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Abstract. In this paper we describe the DeepSec prover, a tool for
security protocol analysis. It decides equivalence properties modelled as
trace equivalence of two processes in a dialect of the applied pi calculus.

1 Introduction

Cryptographic protocols ensure the security of communications. They are dis-
tributed programs that make use of cryptographic primitives, e.g. encryption,
to ensure security properties, such as confidentiality or anonymity. Their correct
design is quite a challenge as security is to be enforced in the presence of an
arbitrary adversary that controls the communication network and may compro-
mise participants. The use of symbolic verification techniques, in the line of the
seminal work by Dolev and Yao [19], has proven its worth in discovering logical
vulnerabilities or proving their absence.

Nowadays mature tools exist, e.g. [10,24,7] but mostly concentrate on trace
properties, such as authentication and (weak forms of) confidentiality. Unfor-
tunately many properties need to be expressed in terms of indistinguishability,
modelled as behavioral equivalences in dedicated process calculi. Typically, a
strong version of secrecy states that the adversary cannot distinguish the sit-
uation where a value v1, respectively v2, is used in place of a secret. Privacy
properties, e.g., vote privacy, are also stated similarly [2,4,18].

In this paper we present the DeepSec prover (Deciding Equivalence Proper-
ties in Security protocols). The tool decides trace equivalence for cryptographic
protocols that are specified in a dialect of the applied pi calculus [1]. DeepSec
offers several advantages over existing tools, in terms of expressiveness, precision
and efficiency: typically we do not restrict the use of private channels, allow else
branches, and decide trace equivalence precisely, i.e., no approximations are ap-
plied. Cryptographic primitives are user specified by a set of subterm-convergent
rewrite rules. The only restriction we make on protocol specifications is that we
forbid unbounded replication, i.e. we restrict the analysis to a finite number of
protocol sessions. This restriction is similar to that of several other tools and
sufficient for decidability. Note that decidability is nevertheless non-trivial as
the system under study is still infinite-state due to the active, arbitrary attacker
participating to the protocol.
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2 Description of the tool

2.1 Example: the Helios voting protocol

An input of DeepSec defines the cryptographic primitives, the protocol and
the security properties that are to be verified. Random numbers are abstracted
by names (a, b, . . .), cryptographic primitives by function symbols with arity
(f/n) and messages by terms viewed as modus operandi to compute bitstring.
For instance, the functions aenc/3, pk/1 model randomized asymmetric encryp-
tion and public-key generation: term aenc(pk(k), r, m) models the plain text m
encrypted with public key pk(k) and randomness r. In DeepSec we write:

fun aenc/3. fun pk/1.

On the other hand, cryptographic destructors are specified by rewrite rules. For
example asymmetric decryption (adec) would be defined by

reduc adec(k,aenc(pk(k),r,m)) -> m.

A plain text m can thus be retrieved from a cipher aenc(pk(k), r, m) and the
corresponding private key k. Such user-defined rewrite rules also allow us to de-
scribe more complex primitives such as a zero-knowledge proof (ZKP) asserting
knowledge of the plaintext and randomness of a given ciphertext:

fun zkp/3.

const zpkok.

reduc check(zkp(r,v,aenc(p,r,v)), aenc(p,r,v)) -> zkpok.

Although user-defined, the rewrite system is required by DeepSec to be subterm
convergent, i.e., the right hand side is a subterm of the left hand side or a ground
term in normal form. Support for tuples and projection is provided by default.

Protocol specification. Honest participants in a protocol are modeled as pro-
cesses. For instance, the process Voter(auth,id,v,pkE) describes a voter in the
Helios voting protocol. The process has four arguments: an authenticated chan-
nel auth, the voter’s identifier id, its vote v and the public key of the tally pkE.

let Voter(auth,id,v,pkE) =

new r;

let bal = aenc(pkE,r,v) in

out(auth,bal);

out(c, (id, bal, zkp(r,v,bal))).

let VotingSystem(v1,v2) =

new k; new auth1; new auth2;

out(c,pk(k)); (

Voter(auth1,id1,v1,pk(k)) |

Voter(auth2,id2,v2,pk(k)) |

Tally(k,auth1,auth2) ).

The voter first generates a random
number r that will be used for en-
cryption and ZKP. After that, she
encrypts her vote and assigns it
to the variable bal which is out-
put on the channel auth. Finally,
she outputs the ballot, id and the
corresponding ZKP on the pub-
lic channel c. All in all, the pro-
cess VotingSystem(v1,v2) repre-
sents the complete voting scheme:
two honest voters id1 and id2 re-
spectively vote for v1 and v2; the

2



process Tally collects the ballots, checks the ZKP and outputs the result of
the election. The instances of the processes Voter and Tally are executed con-
currently, modeled by the parallel operator |. Other operators supported by
DeepSec include input on a channel (in(c,x); P), conditional (if u = v then

P else Q) and non-deterministic choice (P + Q).

