, u1 = max(0.75, 0, 1, 0) = 1.

In the second iteration findAction yields again α for s0 and we get:

x2[s0] = 0.08, x2[s1] = 0.19, x2[s2] = 0.1, y2[s0] = 0.72, y2[s1] = 0, y2[s2] = 0,

d2 = 0.75, `2 = min(0.29, 0.19, 0.1) = 0.1, u2 = max(0.75, 0.29, 0.19, 0.1) = 0.75.

Due to the decision value we do not set the upper bound u2 to 0.29 < Prmax(♦G).

Theorem 5. Algorithm 2 terminates for any MDP M, goal states G and preci-
sion ε > 0. The returned value r satisfies |r − Prmax(♦G)| ≤ ε.

The correctness of the algorithm follows from Theorem 4 and Lemma 3. Ter-
mination follows since M is contracting with respect to S0 ∪ G, implying
limk→∞ Prσ(�≤kS?) = 0. The optimizations for Algorithm 1 mentioned in Sec-
tion 3.4 can be applied to Algorithm 2 as well.
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Fig. 3. Comparison of sound value iteration (x-axis) and interval iteration (y-axis).

5 Experimental Evaluation

Implementation. We implemented sound value iteration for MCs and MDPs
into the model checker Storm [8]. The implementation computes reachability
probabilities and expected rewards using explicit data structures such as sparse
matrices and vectors. Moreover, Multi-objective model checking is supported,
where we straightforwardly extend the value iteration-based approach of [22] to
sound value iteration. We also implemented the optimizations given in Section 3.4.

The implementation is available at www.stormchecker.org.

Experimental Results. We considered a wide range of case studies including
– all MCs, MDPs, and CTMCs from the PRISM benchmark suite [23],
– several case studies from the PRISM website www.prismmodelchecker.org,
– Markov automata accompanying IMCA [24], and
– multi-objective MDPs considered in [22].

In total, 130 model and property instances were considered. For CTMCs and
Markov automata we computed (untimed) reachability probabilities or expected
rewards on the underlying MC and the underlying MDP, respectively. In all
experiments the precision parameter was given by ε = 10−6.

We compare sound value iteration (SVI) with interval iteration (II) as pre-
sented in [13,12]. We consider the Gauss-Seidel variant of the approaches and
compute initial bounds `0 and u0 as in [12]. For a better comparison we consider
the implementation of II in Storm. [21] gives a comparison with the implemen-
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Fig. 4. Runtime comparison between different approaches.

tation of II in PRISM. The experiments were run on a single core (2GHz) of an
HP BL685C G7 with 192GB of available memory. However, almost all experi-
ments required less than 4GB. We measured model checking times and required
iterations. All logfiles and considered benchmarks are available at [25].

Fig. 3(a) depicts the model checking times for SVI (x-axis) and II (y-axis). For
better readability, the benchmarks are divided into four plots with different scales.
Triangles (N) and circles (•) indicate MC and MDP benchmarks, respectively.
Similarly, Fig. 3(b) shows the required iterations of the approaches. We observe
that SVI converged faster and required fewer iterations for almost all MCs and
MDPs. SVI performed particularly well on the challenging instances where many
iterations are required. Similar observations were made when comparing the
topological variants of SVI and II. Both approaches were still competitive if no a
priori bounds are given to SVI. More details are given in [21].

Fig. 4 indicates the model checking times of SVI and II as well as their
topological variants. For reference, we also consider standard (unsound) value
iteration (VI). The x-axis depicts the number of instances that have been solved
by the corresponding approach within the time limit indicated on the y-axis.
Hence, a point (x, y) means that for x instances the model checking time was less
or equal than y. We observe that the topological variant of SVI yielded the best
run times among all sound approaches and even competes with (unsound) VI.

6 Conclusion

In this paper we presented a sound variant of the value iteration algorithm which
safely approximates reachability probabilities and expected rewards in MCs and
MDPs. Experiments on a large set of benchmarks indicate that our approach is
a reasonable alternative to the recently proposed interval iteration algorithm.
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