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Abstract. The design of security protocols is extremely subtle and vul-
nerable to potentially devastating flaws. As a result, many tools and
techniques for the automated verification of protocol designs have been
developed. Unfortunately, these tools don’t have the ability to model and
reason about protocols with randomization, which are becoming increas-
ingly prevalent in systems providing privacy and anonymity guarantees.
The security guarantees of these systems are often formulated by means
of the indistinguishability of two protocols. In this paper, we give the
first practical algorithms for model checking indistinguishability proper-
ties of randomized security protocols against the powerful threat model of
a bounded Dolev-Yao adversary. Our techniques are implemented in the
Stochastic Protocol ANalayzer (Span) and evaluated on several exam-
ples. As part of our evaluation, we conduct the first automated analysis
of an electronic voting protocol based on the 3-ballot design.

1 Introduction

Security protocols are highly intricate and vulnerable to design flaws. This has
led to a significant effort in the construction of tools for the automated verifi-
cation of protocol designs. In order to make automation feasible [12, 34, 48, 23,
55, 15, 8], the analysis is often carried out in the Dolev-Yao threat model [30],
where the assumption of perfect cryptography is made. In the Dolev-Yao model,
the omnipotent adversary has the ability to read, intercept, modify and replay
all messages on public channels, remember the communication history as well as
non-deterministically inject its own messages into the network while remaining
anonymous. In this model, messages are symbolic terms modulo an equational
theory (as opposed to bit-strings) and cryptographic operations are modeled via
equations in the theory.

A growing number of security protocols employ randomization to achieve pri-
vacy and anonymity guarantees. Randomization is essential in protocols/systems
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for anonymous communication and web browsing such as Crowds [49], mix-
networks [21], onion routers [37] and Tor [29]. It is also used in fair exchange [11,
35], vote privacy in electronic voting [52, 20, 6, 54] and denial of service preven-
tion [40]. In the example below, we demonstrate how randomization is used to
achieve privacy in electronic voting systems.

Example 1. Consider a simple electronic voting protocol for 2 voters Alice and
Bob, two candidates and an election authority. The protocol is as follows. Ini-
tially, the election authority will generate two private tokens tA and tB and send
them to Alice and Bob encrypted under their respective public keys. These to-
kens will be used by the voters as proofs of their eligibility. After receiving a
token, each voter sends his/her choice to the election authority along with the
proof of eligibility encrypted under the public key of the election authority. Once
all votes have been collected, the election authority tosses a fair private coin. The
order in which Alice and Bob’s votes are published depends on the result of this
coin toss. Vote privacy demands that an adversary not be able to deduce how
each voter voted.

All the existing Dolev-Yao analysis tools are fundamentally limited to proto-
cols that are purely non-deterministic, where non-determinism models concur-
rency as well as the interaction between protocol participants and their envi-
ronment. There are currently no analysis tools that can faithfully reason about
protocols like those in Example 1, a limitation that has long been identified by
the verification community. In the context of electronic voting protocols, [28]
identifies three main classes of techniques for achieving vote privacy; blind sig-
nature schemes, homomorphic encryption and randomization. There the authors
concede that protocols based on the latter technique are “hard to address with
our methods that are purely non-deterministic.” Catherine Meadows, in her
summary of the over 30 year history of formal techniques in cryptographic pro-
tocol analysis [46, 47], identified the development of formal analysis techniques
for anonymous communication systems, almost exclusively built using primitives
with randomization, as a fundamental and still largely unsolved challenge. She
writes, “it turned out to be difficult to develop formal models and analyses of
large-scale anonymous communication. The main stumbling block is the threat
model”.

In this work, we take a major step towards overcoming this long-standing
challenge and introduce the first techniques for automated Dolev-Yao analy-
sis of randomized security protocols. In particular, we propose two algorithms
for determining indistinguishability of randomized security protocols and imple-
mented them in the Stochastic Protocol ANalyzer (Span). Several works [28, 7,
9, 32, 41] have identified indistinguishability as the natural mechanism to model
security guarantees such as anonymity, unlinkability, and privacy. Consider the
protocol from Example 1, designed to preserve vote privacy. Such a property
holds if the executions of the protocol in which Alice votes for candidate 1 and
Bob votes for candidate 2 cannot be distinguished from the executions of the
protocol in which Alice votes for candidate 2 and Bob votes for candidate 1.
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Observe that in Example 1, it is crucial that the result of the election author-
ity’s coin toss is not visible to the adversary. Indeed if the adversary is allowed
to “observe” the results of private coin tosses, then the analysis may reveal “se-
curity flaws” in correct security protocols (see examples in [22, 13, 36, 19, 17]).
Thus, many authors [26, 22, 13, 36, 19, 17, 10, 18] have proposed that randomized
protocols be analyzed with respect to adversaries that are forced to schedule the
same action in any two protocol executions that are indistinguishable to them.

For randomized security protocols, [10, 18, 53] have proposed that trace equiv-
alence from the applied π-calculus [5] serve as the indistinguishability relation
on traces. In this framework, the protocol semantics are described by partially
observable Markov decision processes (POMDPs) where the adversary’s actions
are modeled non-deterministically. The adversary is required to choose its next
action based on the partial information that is can observe about the execution
thus far. This allows us to model the privacy of coin tosses. Two security pro-
tocols are said to be indistinguishable [18, 53] if their semantic descriptions as
POMDPs are indistinguishable. Two POMDPs M and M′ are said to indistin-
guishable if for any adversary A and trace o, the probability of the executions
that generate the trace o with respect to A are the same for both M and M′.

