
Under consideration for publication in Theory and Practice of Logic Programming 1

Shape Neutral Analysis of Graph-based
Data-structures

GREGORY J. DUCK and JOXAN JAFFAR and ROLAND H. C. YAP
Department of Computer Science, National University of Singapore

(e-mail: {gregory,joxan,ryap}@comp.nus.edu.sg)

Abstract

Malformed data-structures can lead to runtime errors such as arbitrary memory access or corruption. De-
spite this, reasoning over data-structure properties for low-level heap manipulating programs remains chal-
lenging. In this paper we present a constraint-based program analysis that checks data-structure integrity,
w.r.t. given target data-structure properties, as the heap is manipulated by the program. Our approach is
to automatically generate a solver for properties using the type definitions from the target program. The
generated solver is implemented using a Constraint Handling Rules (CHR) extension of built-in heap, inte-
ger and equality solvers. A key property of our program analysis is that the target data-structure properties
are shape neutral, i.e., the analysis does not check for properties relating to a given data-structure graph
shape, such as doubly-linked-lists versus trees. Nevertheless, the analysis can detect errors in a wide range
of data-structure manipulating programs, including those that use lists, trees, DAGs, graphs, etc. We present
an implementation that uses the Satisfiability Modulo Constraint Handling Rules (SMCHR) system. Exper-
imental results show that our approach works well for real-world C programs.

KEYWORDS: Constraint Handling Rules, Satisfiability Modulo Constraint Handling Rules, Satisfiability
Modulo Theories, Program Analysis, Data-structures, Memory Errors

1 Introduction

Low-level languages such as C and C++ are notorious for (subtle) bugs due to direct pointer
manipulation. Program analysis may detect bugs, however, automating such analysis for data-
structure manipulating programs in low-level languages is a challenging problem. Much of the
existing work on data-structure analysis (Berdine et al. 2007; Berdine et al. 2005; Berdine et al.
2011; Dudka et al. 2011) focuses on (or depends on) shape properties, i.e., is the data-structure a
tree or linked-lists, etc.? However, this complicates automated analysis:

1. Shape information is usually implicit.
2. Common data-structure shapes have inductive (a.k.a. recursive) definitions.
3. Data-structure integrity co-depends on memory safety.

For example, consider the following generic C struct declaration:

struct node { node *next1; node *next2; ...};

Automated shape discovery on type declarations alone is not feasible: this node could be for a
tree, DAG, graph, doubly-linked-list, etc. Even if shape information were available (or assumed),
the next problem is that data-structure shapes have inductive (a.k.a. recursive) definitions, further
complicating automated reasoning. For example, a list can be recursively defined as follows (in

ar
X

iv
:1

80
4.

09
35

2v
2

 [
cs

.P
L

]
 3

 M
ay

 2
01

8

2 Duck, Jaffar, and Yap

Separation Logic (Reynolds 2002)): list(l) def
= ∃t : l = 0∨ l 7→ t ∗ list(t). Finally, data-structure

reasoning for low-level programs is (co)dependent on memory safety, e.g., an object bounds
error may clobber memory that invalidates the data-structure invariant. Conversely data-structure
invariant violations may give rise to memory errors.

In this paper, we present a shape neutral data-structure analysis that aims to avoid the compli-
cations listed above. Instead of data-structure shape definitions, we analyze the program against
a set of more general data-structure properties that hold for any canonical graph-based data-
structures in standard idiomatic C. The properties include:

1. nodes are contiguous regions of memory.
2. nodes are the correct size.
3. nodes form a closed directed graph (no dangling links).
4. nodes do not overlap with each other.

Such general properties eliminate the need to infer (or assume) data-structure shapes, and can be
derived solely from the types declared by the program.

Our automated shape neutral data-structure analysis for C programs is based on: (1) sym-
bolic execution to generate path constraints for all possible paths through the program, and (2)
a specialized constraint solver for shape neutral data-structure properties. For the latter, we first
formalize the properties we aim to enforce, then use our formalization to derive a solver that
can be implemented using Constraint Handling Rules (CHR) (Frühwirth 1998; Frühwirth 2009).
Since the generated verification conditions (VCs) typically have a rich structure (quantifiers,
conjunction, disjunction and negation), we implement the solver using the Satisfiability Modulo
Constraint Handling Rules (SMCHR) system (Duck 2012; Duck 2013). We demonstrate that our
implementation is able to verify many data-structure manipulating C programs, including data-
structures for lists, trees, DAGS, graphs, etc. We also compare against related tools for finding
memory errors related to violations of the data-structure integrity constraints.

In summary, the main contributions of this paper are:

1. Data-structure Integrity Constraints: We propose and formalize a set of shape neutral data-
structure integrity constraints based on the properties informally described above. The
integrity constraints cover standard idiomatic C graph-based data-structures.

2. Constraint Handling Rules Implementation of Shape Neutral Data-structure Properties:
We also present a constraint solver for the integrity constraints that can be implemented
using a Constraint Handling Rules (CHR) extension of built-in heap, integer and equal-
ity solvers. The CHR solver is automatically generated from the target program’s data-
structure type declarations. Goals generated by program analysis can then be solved using
the Satisfiability Modulo Constraint Handling Rules (SMCHR) system. SMCHR is suit-
able as it can efficiently handle goals with a complex Boolean structure, including nega-
tion. Furthermore, SMCHR allows different types of solvers (integer, heap, data-structure)
to be seamlessly integrated.