Security properties. DeepSec focuses on properties modelled as trace equiva-
lence, e.g. vote privacy [18] in the Helios protocol. We express it at indistin-
guishability of two instances of the protocol swapping the votes of two honest
voters:

query trace_equiv(VotingSystem(yes,no),VotingSystem(no,yes)).

DeepSec checks whether an attacker, implicitly modelled by the notion of
trace equivalence, cannot distinguish between these two instances. Note that all
actions of dishonnest voters can be seen as actions of this single attacker entity;
thus only honest participants need to be specified in the input file.

2.2 The underlying theory

We give here a high-level overview of how DeepSec decides trace equivalence.
Further intuition and details can be found in [14].

Symbolic setting. Although finite-depth, even non-replicated protocols have infi-
nite state space. Indeed, a simple input in(c,x) induces infinitely-many poten-
tial transitions in presence of an active attacker. We therefore define a symbolic
calculus that abstracts concrete inputs by symbolic variables, and constraints
that restrict their concrete instances. Constraints typically range over deducibil-
ity contraints (“the attacker is able to craft some term after spying on public
channels”) and equations (“two terms are equal”). A symbolic semantics then
performs symbolic inputs and collects constraints on them. Typically, executing
input in(c,x) generates a deducibility constraint on x to model the attacker
being able to craft the message to be input; equations are generated by condi-
tionals, relying on most general unifiers modulo equational theory.

Decision procedure. DeepSec constructs a so-called partition tree to guide de-
cision of (in)equivalence of processes P and Q. Its nodes are labelled by sets of
symbolic processes and constraints; typically the root contains P and Q with
empty constraints. The tree is constructed similarly to the (finite) tree of all
symbolic executions of P and Q, except that some nodes may be merged or
split accordingly to a constraint-solving procedure. DeepSec thus enforces that
concrete instances of processes of a same node are indistinguishable (statically).

The final decision criterion is that P and Q are equivalent iff all nodes of the
partition tree contain both a process originated from P and a process originated
from Q by symbolic execution. The DeepSec prover thus returns an attack iff
it finds a node violating this property while constructing the partition tree.
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2.3 Implementation

DeepSec is implemented in Ocaml (16k LOC) and the source code is licensed
under GPL 3.0 and publicly available [17]. Running DeepSec yields a terminal
output summarising results, while a more detailed output is displayed graphically
in an HTML interface (using the MathJax API [20]). When the query is not
satisfied, the interface interactively shows how to mount the attack.

Partial-order reductions. Tools verifying equivalences for bounded number of
sessions suffer from a combinatorial explosion as the number of sessions increases.
We therefore implemented state-of-the-art partial-order reductions (POR) [8]
that eliminate redundant interleavings, providing a significant speedup. This
is only possible for a restricted class of processes (determinate processes) but
DeepSec automatically checks whether POR can be activated.

Parallelism. DeepSec generates a partition tree (cf Section 2.2) to decide trace
equivalence. As sibling nodes are independent, the computation on subtrees can
be parallelized. However, the partition tree is not balanced, making it hard to
balance the load. One natural solution would be to systematically add children
nodes into a queue of pending jobs, but this would yield an important commu-
nication overhead. Consequently, we apply this method only until the size of the
queue is larger than a given threshold; next each idle process fetches a node and
computes the complete corresponding subtree. Distributed computation over n

cores is activated by the option -distributed n. By default, the threshold in
the initial generation of the partition tree depends on n but may be overwritten
to m with the option -nb_sets m.

3 Experimental evaluation

Comparison to other work. When the number of sessions is unbounded, equiva-
lence is undecidable. Verification tools in this setting therefore have to sacrifice
termination, and generally only verify the finer diff-equivalence [11,9,23], too fine-
grained on many examples. We therefore focus on tools comparable to DeepSec,
i.e. those that bound the number of sessions. SPEC [25,26] verifies a sound sym-
bolic bisimulation, but is restricted to fixed cryptographic primitives (pairing,
encryption, signatures, hashes) and does not allow for else branches. APTE [13]
covers the same primitives but allows else branches and decides trace equivalence
exactly. On the contrary, Akiss [12] allows for user-defined primitives and ter-
minates when they form a subterm-convergent rewrite system. However Akiss
only decides trace equivalence without approximation for a subclass of processes
(determinate processes) and may perform under- and over-approximations oth-
erwise. Sat-Eq [15] proceeds differently by reducing the equivalence problem to
Graph Planning and SAT Solving: the tool is more efficient than the others by
several orders of magnitude, but is quite restricted in scope (it currently supports
pairing, symmetric encryption, and can only analyse a subclass of determinate
processes). Besides, Sat-Eq may not terminate.
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Authentication. Figure 1 displays a sample of our benchmarks (complete results
can be found in [17]). DeepSec clearly outperforms Akiss, APTE, and SPEC,
but Sat-Eq takes the lead as the number of sessions increase. However, the
Otway-Rees protocol already illustrates the scope limit of Sat-Eq.