Our algorithms for indistinguishability in randomized security protocols are
built on top of techniques for solving indistinguishability in finite POMDPs.
Our first result shows that indistinguishability of finite POMDPs is P-complete.
Membership in P is established by a reduction of POMDP indistinguishability
to equivalence in probabilistic finite automata (PFAs), which is known to be P-
complete [57, 31, 45]. Further, we show that the hardness result continues to hold
for acyclic POMDPs. An acyclic POMDP is a POMDP that has a set of “final”
absorbing states and the only cycles in the underlying graph are self-loops on
these states.

For acyclic finite POMDPs, we present another algorithm for checking indis-
tinguishability based on the technique of translating a POMDP M into a fully
observable Markov decision process (MDP), known as the belief MDP B(M) of
M. It was shown in [14] that two POMDPs are indistinguishable if and only if
the belief MDPs they induce are bisimilar as labeled Markov decision processes.
WhenM is acylic and finite then its belief MDP B(M) is finite and acyclic and
its bisimulation relation can be checked recursively.

Protocols in Span are described by a finite set of roles (agents) that interact
asynchronously by passing messages. Each role models an agent in a protocol
session and hence we only consider bounded number of sessions. An action in
a role performs either a message input, or a message output or a test on mes-
sages. The adversary schedules the order in which these actions are executed and
generates input recipes comprised of public information and messages previously
output by the agents. In general, there are an unbounded number of input recipes
available at each input step, resulting in POMDPs that are infinitely branching.
Span, however, searches for bounded attacks by bounding the size of attacker
messages. Under this assumption, protocols give rise to finite acyclic POMDPs.
Even with this assumption, protocols specified in Span describe POMDPs that
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are exponentially larger than their description. Nevertheless, we show that when
considering protocols defined over subterm convergent equational theories, in-
distinguishability of randomized security protocols is in PSPACE for bounded
Dolev-Yao adversaries. We further show that the problem is harder than #SATD

and hence it is both NP-hard and coNP-hard.
The main engine of Span translates a randomized security protocol into

an acyclic finite POMDP by recursively unrolling all protocol executions and
grouping states according to those that are indistinguishable. We implemented
two algorithms for checking indistinguishability in Span. The first algorithm,
called the PFA algorithm, checks indistinguishability of P and P ′ by converting
them to corresponding PFAs A and A′ as in the proof of decidability of indis-
tinguishability of finite POMDPs. PFA equivalence can then be solved through
a reduction to linear programming [31]. The second algorithm, called the on-
the-fly (OTF) algorithm, is based on the technique of checking bisimulation of
belief MDPs. Although asymptotically less efficient than the PFA algorithm,
the recursive procedure for checking bisimulation in belief MDPs can be embed-
ded into the main engine of Span with little overhead, allowing one to analyze
indistinguishability on-the-fly as the POMDP models are constructed.

In our evaluation of the indistinguishability algorithms in Span, we conduct
the first automated Dolev-Yao analysis for several new classes of security pro-
tocols including dinning cryptographers networks [38], mix networks [21] and a
3-ballot electronic voting protocol [54]. The analysis of the 3-ballot protocol, in
particular, demonstrates that our techniques can push symbolic protocol verifi-
cation to new frontiers. The protocol is a full scale, real world example, which to
the best of our knowledge, hasn’t been analyzed using any existing probabilistic
model checker or protocol analysis tool.

Summary of Contributions. We showed that the problem of checking in-
distinguishability of POMDPs is P-complete. The indistinguishability problem
for bounded instances of randomized security protocols over subterm conver-
gent equational theories (bounded number of sessions and bounded adversarial
non-determinism) is shown to be in PSPACE and #SATD-hard. We proposed
and implemented two algorithms in the Span protocol analysis tool for deciding
indistinguishability in bounded instances of randomized security protocols and
compare their performance on several examples. Using Span, we conducted the
first automated verification of a 3-ballot electronic voting protocol.

Related work. As alluded to above, techniques for analyzing security proto-
cols have remained largely disjoint from techniques for analyzing systems with
randomization. Using probabilistic model checkers such as PRISM [44], STORM
[27] and APEX [42] some have attempted to verify protocols that explicitly em-
ploy randomization [56]. These ad-hoc techniques fail to capture powerful threat
models, such as a Dolev-Yao adversary, and don’t provide a general verification
framework. Other works in the Dolev-Yao framework [28, 43] simply abstract
away essential protocol components that utilize randomization, such as anony-
mous channels. The first formal framework combining Dolev-Yao analysis with
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randomization appeared in [10], where the authors studied the conditions un-
der which security properties of randomized protocols are preserved by protocol
composition. In [53], the results were extended to indistinguishability.

Complexity-theoretic results on verifying secrecy and indistinguishability prop-
erties of bounded sessions of randomized security protocols against unbounded
Dolev-Yao adverasries were studied in [18]. There the authors considered pro-
tocols with a fixed equational theory5 and no negative tests (else branches).
Both secrecy and indistinguishability were shown to be in coNEXPTIME,
with secrecy being coNEXPTIME-hard. The analogous problems for purely
non-deterministic protocols are known to be coNP-complete [25, 33, 51]. When
one fixes, a priori, the number of coin tosses, secrecy and indistinguishability
in randomized protocols again become coNP-complete. In our asymptotic com-
plexity results and in the Span tool, we consider a general class of equational
theories and protocols that allow negative tests.

2 Preliminaries

We assume that the reader is familiar with probability distributions. For a set
X, Dist(X) shall denote the set of all discrete distributions µ on X such that
µ(x) is a rational number for each x ∈ X. For x ∈ X, δx will denote the Dirac
distribution, i.e., the measure µ such that µ(x) = 1. The support of a discrete
distribution µ, denoted support(µ), is the set of all elements x such that µ(x) 6= 0.