3. Evaluation: Finally we present an experimental evaluation of our overall approach. We
show that the proposed method is effective on “real world” data-structure manipulating
code such as that from the GNU GLib library. We also compare our approach against sev-
eral existing state-of-the-art memory analysis/safety tools. We demonstrate that our tool
can detect memory errors missed by other systems—especially regarding more complex
data-structures involving multiple node types and sharing.

Shape Neutral Data-structure Analysis 3

sp((s1;s2),φ)
def
= sp(s2,sp(s1,φ))

sp(x := E,φ) def
= x = E[x′/x]∧φ [x′/x]

sp(x := ∗p,φ) def
= access(H, p,x)∧φ [x′/x]

sp(∗p := E,φ) def
= assign(H ′, p,E,H)∧φ [H ′/H]

sp(p :=malloc(n),φ) def
= alloc(H ′, p,n,H)∧φ [H ′/H, p′/p]

sp(abort(),φ) def
= false

(a) Summary of the symbolic execution rules.

(0) S1;

(1) while (b1) {
(2) S2;

(3) while (b2)

(4) S3;

(5) S4; }
(6) S5; (7)

(b) Program with loops.

Fig. 1: Strongest post-condition semantics and an example program.

2 Preliminaries

Our analysis is based on defining a data structure integrity constraint (DSIC). The DSIC formula
is derived from a schema which, when given type declarations, is instantiated into a first-order
formula D. Essentially, D states that data structures must have valid nodes, valid pointers, and
nodes do not intersect. The formal presentation of D is given in Section 3.

The framework we use to analyze a program in pursuit of our integrity constraintD is a classic
one: Verification Condition Generation (VCG) via symbolic execution, a method originating from
Floyd (see e.g. (Matthews et al. 2006) for a succinct introduction). The overall algorithm is
summarized as follows:

- The program, interpreted as a graph, is annotated with D at certain program points corre-
sponding to a set of cut-points in the control flow graph.

- VCG is performed as follows. Suppose D holds when control reaches some cut-point p,
then let q be the next subsequent cut-point encountered during program execution. We then
show that q also satisfies D. This is repeated for all cut-points.

This reduces shape neutral data-structure analysis (abbr. to D-analysis) into proving that Hoare
triples of the form {D}C {D} are valid, where C is some code fragment (the analysis target) and
D is the desired DSIC, defined later. Intuitively, a Hoare triple {A} C {B} states that if A holds
before execution of C, then B must hold after. Thus, {D} C {D} is stating that the DSIC D is
preserved by C. For branch-free C, our underlying methodology is symbolic execution as defined
by the strongest post condition (SPC) predicate transformer semantics shown in Figure 1a. All
dashed variables (e.g. x′) are implicitly existentially quantified, and the notation φ [x′/x] repre-
sents formula φ with variable x′ substituted for variable x. We assume the standard definitions
for sequences (s1;s2), assignment x := E and abort(). Heap operations use special heap con-
straints defined below. A triple {D} C {D} is established by symbolically executing D through
C using the rules from Figure 1a. This process generates a path constraint P. The triple holds iff
Verification Condition (VC) (P |=D) is proven valid with the help of a suitable constraint solver.

Cut-points are chosen to break loops into straight line program fragments amenable to sym-
bolic execution. For example, consider the program with nested loops shown in Figure 1b. Also
consider the formula D which we use to annotate points (0), (1), (3) and (7) (i.e., the chosen

4 Duck, Jaffar, and Yap

“cut-points”). The Hoare triples of interest are therefore:

{D} S1 {D} {D∧b1} S2 {D} {D∧b2} S3 {D}
{D∧¬b2} S4 {D} {D∧¬b1} S5 {D}

It is important to note that we are not requiring integrity at every program point, rather only at
the cut-points, which is a heuristic that works reasonably well in practice (see Section 5).

Heap Operations. To handle heap operations, we extend theH-constraint language from (Duck
et al. 2013). We assume, as given, a set of Values (typically Values

def
= Z) and define the set

of Heaps to be all finite partial maps between values, i.e., Heaps
def
= (Values ⇀fin Values).

Let dom(H) be the domain of the heap H. We abuse notation and treat heaps H as sets of
(pointer,value) pairs {(p,H(p)) | p ∈ dom(H)}. Conversely, a set of pairs S is a heap iff for
all p,v,w we have that (p,v),(p,w) ∈ S→ v = w. A heap partitioning constraint is a formula of
the form H l H1∗H2, where H,H1,H2 are heap variables. Informally, the constraint H l H1∗H2

states that heap H can be partitioned into two disjoint (separate) sub-heaps H1 and H2. The set-
equivalent definition is as follows: H = H1∪H2∧dom(H1)∩dom(H2) = /0.

We use the symbolic execution rules for heap operations from (Duck et al. 2013) summarized
in Figure 1a. By convention, the state of the program heap is represented by a distinguished heap
variable H (of type Heaps). Each heap operation modifies H according to some heap constraint
access, assign, and alloc defined as follows:

access(H, p,v) def
= (p,v) ∈H

assign(H, p,v,H) def
= ∃w : (p,w) ∈ H ∧H= (H−{(p,w)})∪{(p,v)}

alloc(H, p,1,H) def
= ∃w :H= H ∪{(p,w)}∧ p 6∈ dom(H)

We can extend the definition for arbitrary-sized alloc in the obvious way. Note that our definitions
implicitly assume that accessing unmapped memory (i.e. any p 6∈ dom(H)) behaves the same way
as abort() (see Figure 1a).