Besides, as previously mentioned, DeepSec includes partial-order reductions
(POR). We performed experiments with and without this optimisation: for ex-
ample, protocols requiring more than 12 hours of computation time without
POR can be verified in less than a second. Note that Akiss and APTE also
implement the same POR techniques as DeepSec.

Protocol (# of roles) Akiss APTE SPEC Sat-Eq DeepSec No POR

Denning-

Sacco

3 3<1s 3 <1s 3 11s 3 <1s 3 <1s 3 1s

6 3<1s 3 1s OM 3 <1s 3 <1s 3 13s

7 3 6s 3 3s 3 <1s 3 <1s 3 9m 45s

10 OM 3 9m49 3 <1s 3 <1s �
12 � 3 <1s 3 <1s

29 3 <1s 3 6s

Yahalom-

Lowe

3 3<1s 3 <1s 3 7s 3 <1s 3 <1s 3 <1s

6 3 2s 3 41s OM 3 <1s 3 <1s 3 16m

7 3 42s 334m38s 3 1s 3 <1s �
10 OM � 3 1s 3 <1s

17 3 12s 3 8s

Otway-Rees

3 3 28s 3 2s 358m9s

7

3 <1s 3 <1s

6 OM OM � 3 <1s 339m 41s

7 3 <1s �
14 3 5m28s

3 equivalence proved 7 out of scope OM out of memory/stack overflow � timeout (12H)

Fig. 1. Benchmark results on classical authentication protocols

Privacy. We also verified privacy properties on the private authentication pro-
tocol [2], the passive-authentication and basic-access-control protocols from the
e-passport [21], AKA of the 3G telephony networks [6] and the voting protocols
Helios [3] and Prêt-à-Voter [22]. DeepSec is the only tool that can prove vote
privacy on the two voting protocols, and private authentication is out of the
scope of Sat-Eq and SPEC. Besides, we analysed variants of the Helios voting
protocol, based on the work of Arapinis et al. [5] (see Figure 2). The vanilla
version is known vulnerable to a ballot-copy attack [16], which is patched by
a ballot weeding (W) or a zero-knowledge proof (ZKP). DeepSec proved that,
(i ) when no revote is allowed, or (ii ) when each honest voter only votes once and
a dishonest voter is allowed to revote, then both patches are secure. However,
only the ZKP variant remains secure when honest voters are allowed to revote.

Parallelism. Experiments have been carried out on a server with 40 Intel Xeon
E5-2687W v3 CPUs 3.10GHz, with 50Gb RAM and 25Mb L3 Cache, using 35
cores (Server 1). However the performances of parallelisation had some unex-
pected behavior. For example, on the Yahalom-Lowe protocol, the use of too
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Protocol (# roles) Akiss APTE DeepSec

Passive

Authentication

2 3 <1s 3 <1s 3 <1s

4 3 <1s 3 1s 3 <1s

6 32m22s 31m26s 3 <1s

7 31h42m 31m40s 3 1s

9 � 31h55m 3 <1s

15 � 3 4s

21 3 8s

Helios variant (# roles) DeepSec

Vanilla 6 E <1s

No revote W 6 3 1s

No revote ZKP 6 3 2s

Dishonest revote W 10 330m 24s

Dishonest revote ZKP 10 3 9m 26s

Honest revote W 11 E 2s

Honest revote ZKP 11 3 2h 42m

3 equivalence proved E attack found � timeout (12H)

Fig. 2. Benchmark results for verifying privacy type properties

many cores on a same server negatively impacts performances: e.g. on Server
1, optimal results are achieved using only 20 to 25 cores. In comparison, opti-
mal results required 40-45 cores on a server with 112 Intel Xeon vE7-4850 v3
CPUs 2.20Ghz, with 1.5Tb RAM and 35Mb L3 Cache (Server 2). This dif-
ference may be explained by cache capacity: overloading servers with processes
(sharing cache) beyond a certain threshold should indeed make the hit-miss ratio
drop. This is consistent with the Server 2 having a larger cache and exploiting
efficiently more cores than Server 1. Using the perf profiling tool, we confirmed
that the number of cache-references per second (CRPS) stayed relatively stable
up to the optimal number of cores and quickly decreased beyond.
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Fig. 3. Performance analysis on Yahalom-Lowe protocol with 23 roles

DeepSec can also distribute on multiple servers, using SSH connections.
Despite a communication overhead, multi-server computation may be a way
to partially avoid the server-overload issue discussed above. For example, the
verification of the Helios protocol (Dishonest revote W) on 3 servers (using resp.
10, 20 and 40 cores) resulted in a running time of 18m14s, while the same
verification took 51m49s on a 70-core server (also launched remotely via SSH).
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