Markov decision processes (MDPs). MDPs are used to model processes
that exhibit both probabilistic and non-deterministic behavior. An MDP M
is a tuple (Z, zs,Act, ∆) where Z is a countable set of states, zs ∈ Z is the
initial state, Act is a countable set of actions and ∆ : Z × Act→ Dist(Z) is the
probabilistic transition function.M is said to be finite if the sets Z and Act are
finite. An execution of an MDP is a sequence ρ = z0

α1−→ z1
α2−→ · · · αm−−→ zm

such that z0 = zs and zi+1 ∈ support(∆(zi, αi+1)) for all i ∈ {0, . . . ,m−1}. The

measure of ρ, denoted probM(ρ), is
∏m−1
i=0 ∆(zi, αi+1)(zi+1). For the execution

ρ, we write last(ρ) = zm and say that the length of ρ, denoted |ρ|, is m. The set
of all executions of M is denoted as Exec(M).

Partially observable Markov decision processes (POMDPs). A POMDP
M is a tuple (Z, zs,Act, ∆,O, obs) where M0 = (Z, zs,Act, ∆) is an MDP, O
is a countable set of observations and obs : Z → O is a labeling of states with
observations. M is said to be finite if M0 is finite. The set of executions of
M0 is taken to be the set of executions of M, i.e., we define Exec(M) as the

set Exec(M0). Given an execution ρ = z0
α1−→ z1

α2−→ · · · αm−−→ zm of M, the
trace of ρ is tr(ρ) = obs(z0)α1obs(z1)α2 · · ·αmobs(zm). For a POMDP M and
a sequence o ∈ O · (Act · O)∗, the probability of o in M, written probM(o),
is the sum of the measures of executions in Exec(M) with trace o. Given two

5 The operations considered are pairing, hashing, encryption and decryption.
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POMDPs M0 and M1 with the same set of actions Act and the same set of
observations O, we say that M0 and M1 are distinguishable if there exists
o ∈ O · (Act · O)∗ such that probM0

(o) 6= probM1
(o). If M0 and M1 cannot be

distinguished, they are said to be indistinguishable. We write M0 ≈ M1 if M0

and M1 are indistinguishable. As is the case in [53, 18], indistinguishability can
also be defined through a notion of an adversary. Our formulation is equivalent,
even when the adversary is allowed to toss coins [18].

Probabilistic finite automata (PFAs). A PFA is like a finite-state deter-
ministic automaton except that the transition function from a state on a given
input is described as a probability distribution. Formally, a PFA A is a tuple
(Q,Σ, qs, ∆, F ) where Q is a finite set of states, Σ is a finite input alphabet,
qs ∈ Q is the initial state, ∆ : Q × Σ → Dist(Q) is the transition relation
and F ⊆ Q is the set of accepting states. A run ρ of A on an input word
u ∈ Σ∗ = a1a2 · · · am is a sequence q0q1 · · · qm ∈ Q∗ such that q0 = qs and
qi ∈ support(∆(qi−1, ai)) for each 1 ≤ i ≤ m. For the run ρ on word u, its
measure, denoted probA,u(ρ), is

∏m
i=1∆(qi−1, ai)(qi). The run ρ is called accept-

ing if qm ∈ F . The probability of accepting a word u ∈ Σ, written probA(u),
is the sum of the measures of the accepting runs on u. Two PFAs A0 and A1

with the same input alphabet Σ are said to be equivalent, denoted A0 ≡ A1, if
probA0

(u) = probA1
(u) for all input words u ∈ Σ∗.

3 POMDP indistinguishability

In this section, we study the underlying semantic objects of randomized security
protocols, POMDPs. The techniques we develop for analyzing POMDPs provide
the foundation for the indistinguishability algorithms we implement in the Span
protocol analysis tool. Our first result shows that indistinguishability of finite
POMDPs is decidable in polynomial time by a reduction to PFA equivalence,
which is known to be decidable in polynomial time [57, 31].

Proposition 1. Indistinguishability of finite POMDPs is in P.

Proof (sketch). Consider two POMDPs Mi = (Zi, z
i
s,Act, ∆i,O, obsi) for i ∈

{0, 1} with the same set of actions Act and the set of observations O. We shall
construct PFAs A0 and A1 such that M0 ≈ M1 iff A0 ≡ A1 as follows. For
i ∈ {0, 1}, let “badi” be a new state and define the PFA Ai = (Qi, Σ, q

i
s, ∆

′
i, Fi)

where Qi = Zi ∪ {badi}, Σ = Act × O, qis = zis, Fi = Zi and ∆′i is defined as
follows.

∆′i(q, (α, o))(q
′) =


∆i(q, α)(q′) if q, q′ ∈ Zi and obs(q) = o

1 if q ∈ Zi, obs(q) 6= o and q′ = badi

1 if q, q′ = badi

0 otherwise

.
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Let u = (α1, o0) . . . (αk, ok−1) be a non-empty word on Σ. For the word u,
let ou be the trace o0α1o1α2· · ·αk−1ok−1. The proposition follows immediately
from the observation that probAi(u) = probMi

(ou). ut

An MDPM = (Z, zs,Act, ∆) is said to be acyclic if there is a set of absorbing
states Zabs ⊆ Z such that for all α ∈ Act and z ∈ Zabs, ∆(z, α)(z) = 1 and for all

ρ = z0
α1−→ · · · αm−−→ zm ∈ Exec(M) if zi = zj for i 6= j then zi ∈ Zabs. Intuitively,

acyclic MDPs are MDPs that have a set of “final” absorbing states and the
only cycles in the underlying graph are self-loops on these states. A POMDP
M = (Z, zs,Act, ∆,O, obs) is acyclic if the MDPM0 = (Z, zs,Act, ∆) is acyclic.
We have the following result, which can be shown from the P-hardness of the
PFA equivalence problem [45].