3 Data-Structure Analysis

Data-structure analysis (or D-analysis) aims to prove that a suitable data-structure integrity con-
straint (DSIC) is preserved by the program. Conversely, a program fails data-structure analysis if
it is possible to generate a mal-formed data-structure that violates the DSIC. More formally, the
analysis aims to prove Hoare triples of the form {D(H, p1, .., pn)} C {D(H,q1, ..,qm)} where
C is some code fragment (e.g. a function definition), H is the global program heap, {p1, .., pn}
and {q1, ..,qm} are sets of live pointer variables, and D is a suitable DSIC defined below. For
brevity we abbreviate the DSIC as D (without parameters). If the analysis is successful, then all
execution paths through C preserve D, and C is said to be D-safe.

In this section, we formalize the DSIC necessary to implement our analysis. Later, we use
the formalism as the basis for the implementation using the Satisfiability Modulo Constraint
Handling Rules (SMCHR) system.

Graph-based Data-structures. For our purposes, a data-structure is a directed graph of nodes.
Each node has an associated type that corresponds to a C struct declaration. A data-structure is
considered valid if the following conditions hold, including:

Shape Neutral Data-structure Analysis 5

(a)

???

(b)

(c) (d)

(e)

(f)

(g)

Fig. 2: Various list data-structure shapes. Here (???) indicates a dangling pointer.

1. Valid nodes: Each node is a contiguous region of memory whose size is large enough to fit
the corresponding node type. Partially allocated nodes (e.g., size too small) are disallowed.

2. Valid pointers: All non-null pointers stored within the data-structure must point to another
valid node. Invalid, interior or dangling-pointers are disallowed. The null pointer is treated
as a special case that indicates the non-existence of a link.

3. Separated nodes: Nodes must not overlap in memory.

These conditions are desirable for most standard graph-based data-structures implemented in
idiomatic C, including linked-lists, trees, DAGS, graphs, etc., or any other data-structure type
that can be described as a graph of nodes and uses standard pointers. Our D-analysis is specific
to the above properties, and does not include any other data-structure property. In particular,
the analysis is shape neutral, and does not aim to analyze for, nor enforce, a given shape of
the graph. As such, our D-analysis is applicable to any graph-based structure, including cyclic
data-structures such as circular linked-lists.

Data-structures in C are declared using some combination of struct declarations with pointer
and data fields. It is not necessarily apparent what the intended shape of the data-structure is based
on the type declarations alone. For example, consider the following struct definitions:

struct list_node { struct tree_node {

int val; list_node *elem;

list_node *next; } tree_node *left; tree_node *right; };

For example, the list_node definition can be used to construct: (a) a linked-list; (b) a dis-
joint list; (c) a circular linked-list; (d) a lasso-list; (e) a list with sharing, or any combination
of the above, as illustrated in Figure 2. Our D-analysis treats (a), (b), (c), (d), (e) as graphs of
list_nodes. List (f) is invalid since the last pointer is dangling (violates valid pointers). Like-
wise list (g) is invalid since it contains overlapping nodes (violates separated nodes).

TheD-analysis aims to detect code that violates the DSIC. For example, consider the following
“malicious” function make_bad, which deliberately constructs a mal-formed linked-list (with
overlapping nodes as per list (g)), and thus should fail the D-analysis:

struct list_node *make_bad(void) {

struct list_node *xs = malloc(3*sizeof(void *));

xs->val = 0; xs->next = (struct list_node *)&xs->next;

xs->next->next = NULL; }

Such data-structure violations can lead to counter-intuitive behavior. For example, consider the
following “benign” set function that sets the nth member of a linked list:

6 Duck, Jaffar, and Yap

(Fval)

(Fnext)

(H)

(Np)

(Nq)

(Nr)

(a) Sub-heap illustrations

p 7→ 1 ∗ (p+1) 7→ q (Np)

q 7→ 2 ∗ (q+1) 7→ r (Nq)

r 7→ 3 ∗ (r+1) 7→ 0 (Nr)

p 7→ 1 ∗ q 7→ 2 ∗ r 7→ 3 (Fval)

(p+1) 7→ q ∗ (q+1) 7→ r ∗ (r+1) 7→ 0 (Fnext)

(b) Sub-heap expressions

Fig. 3: A list example.

void set(list_node *xs, int n, int v) {

while (xs && (n--) > 0) xs = xs->next;

if (xs) xs->val = v; }

Next consider the seemingly benign code fragment, (set(xs,1,A); set(xs,1,B);), that sets
the second node’s value to integers A and B respectively. However, if xs was created with
make_bad, the first call to set clobbers the next field of the first node with value A. The second
node now appears to be at address A. The second call to set executes A->val=B allowing for
arbitrary memory to be overwritten.

Formalization. We shall now formalize the integrity constraint D. We assume, as given, a set
of node types Types = {type0, ..., typen} that are used by the program, e.g. list_node and
tree_node defined above. We treat each type ∈ Types as a set of fields, e.g. tree node =

{elem,left,right}. W.l.o.g., we shall assume all fields are renamed apart. Given Types, we
define set Fields as all fields, and PtrFields ⊆ Fields as all fields with a pointer-to-node type.
We also treat Fields and PtrFields as sequences by choosing an arbitrary field ordering. The sets
Types, Fields and PtrFields are derived from all struct declarations in scope.