Proposition 2. Indistinguishability of finite acyclic POMDPs is P-hard. Hence
Indistinguishability of finite POMDPs is P-complete.

Thanks to Proposition 1, we can check indistinguishability for finite POMDPs
by reducing it to PFA equivalence. We now present a new algorithm for indis-
tinguishability of finite acyclic POMDPs. A well-known POMDP analysis tech-
nique is to translate a POMDP M into a fully observable belief MDP B(M)
that emulates it. One can then analyze B(M) to infer properties of M. The
states of B(M) are probability distributions over the states of M. Further,
given a state b ∈ B(M), if states z1, z2 of M are such that b(z1), b(z2) are
non-zero then z1 and z2 must have the same observation. Hence, by abuse of
notation, we can define obs(b) to be obs(z) if b(z) 6= 0. Intuitively, an execution

ρ = b0
α1−→ b1

α2−→ · · · αm−−→ bm of B(M) corresponds to the set of all executions
ρ′ of M such that tr(ρ′) = obs(b0)α1obs(b1)α2 · · ·αmobs(bm). The measure of
execution ρ in B(M) is exactly probM(obs(b0)α1obs(b1)α2 · · ·αmobs(bm)).

The initial state of B(M) is the distribution that assigns 1 to the initial
state of M. Intuitively, on a given state b ∈ Dist(M) and an action α, there
is at most one successor state bα,o for each observation o. The probability of
transitioning from b to bα,o is the probability that o is observed given that the
distribution on the states of M is b and action α is performed; bα,o(z) is the
conditional probability that the actual state of the POMDP is z. The formal
definition follows.

Definition 1. Let M = (Z, zs,Act, ∆,O, obs) be a POMDP. The belief MDP
of M, denoted B(M), is the tuple (Dist(Z), δzs ,Act, ∆

B) where ∆B is defined as
follows. For b ∈ Dist(Z), action α ∈ Act and o ∈ O, let

pb,α,o =
∑
z∈Z

b(z) ·
( ∑
z′∈Z∧obs(z′)=o

∆(z, α)(z′)

)
.

∆B(b, α) is the unique distribution such that for each o ∈ O, if pb,α,o 6= 0 then
∆B(b, α)(bα,o) = pb,α,o where for all z′ ∈ Z,

bα,o(z′) =

{∑
z∈Z b(z)·∆(z,α)(z′)

pb,α,o
if obs(z′) = o

0 otherwise
.
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Let Mi = (Zi, z
i
s,Act, ∆i,O, obsi) for i ∈ {0, 1} be POMDPs with the same

set of actions and observations. In [14] the authors show that M0 and M1

are indistinguishable if and only if the beliefs δz0s and δz1s are strongly belief
bisimilar. Strong belief bisimilarity coincides with the notion of bisimilarity of
labeled MDPs: a pair of states (b0, b1) ∈ Dist(Z0)×Dist(Z1) is said to be strongly
belief bisimilar if (i) obs(b0) = obs(b1), (ii) for all α ∈ Act, o ∈ O, pb0,α,o = pb1,α,o
and (iii) the pair (bα,o0 , bα,o1 ) is strongly belief bisimilar if pb0,α,o = pb1,α,o > 0.
Observe that, in general, belief MDPs are defined over an infinite state space. It
is easy to see that, for a finite acyclic POMDP M, B(M) is acyclic and has a
finite number of reachable belief states. LetM0 andM1 be as above and assume
further thatM0,M1 are finite and acyclic with absorbing states Zabs ⊆ Z0∪Z1.
As a consequence of the result from [14] and the observations above, we can
determine if two states (b0, b1) ∈ Dist(Z0)×Dist(Z1) are strongly belief bisimilar
using the on-the-fly procedure from Algorithm 1.

Algorithm 1 On-the-fly bisimulation for finite acyclic POMDPs

1: function Bisimilar(beliefState b0, beliefState b1)
2: if obs(b0) 6= obs(b1) then return false

3: if support(b0) ∪ support(b1) ⊆ Zabs then return true

4: for α ∈ Act do
5: for o ∈ O do
6: if pb0,α,o 6= pb1,α,o then return false

7: if pb0,α,o > 0 and !Bisimilar(bα,o0 , bα,o1 ) then return false

8: return true

4 Randomized security protocols

We now present our core process calculus for modeling security protocols with
coin tosses. The calculus closely resembles the ones from [10, 53]. First proposed
in [39], it extends the applied π-calculus [5] by the inclusion of a new opera-
tor for probabilistic choice. As in the applied π-calculus, the calculus assumes
that messages are terms in a first-order signature identified up-to an equational
theory.

4.1 Terms, equational theories and frames

A signature F contains a finite set of function symbols, each with an associated
arity. We assume F contains two special disjoint sets, Npub and Npriv, of 0-ary
symbols.6 The elements of Npub are called public names and represent public
nonces that can be used by the Dolev-Yao adversary. The elements of Npriv are

6 As we assume F is finite, we allow only a fixed number of public nonces are available
to the adversary.
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called names and represent secret nonces and secret keys. We also assume a set
of variables that are partitioned into two disjoint sets X and Xw. The variables
in X are called protocol variables and are used as placeholders for messages input
by protocol participants. The variables in Xw are called frame variables and are
used to point to messages received by the Dolev-Yao adversary. Terms are built
by the application of function symbols to variables and terms in the standard
way. Given a signature F and Y ⊆ X ∪Xw, we use T (F ,Y) to denote the set of
terms built over F and Y. The set of variables occurring in a term u is denoted
by vars(u). A ground term is a term that contains no free variables.

A substitution σ is a partial function with a finite domain that maps vari-
ables to terms. dom(σ) will denote the domain and ran(σ) will denote the
range. For a substitution σ with dom(σ) = {x1, . . . , xk}, we denote σ as {x1 7→
σ(x1), . . . , xk 7→ σ(xk)}. A substitution σ is said to be ground if every term in
ran(σ) is ground and a substitution with an empty domain will be denoted as ∅.
Substitutions can be aplied to terms in the usual way and we write uσ for the
term obtained by applying the substitution σ to the term u.

Our process algebra is parameterized by an equational theory (F , E), where
E is a set of F-Equations. By an F-Equation, we mean a pair u = v where
u, v ∈ T (F \ Npriv,X ) are terms that do not contain private names. We will
assume that the equations of (F , E) can be oriented to produce a convergent
rewrite system. Two terms u and v are said to be equal with respect to an
equational theory (F , E), denoted u =E v, if E ` u = v in the first order
theory of equality. We often identify an equational theory (F , E) by E when the
signature is clear from the context.

In the calculus, all communication is mediated through an adversary: all
outputs first go to an adversary and all inputs are provided by the adver-
sary. Hence, processes are executed in an environment that consists of a frame
ϕ : Xw → T (F , ∅) and a ground substitution σ : X → T (F , ∅). Intuitively,
ϕ represents the sequence of messages an adversary has received from protocol
participants and σ records the binding of the protocol variables to actual input
messages. An adversary is limited to sending only those messages that it can
deduce from the messages it has received thus far. Formally, a term u ∈ T (F , ∅)
is deducible from a frame ϕ with recipe r ∈ T (F \ Npriv, dom(ϕ)) in equational
theory E, denoted ϕ `rE u, if rϕ =E u. We will often omit r and E and write
ϕ ` u if they are clear from the context.

We now recall an equivalence on frames, called static equivalence [5]. Intu-
itively, two frames are statically equivalent if the adversary cannot distinguish
them by performing tests. The tests consists of checking whether two recipes
deduce the same term. Formally, two frames ϕ1 and ϕ2 are said to be statically
equivalent in equational theory E, denoted ϕ1 ≡E ϕ2, if dom(ϕ1) = dom(ϕ2)
and for all r1, r2 ∈ T (F \ Npriv,Xw) we have r1ϕ1 =E r2ϕ1 iff r1ϕ2 =E r2ϕ2.
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4.2 Process syntax

Processes in our calculus are the parallel composition of roles. Intuitively, a role
models a single actor in a single session of the protocol. Syntactically, a role is
derived from the grammar:

R ::= 0 in(x)` out(u0 ·R+p u1 ·R)` ite([c1 ∧ . . . ∧ ck], R,R)` (R ·R)

where p is a rational number in the unit interval [0, 1], ` ∈ N, x ∈ X , u0, u1 ∈
T (F ,X ) and ci is ui = vi with ui, vi ∈ T (F ,X ) for all i ∈ {1, . . . , k}. The
constructs in(x)`, out(u0 · R +p u1 · R)` and ite([c1 ∧ . . . ∧ ck], R,R)` are said
to be labeled operations and ` ∈ N is said to be their label. The role 0 does
nothing. The role in(x)` reads a term u from the public channel and binds it to
x. The role out(u0 · R +p u1 · R′)` outputs the term u0 on the public channel
and becomes R with probability p and it outputs the term u1 and becomes R′

with probability 1− p. A test [c1 ∧ . . . ∧ ck] is said to pass if for all 1 ≤ i ≤ k,
the equality ci holds. The conditional role ite([c1 ∧ . . .∧ ck], R,R′)` becomes R if
[c1∧ . . .∧ck] passes and otherwise it becomes R′. The role R ·R′ is the sequential
composition of role R followed by role R′. The set of variables of a role R is the
set of variables occurring in R. The construct in(x)` · R binds variable x in R.
The set of free and bound variables in a role can be defined in the standard way.
We will assume that the set of free variables and bound variables of a role are
disjoint and that a bound variable is bound only once in a role. A role R is said
to be well-formed if every labeled operation occurring in R has the same label
`; the label ` is said to be the label of the well-formed role R.

A process is the parallel composition of a finite set of roles R1, . . . , Rn, de-
noted R1 | . . . | Rn. We will use P and Q to denote processes. A process
R1 | . . . | Rn is said to be well-formed if each role is well-formed, the sets of
variables of Ri and Rj are disjoint for i 6= j, and the label of role Ri and label
of role Rj are different for i 6= j. For the remainder of this paper, processes
are assumed to be well-formed. The set of free (resp. bound) variables of P is
the union of the sets of free (resp. bound) variables of its roles. P is said to be
ground if the set of its free variables is empty. We shall omit labels when they
are not relevant in a particular context.

Example 2. We model the electronic voting protocol from Example 1 in our
formalism. The protocol is built over the equational theory with signature F =
{sk/1, pk/1, aenc/3, adec/2, pair/2, fst/1, snd/1} and the equations

E = { adec(aenc(m, r, pk(k)), sk(k)) = m,
fst(pair(m1,m2)) = m1, snd(pair(m1,m2)) = m2}.