Suppose heap H is a valid data-structure, then H is composed of a set of disjoint node heaps.
Given a node pointer p of type (T ∗), then a heap Np ∈ Heaps is a node heap for pointer p if it
spans the contiguous range of addresses p, p+1, .., p+ |T|−1.1

An alternative (and unconventional) way to decompose a data-structure is based on fields.
Given a valid data-structure H and a field field ∈ Fields, then we define the field heap Ffield

to be the sub-heap of H containing all address-value pairs associated with the given field. For
example, suppose H is a 3-node linked-list of type list_node (defined above), and encodes
the sequence 1,2,3. We assume the nodes have addresses p, q, and r respectively. Heap H is
therefore representable in Separation Logic (Reynolds 2002) notation as follows:

p 7→ 1 ∗ (p+1) 7→ q ∗ q 7→ 2 ∗ (q+1) 7→ r ∗ r 7→ 3 ∗ (r+1) 7→ 0

Heap H contains three node sub-heaps Np,Nq,Nr ⊂H and two field sub-heaps Fval,Fnext ⊂H
defined in Figure 3b and illustrated in Figure 3a. The heap H is essentially the disjoint-union of

1 As a simplification, we assume that the ith field is stored in address p+ i, and that sizeof (int) = sizeof (void ∗).

Shape Neutral Data-structure Analysis 7

all the field heaps, i.e., H l Fval∗Fnext. Given a set of field heaps, then we can define a valid
node-pointer p as follows:

Definition 1 (Node Pointers)
Let type ∈ Types be a node type, then value p ∈ Values is a type-node-pointer if

- p = 0 (null pointer) ; or
- p+ i ∈ dom(Ffield) for each field ∈ type, where field is the ith field of type. �

Essentially, a non-null value p is a valid node-pointer for type∈Types if the contiguous addresses
p, p+ 1, .., p+ |type| − 1 are allocated in the corresponding field heaps. For example, q from
Figure 3b is valid since q ∈ dom(Fval) and q+1 ∈ dom(Fnext).

In order for a data-structure H to be valid, all non-null values p stored in any field ∈ PtrField

must be valid node-pointers of the corresponding type. Thus, the graph structure represented by
H is closed, i.e., no invalid (uninitialized, wild, or dangling) links.

Definition 2 (Closed)
Field heaps Ffield1 , ..,Ffield|Fields| are closed if for all field ∈ PtrFields and for all p,v such that
(p,v) ∈ Ffield, then v is a valid T -node-pointer (Definition 1) where typeof (field) = (T ∗). �

We define:

• nodetype(p,F1, ..,Fm) to be the relation satisfying Definition 1 for field heaps {F1, ..,Fm};
• closed(F1, ..,Fm) to be the relation satisfying Definition 2.

Our DSIC D(H) is defined as follows: Given the set Types, we derive the sets Fields and
PtrFields. The heap H must be partitionable into field heaps, and the field heaps must be closed
under Definition 2:

Hl F1∗· · ·∗Fm∧ closed(F1, · · · ,Fm) (CLOSED)

At a given program point, there may be zero or more variables p1, .., pn pointing to nodes of
types T1, ..,Tn ∈ Types. These pointers must be valid under Definition 1, i.e.:

nodeT1(p1,F1, ..,Fm)∧ ·· ·∧nodeTn(pn,F1, ..,Fm) (PTRS)

We can now define the integrity constraint D:

Definition 3 (Data-structure Integrity Constraint)
The data-structure integrity constraint D is defined by combining the above components (via
textual substitution) as follows:

D(H, p1, .., pn)
def
= ∃F1, · · · ,Fm : (CLOSED)∧ (PTRS) �

Spatial Memory Safety. The basic analysis of Section 3 assumes that all memory outside the
data-structure is unmapped, which is unrealistic in practice. We extend our memory model to
account for some arbitrary context of mapped memory by splitting the global heap H into a
footprint heap Fp and a context heap Cxt as follows: H l Fp ∗ Cxt. The data-structure resides
in the footprint heap Fp, and the context heap Cxt represents any other mapped memory, such as
the stack, globals, free-lists, etc. Buggy code may access Cxt via a spatial memory error, such
as an object bounds overflow, thus violating memory safety. To detect such errors, we extend the
DSIC as follows:

8 Duck, Jaffar, and Yap

Definition 4 (Data-structure Integrity Constraint II)
Let D be the basic data-structure integrity constraint from Definition 3, then:

DM(H,Cxt, p1, .., pn)
def
= ∃Fp :Hl Fp∗Cxt∧D(Fp, p1, .., pn) �

Finally, to prove spatial memory safety, it must be shown that

{DM(H,Cxt)} P;(x := ∗p) {p 6∈ dom(Cxt)} (SPATIAL MEMORY SAFETY)

for all reads of pointer p. Likewise, we similarly must verify all writes (∗p := x).

4 Solving for Data-Structures

The DM-analysis depends on determining the validity of the Verification Conditions (VCs) gen-
erated by symbolic execution, which are of the form:

path(H,Cxt,F1, ..,Fm) |= ∃Fp′,F ′1, ..,F
′
m : post(H,Cxt,F ′1, ..,F

′
m) (VC)

where path is the path constraint, post is the post-condition, H is the global heap, Cxt is the
context heap, F1, ..,Fm are the initial field heaps, Fp′ is the modified footprint and F ′1, ..,F

′
m are

the modified field heaps. Validity can be established by a two-step process: (1) generating wit-
nesses W for Fp′,F ′1, ..,F

′
m; and (2) proving that (W ∧path∧¬post) is unsatisfiable using a solver.