The function sk (resp. pk) is used to generate a secret (resp. public) key from
a nonce. For generation of their pubic key pairs, Alice, Bob and the election
authority hold private names kA, kB and kEA, respectively. The candidates will
be modeled using public names c0 and c1 and the tokens will be modeled using
private names tA and tB . Additionally, we will write yi and ri for i ∈ N to denote
fresh input variables and private names, respectively. The roles of Alice, Bob and
the election authority are as follows.
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A(cA) := in(y0) · out(aenc(pair(adec(y0, sk(kA)), cA), r0, pk(kEA)))
B(cB) := in(y1) · out(aenc(pair(adec(y1, sk(kB)), cB), r1, pk(kEA)))
EA := out(aenc(tA, r2, pk(kA))) · out(aenc(tB , r3, pk(kB))) · in(y3) · in(y4)·

ite([fst(adec(y3, sk(kEA))) = tA ∧ fst(adec(y4, sk(kEA))) = tB ],
out(pair(snd(adec(y3, sk(kEA))), snd(adec(y4, sk(kEA))))+ 1

2

pair(snd(adec(y4, sk(kEA))), snd(adec(y3, sk(kEA))))), 0)

In roles above, we write out(u0) as shorthand for out(u0 ·0 +1 u0 ·0). The entire
protocol is evote(cA, cB) = A(cA) | B(cB) | EA.

4.3 Process semantics

An extended process is a 3-tuple (P,ϕ, σ) where P is a process, ϕ is a frame
and σ is a ground substitution whose domain contains the free variables of P .
We will write E to denote the set of all extended processes. Semantically, a
ground process P with n roles is a POMDP [[P ]] = (Z, zs,Act, ∆,O, obs), where
Z = E ∪ {error}, zs is (P, ∅, ∅), Act = (T (F \ Npriv,Xw) ∪ {τ, } × {1, . . . , n}),
∆ is a function that maps an extended process and an action to a distribution
on E , O is the set of equivalence classes on frames over the static equivalence
relation ≡E and obs is as follows. Let [ϕ] denote the equivalence class of ϕ with
respect to ≡E . Define obs to be the function such that for any extended process
η = (P,ϕ, σ), obs(η) = [ϕ]. We now give some additional notation needed for
the definition of ∆. Given a measure µ on E and role R we define µ · R to be
the distribution µ1 on E such that µ1(P ′, ϕ, σ) = µ(P,ϕ, σ) if µ(P,ϕ, σ) > 0
and P ′ is P · R and 0 otherwise. Given a measure µ on E and a process Q, we
define µ | Q to be the distribution µ1 on E such that µ1(P ′, ϕ, σ) = µ(P,ϕ, σ)
if µ(P,ϕ, σ) > 0 and P ′ is P | Q and 0 otherwise. The distribution Q | µ
is defined analogously. For distributions µ1, µ2 over E and a rational number
p ∈ [0, 1], the convex combination µ1 +Ep µ2 is the distribution µ on E such that
µ(η) = p · µ1(η) + (1 − p) · µ2(η) for all η ∈ E . The definition of ∆ is given in

Figure 1, where we write (P,ϕ, σ)
α−→ µ if ∆((P,ϕ, σ), α) = µ. If ∆((P,ϕ, σ), α)

is undefined in Figure 1 then ∆((P,ϕ, σ), α) = δerror. Note that ∆ is well-defined,
as roles are deterministic.

4.4 Indistinguishability in randomized cryptographic protocols

Protocols P and P ′ are said to indistinguishable if [[P ]] ≈ [[P ′]]. Many interesting
properties of randomized security protocols can be specified using indistinguisha-
bility. For example, consider the simple electronic voting protocol from Example
2. We say that the protocol satisfies the vote privacy property if evote(c0, c1)
and evote(c1, c0) are indistinguishable.

In the remainder of this section, we study the problem of deciding when
two protocols are indistinguishable by a bounded Dolev-Yao adversary. We re-
strict our attention to indistinguishability of protocols over subterm convergent
equational theories [4]. Before presenting our results, we give some relevant def-
initions. (F , E) is said to be subterm convergent if for every equation u = v ∈ E
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r ∈ T (F \ Npriv,Xw) ϕ `r u x 6∈ dom(σ)

(in(x)`, ϕ, σ)
(r,`)−−−→ δ(0,ϕ,σ∪{x 7→u})

in

i = |dom(ϕ)|+ 1 ϕj = ϕ ∪ {w(i,`) 7→ ujσ} for j ∈ {0, 1}

(out(u0 ·R0 +p u1 ·R1)`, ϕ, σ)
(τ,`)−−−→ δ(R0,ϕ0,σ) +E

p δ(R1,ϕ1,σ)

out

∀i ∈ {1, . . . , k}, ci is ui = vi and uiσ =E viσ

(ite([c1 ∧ . . . ∧ ck], R,R′)`, ϕ, σ)
(τ,`)−−−→ δ(R,ϕ,σ)

condIF

∃i ∈ {1, . . . , k}, ci is ui = vi and uiσ 6=E viσ

(ite([c1 ∧ . . . ∧ ck], R,R′)`, ϕ, σ)
(τ,`)−−−→ δ(R′,ϕ,σ)

condELSE

R 6= 0 (R,ϕ, σ)
α−→ µ

(R ·R′, ϕ, σ)
α−→ µ ·R′

seq
(R,ϕ, σ)

α−→ µ

(0 ·R,ϕ, σ)
α−→ µ

null

(Q,ϕ, σ)
α−→ µ

(Q | Q′, ϕ, σ)
α−→ µ | Q′

parl
(Q′, ϕ, σ)

α−→ µ

(Q | Q′, ϕ, σ)
α−→ Q | µ

parr

Fig. 1: Process semantics

oriented as a rewrite rule u→ v, either v is a proper subterm of u or v is a public
name. A term u can be represented as a directed acyclic graph (dag), denoted
dag(u) [4, 51]. Every node in dag(u) is a function symbol, name or a variable.
Nodes labeled by names and variables have out-degree 0. A node labeled with a
function symbol f has out-degree equal to the arity of f where outgoing edges of
the node are labeled from 1 to the arity of f . Every node of dag(u) represents a
unique sub-term of u. The depth of a term u, denoted depth(u), is the length of
the longest simple path from the root in dag(u). Given an action α, depth(α) = 0
if α = (τ, j) and depth(α) = m if α = (r, j) and depth(r) = m.