Witnesses W are built using the following schema:

W def
= (Fp′ =H−Cxt)∧X f∈Fields∧Yp∈Allocs Yp

def
= Zp

f∈typeof(∗p)

X f
def
= F ′f ⊆ Fp′∧dom(Ff)⊆ dom(F ′f) Zp

f
def
= p+offsetof(typeof(∗p), f) ∈ dom(F ′f)

Here Tx∈{a,..,z} is shorthand for (Ta∧ ..∧Tz), and Allocs is defined to be all allocated pointers (i.e.
p = malloc(..))) in path. Intuitively, Fp′ is the heap differenceH−Cxt, and F ′field is the heap that
is (1) a sub-heap of Fp′, and (2) has the same domain as Ffield save for any new addresses created
by allocations.

The next step is to prove that the quantifier-free formula (W ∧ path∧¬post) is unsatisfiable.
For this we use a combination of an integer solver, an extension of the heap solver from (Duck
et al. 2013) (a.k.a., the H-solver) and a specialized solver for data-structure constraints defined
below (a.k.a., the D-solver). The D-solver is implemented using the Constraint Handling Rules
(CHR) solver language (Frühwirth 2009) using the following basic solver schema customized
for the types declared by the program:

closed(F0, ..,Fm)∧ (p,v) ∈ Ff =⇒ nodetype(v,F0, ..,Fm) where f ∈ PtrFields and f ∈ type

nodetype(p,F0, ..,Fm) =⇒ p = 0∨
(∧

f∈type

p+offsetof(type, f) ∈ dom(Ff)
)

The rules encode the greatest relations satisfying Definitions 2 and 1 respectively.
Given a set of types, the schema is automatically instantiated to generate a specialized CHR

solver (the D-solver) for the corresponding D-constraints. The D-solver can then be used to
solve VCs using the Satisfiability Modulo Constraint Handling Rules (SMCHR) system (Duck
2012; Duck 2013) in combination with existing heap, integer, and equality built-in solvers. For
example, assuming Types = {list node}, the corresponding D-solver is:

closed(Fval,Fnext)∧ (p,v) ∈ Fnext =⇒ node(v,Fval,Fnext)

node(p,Fval,Fnext) =⇒ p = 0∨
(

p ∈ dom(Fval)∧ p+1 ∈ dom(Fnext)
)

Shape Neutral Data-structure Analysis 9

1) {Hl Fp∗Cxt,Fpl Fval∗Fnext,node(xs,Fval,Fnext),xs+1 ∈ dom(Cxt)} (H)

2) {Hl Fp∗Cxt,Fpl Fval∗Fnext,node(xs,Fval,Fnext),xs+1 ∈ dom(Cxt),xs > 0} (D)

3a) {Hl Fp∗Cxt,Fpl Fval∗Fnext,node(xs,Fval,Fnext)),xs+1 ∈ dom(Cxt),xs > 0,xs = 0} (I)
4a) false

3b)
{Hl Fp∗Cxt,Fpl Fval∗Fnext,node(xs,Fval,Fnext),xs+1 ∈ dom(Cxt),xs > 0,
xs+1 ∈ dom(Fnext)}

(H)

4b) false

Fig. 4: Solver steps for an example memory safety VC.

Consider the statement S = (xs=xs->next). Assuming that theDM property (Definition 4) holds
before S, we can prove S to be memory safe using the VC:

Hl Fp∗Cxt∧Fpl Fval∗Fnext∧node(xs,Fval,Fnext) |= xs+1 6∈ dom(Cxt)

This VC is valid iff the constraints in Figure 4 1) are unsatisfiable. The solver steps are shown
in Figure 4. Here (H), (D), and (I) represent inferences made by the H-solver, D-solver, and
integer solver respectively. The constraints used by each inference step are underlined. Step 2)
introduces a disjunction which leads to two branches 3a) and 3b). Since all branches lead to false
the original goal is unsatisfiable, hence proving the VC is valid.

One of the main features of the SMCHR system is the ability to extend existing built-in solvers
with new constraints implemented using CHR. For example, the built-in H-solver works by
propagating heap element constraints of the form ((p,v) ∈ H) or (p ∈ dom(H)) (Duck et al.
2013). The D-solver extends the H-solver with new rules that interact with these constraints.
Solver communication is two-way, e.g., the D-solver may propagate new element constraints
(e.g., the node rule), or may match element constraints propagated by the H-solver (e.g., the
closed rule).