Let P be a protocol such that [[P ]] = (Z, zs,Act, ∆,O, obs). Define [[P ]]d to be
the POMDP (Z, zs,Actd, ∆,O, obs) where Actd ⊆ Act is such that every α ∈ Act
has depth(α) ≤ d. For a constant d ∈ N, we define InDist(d) to be the decision
problem that, given a subterm convergent theory (F , E) and protocols P and P ′

over (F , E), determines if [[P ]]d and [[P ′]]d are indistinguishable. We assume that
the arity of the function symbols in F is given in unary. We have the following.

Theorem 1. For any constant d ∈ N, InDist(d) is in PSPACE.

We now show InDist(d) is both NP-hard and coNP-hard by showing a re-
duction from #SATD to InDist(d). #SATD is the decision problem that, given
a 3CNF formula φ and a constant k ∈ N, checks if the number of satisfying
assignments of φ is equal to k.
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Theorem 2. There is a d0 ∈ N such that #SATD reduces to InDist(d) in logspace
for every d > d0. Thus, InDist(d) is NP-hard and coNP-hard for every d > d0.

5 Implementation and Evaluation

Using (the proof of) Proposition 1, we can solve the indistinguishability prob-
lem for randomized security protocols as follows. For protocols P, P ′, translate
[[P ]], [[P ′]] into PFAs A,A′ and determine if A ≡ A′ using the linear programming
algorithm from [31]. We will henceforth refer to this approach as the PFA al-
gorithm and the approach from Algorithm 1 as the OTF algorithm. We have
implemented both the PFA and OTF algorithms as part of Stochastic Protocol
ANalayzer (Span), which is a Java based tool for analyzing randomized security
protocols. The tool is avaliable for download at [1]. The main engine of Span
translates a protocol into a POMDP, belief MDP or PFA by exploring all proto-
col executions and grouping equivalent states using an engine, Kiss [4] or Akiss
[16], for static equivalence. Kiss is guaranteed to terminate for subterm conver-
gent theories and Akiss provides support for XOR while considering a slighly
larger class of equational theories called optimally reducing. Operations from
rewriting logic are provided by queries to Maude [24] and support for arbitrary
precision numbers is given by Apfloat [2]. Our experiments were conducted on
an Intel core i7 dual quad core processor at 2.67GHz with 12Gb of RAM. The
host operating system was 64 bit Ubuntu 16.04.3 LTS.

Our comparison of the PFA and OTF algorithms began by examining how
each approach scaled on a variety of examples (detailed at the end of this section).
The results of the analysis are given in Figure 2. For each example, we consider
a fixed recipe depth and report the running times for 2 parties as well as the
maximum number of parties for which one of the algorithms terminates within
the timeout bound of 60 minutes. On small examples for which the protocols
were indistinguishable, we found that the OTF and PFA algorithms were roughly
equivalent. On large examples where the protocols were indistinguishable, such
as the 3 ballot protocol, the PFA algorithm did not scale as well as the OTF
algorithm. In particular, an out-of-memory exception often occurred during con-
struction of the automata or the linear programming constraints. On examples
for which the protocols were distinguishable, the OTF algorithm demonstrated a
significant advantage. This was a result of the fact that the OTF approach ana-
lyzed the model as it was constructed. If at any point during model construction
the bisimulation relation was determined not to hold, model construction was
halted. By contrast, the PFA algorithm required the entire model to be con-
structed and stored before any analysis could take place.

In addition to stress-testing the tool, we also examined how each algorithm
performed under various parameters of the mix-network example. The results
are given in Figure 3, where we examine how running times are affected by
scaling the number of protocol participants and the recipe depth. Our results
coincided with the observations from above. One interesting observation is that
the number of beliefs explored on the 5 party example was identical for recipe
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1 2 3 4 5 6 7 8 9 10

Protocol Parties Depth Equiv Time (s) States Beliefs

PFA OTF

Kiss AKiSs Kiss Akiss

DC-net 2 10 true n/s 5.5 n/s 4 58 24

DC-net 3 10 true n/s OOM n/s 3013 n/a 286

mix-net 2 10 false TO TO .3 .4 n/a 7

mix-net 5 10 false OOM OOM 582 1586 n/a 79654

Evote 2 10 true 1 1 .5 1 34 33

Evote 8 10 true 105 105 131 124 94 93

3 Ballot 2 10 true n/s OOM n/s 1444 n/a 408

Fig. 2. Experimental Results: Columns 1 and 2 describe the example being ana-
lyzed. Column 3 gives the maximum recipe depth and column 4 indicates when the
example protocols were indistinguishable. Columns 5-8 give the running time (in sec-
onds) for the respective algorithms and static equivalence engines. We report OOM for
an out of memory exception and TO for a timeout - which occurs if no solution is gen-
erated in 60 minutes. Column 9 gives the number of states in the protocol’s POMDP
and Column 10 gives the number of belief states explored in the OTF algorithm. When
information could not be determined due to a failure of the tool to terminate, we re-
port n/a. For protocols using equational theories that were not subterm convergent,
we write n/s (not supported) for the Kiss engine.

depth 4 and recipe depth 10. The reason is that, for a given protocol input step,
Span generates a minimal set of recipes. This is in the sense that if recipes r0, r1
are generated at an input step with frame ϕ, then r0ϕ 6=E r1ϕ. For the given
number of public names available to the protocol, changing the recipe depth from
4 to 10 did not alter the number of unique terms that could be constructed by
the attacker. We conclude this section by describing our benchmark examples,
which are available at [3]. Evote is the simple electronic voting protocol derived
from Example 2 and the the DC-net, mix-net and 3 ballot protocols are described
below.