It is also possible to instantiate the D-solver schema with multiple types. For example, assum-
ing Types = {list node,tree node}, the following D-solver rules will be generated:

closed(Fval,Fnext,Felem,Fleft,Fright)∧ (p,v) ∈ Fnext =⇒ nodelist node(v,Fval,Fnext)

closed(Fval,Fnext,Felem,Fleft,Fright)∧ (p,v) ∈ Fleft =⇒ nodetree node(v,Felem,Fleft,Fright)

closed(Fval,Fnext,Felem,Fleft,Fright)∧ (p,v) ∈ Fright =⇒ nodetree node(v,Felem,Fleft,Fright)

nodelist node(p,Fval,Fnext) =⇒ p = 0∨
(

p ∈ dom(Fval)∧ p+1 ∈ dom(Fnext)
)

nodetree node(p,Felem,Fleft,Fright) =⇒
p = 0∨

(
p ∈ dom(Felem)∧ p+1 ∈ dom(Fleft)∧ p+2 ∈ dom(Fright)

)
Handling Negation. Some VCs may contain negated D-constraints node and closed. We can
eliminate all negated D-constraints by applying the following rewrite rules:

¬closed(F1, ..,Fm)

−→∨
field∈PtrFields

(
(s, t) ∈ Ffield ∧

¬nodetype(t,F1, ..,Fm)

) ¬nodetype(p,F1, ..,Fm)

−→
p 6= 0∧

(∨
field∈type

p+ i 6∈ dom(Ffield)
)

where typeof (field) = (type ∗), index i = offsetof (field, type), and variables s, t are assumed
fresh. These rules implement the negations of Definitions 1 and 2 respectively. For example,

10 Duck, Jaffar, and Yap

malloc zmalloc

Struct. #Nd Sh? Func. LOC Time D M Time D M

G
L

ib

doubly
linked-list

1+3 7

foreach append last prepend insert nth

insert_before concat remove _remove_link

remove_all remove_link delete_link copy copy_deep

reverse nth_prev nth_data find find_custom

position index first length insert_sorted

insert_sorted_real insert_sorted_with_data sort

sort_real sort_with_data sort_merge

545 0.52 28 33 0.48 33 33

singly
linked-list

1+2 7

foreach append last prepend insert insert_before

concat remove remove_all remove_link _remove_link

delete_link copy copy_deep reverse nth nth_data

find find_custom position index length

insert_sorted insert_sorted_real

insert_sorted_with_data sort sort_real

sort_with_data sort_merge

507 0.25 27 31 0.26 31 31

red-black
tree

2+14 7
remove_all insert replace remove steal lookup

find_node foreach first_node node_next traverse

node_pre_order node_in_order node_post_order

search node_search height nnodes

858 4.05 27 27 4.02 27 27

V
F binary tree 1+3 7 init_tree free_tree contains add maximum remove

main 157 0.20 6 7 0.20 7 7
graph 1+4 3 schorr_waite 38 0.06 1 1 0.06 1 1

lib
f 234 tree 1+8 3

_tree_singleton tree_is_empty tree_is_singleton

_tree_search tree_search_any tree_search_min

tree_search_max tree_search_lt _tree_size

tree_depth _tree_foldl _tree_map

452 5.94 12 12 5.98 12 12

23 finger
tree

3+17 3
_seq_is_empty _seq_length dig_length tree_length

_seq_lookup tree_lookup dig_lookup seq_push_front

_seq_replace_front _seq_peek_front _seq_foldl

tree_foldl dig_foldl _seq_map tree_map dig_map

830 62.93 21 21 64.09 21 21

Fig. 5: DM-analysis benchmarks for safe library code.

¬closed(Fval,Fnext) can be rewritten to

(s, t) ∈ Fnext∧ t 6= 0∧
(
t 6∈ dom(Fval)∨ t+1 6∈ dom(Fnext)

)
That is, in order for closed(Fval,Fnext) to be violated, there must exist a heap cell (s, t) ∈ Fnext
such that (1) t is non-null, and (2) t does not point to a valid node, i.e. (t 6∈ dom(Fval)) or
(t+1 6∈ dom(Fnext)). As with the CHR rules, the rewrite rules are generated automatically.

5 Experiments

We have implemented a prototype DM-analysis tool (called D-tool) as a (LLVM 2018) plug-in.
The tool takes as input a C program that is first converted into the LLVM Intermediate Repre-
sentation (IR) using the clang front-end. The plug-in implements the DM-analysis as described
in Section 3, and automatically generates a specialized solver as described in Section 4. The
VCs are solved using a constraint solver back-end, namely the Satisfiability Modulo Constraint
Handling Rules (SMCHR) (Duck 2012) system, using the generated solver in combination with
existing built-in heap, integer and equality solvers. The SMCHR system also supports goal trans-
formation using rewrite rules, which is used to implement negation. The result is either SAFE
if all generated VCs are proved valid, or (possibly) UNSAFE otherwise. The entire process (i.e.
compilation, VC generation, solver generation, and solving) is automatic. All experiments were
run on an Intel i7-4770 CPU clocked at 3.4GHz.

D-tool Verification on Safe Modules. As the D-tool can analyze partial programs—one im-
portant use case is to analyze libraries (or modules). Figure 5 tests the D-tool against several
memory safe functions that manipulate data-structures sourced from the following C libraries:
the GNU GLib library (version 2.38.0) representative of real library code used by a large number
of programs, Verifast (abbr. VF) (Jacobs et al. 2011) distribution (manually verified safe mod-

Shape Neutral Data-structure Analysis 11

Type Tool Lang. Static? Auto? Modular? Mem. Safety? Data. Structs?
Se

p.
L

og
. SMALLFOOT custom 3 7 3 3 lists, trees

SPACEINVADER C 3 3 7 3 lists
SLAYER C 3 3 7 3 lists
Predator C 3 3 7 3 lists
VeriFast C 3 7 3 3 any (limited)

B
M

C LLBMC C 3 3 7 limited any (bounded)
CBMC C 3 3 7 limited any (bounded)

BC LowFat C/C++ 7 3 7 limited any
D-tool C 3 3 3 limited any

Fig. 6: Summary of related tools and trade-offs.