Dinning cryptographers networks. In a simple DC-net protocol [38], two parties
Alice and Bob want to anonymously publish two confidential bits mA and mB ,
respectively. To achieve this, Alice and Bob agree on three private random bits
b0, b1 and b2 and output a pair of messages according to the following scheme.
In our modeling the protocol, the private bits are generated by a trusted third
party who communicates them with Alice and Bob using symmetric encryption.
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If b0 = 0 Alice: MA,0 = b1 ⊕mA, MA,1 = b2
Bob: MB,0 = b1, MB,1 = b2 ⊕mB

If b0 = 1 Alice: MA,0 = b1, MA,1 = b2 ⊕mA

Bob: MB,0 = b1 ⊕mB , MB,1 = b2

From the protocol output, the messages mA and mB can be retrieved as MA,0⊕
MB,0 and MA,1 ⊕ MB,1. The party to which the messages belong, however,
remains unconditionally private, provided the exchanged secrets are not revealed.

1 2 3 4 5 6 7 8 9

Parties Depth Equiv Time (s) States Beliefs

PFA OTF

Kiss Akiss Kiss Akiss

2 1 true .3 .3 .2 .3 15 12

3 1 true 1 1.2 .4 .9 81 50

4 1 true 47 47 2 6 2075 656

5 1 true OOM OOM 34 79 n/a 4032

5 2 false OOM OOM 13 33 n/a 1382

5 3 false OOM OOM 124 354 n/a 6934

5 4 false OOM OOM 580 1578 n/a 79654

Fig. 3. Detailed Experimental Results for Mix Networks: The columns have
an identical meaning to the ones from Figure 2. We report OOM for an out of memory
exception and when information could not be determined due to a failure of the tool
to terminate, we report n/a.

Mix networks. A mix-network [21], is a routing protocol used to break the link
between a message’s sender and the message. This is achieved by routing mes-
sages through a series of proxy servers, called mixes. Each mix collects a batch
of encrypted messages, privately decrypts each message and forwards the result-
ing messages in random order. More formally, consider a sender Alice (A) who
wishes to send a message m to Bob (B) through Mix (M). Alice prepares a
cipher-text of the form aenc(aenc(m,n1, pk(B)), n0, pk(M)) where aenc is asym-
metric encryption, n0, n1 are nonces and pk(M), pk(B) are the public keys of
the Mix and Bob, respectively. Upon receiving a batch of N such cipher-texts,
the Mix unwraps the outer layer of encryption on each message using its secret
key, randomly permutes and forwards the messages. A passive attacker, who
observes all the traffic but does not otherwise modify the network, cannot (with
high probability) correlate messages entering and exiting the Mix. Unfortunately,
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this simple design, known as a threshold mix, is vulnerable to a very simple ac-
tive attack. To expose Alice as the sender of the message aenc(m,n1, pk(B)), an
attacker simply forwards Alice’s message along with N−1 dummy messages to
the Mix. In this way, the attacker can distinguish which of the Mix’s N output
messages is not a dummy message and hence must have originated from Alice.

3-Ballot electronic voting. We have modeled and analyzed the 3-ballot voting
system from [54]. To simplify the presentation of this model, we first describe
the major concepts behind 3-ballot voting schemes, as originally introduced by
[50]. At the polling station, each voter is given 3 ballots at random. A ballot is
comprised of a list of candidates and a ballot ID. When casting a vote, a voter
begins by placing exactly one mark next to each candidate on one of the three
ballots chosen a random. An additional mark is then placed next to the desired
candidate on one of the ballots, again chosen at random. At the completion of
the procedure, at least one mark should have been placed on each ballot and two
ballots should have marks corresponding to the desired candidate. Once all of
the votes have been cast, ballots are collected and released to a public bulletin
board. Each voter retains a copy of one of the three ballots as a receipt, which
can be used to verify his/her vote was counted.

In the full protocol, a registration agent is responsible for authenticating
voters and receiving ballots and ballot ids generated by a vote manager. Once a
voter marks his/her set of three ballots, they are returned to the vote manager
who forwards them to one of three vote repositories. The vote repositories store
the ballots they receive in a random position. After all votes have been collected
in the repositories, they are released to a bulletin board by a vote collector.
Communication between the registration agent, vote manager, vote repositories
and vote collector is encrypted using asymmetric encryption and authenticated
using digital signatures. In our modeling, we assume all parties behave honestly.

6 Conclusion

In this paper, we have considered the problem of model checking indistinguisha-
bility in randomized security protocols that are executed with respect to a
Dolev-Yao adversary. We have presented two different algorithms for the in-
distinguishability problem assuming bounded recipe sizes. The algorithms have
been implemented in the Span protocol analysis tool, which has been used to
verify some well known randomized security protocols. We propose the following
as part of future work: (i) extension of the current algorithms as well the tool
to the case of unbounded recipe sizes; (ii) application of the tool for checking
other randomized protocols; (iii) giving tight upper and lower bounds for the
indistinguishability problem for the randomized protocols.
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41. Lucca Hirschi, David Baelde, and Stéphanie Delaune. A method for verifying
privacy-type properties: The unbounded case. In Security and Privacy, pages 564–
581, 2016.

42. Stefan Kiefer, Andrzej S Murawski, Joël Ouaknine, Björn Wachter, and James
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