ules), and the libf library2. These benchmarks test a wide variety of data-structure types and
shapes, including: singly-linked-lists, doubly-linked-lists, red-black-trees, binary-trees, binary-
graphs, 234-trees, and 23-finger-trees (Hinze and Paterson 2006). In Figure 5, #Nd is the pair
nodes+fields where nodes is the number of node types and fields is the number of fields used by
the data-structure, (Sh?) indicates whether the data-structure is designed for sharing (i.e., each
node may have multiple parent nodes), LOC is the total source-lines-of-code, Time is the total
time (in seconds), and D/M is the number of functions proven D-safe/memory-safe (see (SPA-
TIAL MEMORY SAFETY)) respectively. Ideal results are highlighted in bold. We test two ver-
sions of the analysis: uninitializing malloc and zero-initializing zmalloc, such as that used
by (Boehm and Weiser 1988).

The GLib benchmarks represent standard C data-structures, namely linked-lists (singly or dou-
bly) and trees (red-black balanced binary trees). The typical usage of GLib assumes no data-
structure sharing, so each node has at most one parent node. The Verifast benchmarks contain an
alternative tree implementation, and binary graphs. For the graph benchmark, we verify the DM-
safety of the Schorr Waite algorithm.3 The libf library implements 234-trees (for immutable
maps and sets) and 23-finger-trees (Hinze and Paterson 2006) (for immutable sequences). Finger
trees are a relatively complex data-structure, with 3 node types and an intricate shape. Further-
more, the libf library employs automatic memory management via garbage collection, and is
specifically designed to allow data-structure sharing.

Figure 5 shows that the DM-analysis performs well on library data structures, with all func-
tions automatically verified to be safe under zmalloc. This result is sufficient for programs using
allocators such as (Boehm and Weiser 1988). For malloc the results were less precise, with some
D VCs failing because of partially initialized data-structures. As future work, the D-analysis
could be improved by considering weaker forms of the DSIC to account for uninitialized fields.

Comparing Memory Safety Tools. We also compare against several existing memory safety
analysis tools, summarized in Figure 6, which are classified into four main types: (1) our DM-
analysis tool; (2) Separation Logic-based analysis tools such as SMALLFOOT (Berdine et al.
2005), SPACEINVADER (Distefano et al. 2006), SLAyer (Berdine et al. 2011), Predator (Dudka
et al. 2011; Dudka et al. 2013) and Verifast (Jacobs et al. 2011); (3) Bounded Model Check-
ing (BMC) based analysis tools such as LLBMC (Merz et al. 2012) and CBMC (Kroening and
Tautschnig 2014); and (4) Bounds Checking (BC) instrumentation tools such as LowFat (Duck

2 https://github.com/GJDuck/libf
3 Verifast verifies the Schorr Waite algorithm for trees and not general graphs.

https://github.com/GJDuck/libf

12 Duck, Jaffar, and Yap

List DAG Graph
Type Analysis BMC BC Analysis BMC Analysis BMC

Prog. Safe?

D
-t

oo
l

In
va

de
r

Pr
ed

at
or

C
B

M
C

L
L

B
M

C

L
ow

Fa
t

D
-t

oo
l

In
va

de
r

Pr
ed

at
or

C
B

M
C

L
L

B
M

C

D
-t

oo
l

In
va

de
r

Pr
ed

at
or

C
B

M
C

L
L

B
M

C

overlap_node

N

U c U n n n U c t.o. b B U c U B B
wrong_node U U U n B C U s t.o. B b.r. U t.o. t.o. B B
wrong_size U s U n B B U s U B B U t.o. U B B
not_array U s U B B B U s t.o. B B U t.o. t.o. B B
cast_int U U U B B n U U t.o. B B U t.o. t.o. B b.r.
uninit_ptr U c U B B n U U t.o. B B U t.o. U B B
uninit_ptr_stk U U U B B n U U t.o. B B U t.o. t.o. B B
arith_ptr U s U B B B U s t.o. B B U t.o. t.o. B B
safe Y S S S N N N S S t.o. b.r. b.r. S t.o. t.o. b.r. b.r.
Score 9 4 9 6 8 5 9 4 1 7 7 9 0 3 8 7

Fig. 7: Comparison versus various tools. Key: S/s=safe, U/u=unsafe, B/b=bug-detected,
N/n=no-bug-detected, C/c=crash, t.o.=time-out, b.r.=bound-reached, uppercase/bold=positive-
result, lowercase=negative-result.

and Yap 2016; Duck et al. 2017). Different approaches have different trade-offs: (Static?) whether
the tool is based on static program analysis; (Auto?) whether the tool is fully automatic, or re-
quires user intervention (e.g., annotations); (Modular?) whether the tool can be used to analyze
individual functions (i.e., suitable for libraries), or requires a complete program including an
entry point (e.g., the main function); (Mem. Safety?) whether the tool checks for all types of
classical memory errors (including null-pointers), otherwise the tool is limited to some specific
subset; (Data. Structs?) lists the types of graph-based data-structure that are compatible with
the tool. Clearly there are different trade-offs between the different classes of tools. Separation
Logic-based tools can be used to prove “full” memory safety, including null-pointer and tempo-
ral memory errors (use-after-free), but are either (1) limited to narrow classes of data-structures,
such as lists, or (2) are not automatic and require user annotations. In contrast, the D-tool targets
specific memory errors (spatial), but is not limited to specific types of data-structures. The D-
tool does not target use-after-free errors which typically depend on the data-structure shape—i.e.,
that the freed node is not shared thereby creating a dangling pointer. Only 3 tools (SMALLFOOT,
Verifast, D-tool) are modular. In contrast, the other tools require the whole program for analysis.
BMC-based tools are automatic but check for weaker notions of memory safety. Bounded model
checking may also fail to detect errors that are beyond the search horizon of the tool. Dynamic
bounds checking differs from static analysis-based methods in that it cannot be used to prove
that the whole program is error free. At best, dynamic analysis tools can only prove that specific
paths are error free.

For our experiments, we compare variants of a simple safe program consisting of the following
basic template:

list_node *xs = make_list(n); set(xs, m, v);

Here the set function is defined in Section 3, and make_list constructs a linked-list of length
n. We also evaluate several unsafe variants of the basic template, including:

- overlap_node: list with overlapping nodes, e.g., Figure 2(g);
- wrong_node: using the wrong node type, e.g. list_node for a tree_node function;

Shape Neutral Data-structure Analysis 13

- wrong_size: passing the wrong size to malloc;
- not_array: attempt to access a list element via an array subscript, e.g. xs[1].next;
- cast_int: manufacture an invalid pointer from an integer, e.g. (list node ∗)i for integer

i;
- uninit_ptr: neglecting to initialize a pointer, e.g. Figure 2(f);
- uninit_ptr_stk: neglecting to initialize a pointer on the stack; and
- arith_ptr: arbitrary pointer arithmetic, e.g. (xs-3)->next.

Each unsafe variant is exploitable in that it demonstrably (by compiling and running the program)
overwrites memory outside of the footprint. In addition to bounded linked-lists (List), we also
test a variant that uses parameterized DAG and a parameterized graph Graph in place of lists.

The experimental results are shown in Figure 7 with the result key summarized by the caption.
In the ideal case, we expect the following: static analysis tools should report {S,U}; BMC-tools
should report {B,N}; and dynamic bounds checking tools should report {B,C,N}. All tools were
fast (<10s) provided no timeout/bounds-reached condition occurred. Our experimental compar-
ison excludes SMALLFOOT (no C support), SLAYER (crashed with error), Verifast (requires
manual proofs), and LowFat for DAG and Graph (bug not reachable). The D-tool performs
as expected (total score 27/27) for all data-structure shapes. The results for SPACEINVADER

were mixed, even for lists. In contrast, Predator performed flawlessly for list data-structures but
less well in the DAG and Graph tests. For the latter, Predator appears to resort to (infinite) un-
folding leading to timeouts. The results for the BMC-based tools are also generally positive.
CBMC and LLBMC detect most memory errors for the unsafe test cases, demonstrating that the
BMC approach is effective at detecting bugs. The total scores are LLBMC (22/27) and CMBC
(21/27). There are also some anomalous results, e.g., SpaceInvader reports unsafe programs as
safe. CBMC reports a false null-pointer error for the DAG/overlap_node test case. LowFat, as
a bounds checker, primarily detects errors relating to bad pointer arithmetic, and may not detect
memory errors relating to bad casts (type confusion) or uninitialized pointers. We highlight that,
while different tools embody different tradeoffs (Figure 6), the D-tool focuses on general data
structures, modularity and (limited) memory safety.

6 Conclusion

This paper presented a shape neutral data-structure analysis for low-level heap manipulating
programs. The analysis validates several key properties of graph-based data-structures including
the validity of nodes, pointers, and the separation between nodes. Such properties are standard
for graph-based data-structures implemented in idiomatic C. Our approach therefore caters for a
broad range of heap-manipulating code.

Our analysis methodology is based on using symbolic execution to generate Verification Con-
ditions (VCs) which are then solved using a specialized data-structure property solver (a.k.a., the
D-solver) in combination with built-in heap, integer and equality solvers. The D-solver itself is
implemented using Constraint Handling Rules (CHR), and is automatically generated from the
type declarations contained within the target program. For solving VCs, our D-tool employs the
Satisfiability Modulo Constraint Handling Rules (SMCHR) system. The SMCHR system is well
suited for this task, as it can handle VCs with a rich Boolean structure, rewrite rules (for nega-
tion), CHR solvers (for the D-solver), and allows for the integration of different kinds of solvers
(i.e., integer, heap and the D-solver). Our experimental results are promising, with the D-tool
able to detect memory errors that are missed by other tools.

14 Duck, Jaffar, and Yap

Acknowledgements

This research was partially supported by MOE2015-T2-1-117 and R-252-000-598-592.

References

BERDINE, J., CALCAGNO, C., COOK, B., DISTEFANO, D., O’HEARN, P., WIES, T., AND YANG, H.
2007. Shape Analysis for Composite Data Structures. In Computer Aided Verification. Springer.

BERDINE, J., CALCAGNO, C., AND O’HEARN, P. 2005. SmallFoot: Modular Automatic Assertion Check-
ing with Separation Logic. In Formal Methods for Components and Objects. Springer.

BERDINE, J., COOK, B., AND ISHTIAQ, S. 2011. SLAyer: Memory Safety for Systems-level Code. In
Computer Aided Verification. Springer.

BOEHM, H. AND WEISER, M. 1988. Garbage Collection in an Uncooperative Environment. Software
Practice and Experience 18, 9.

DISTEFANO, D., O’HEARN, P., AND YANG, H. 2006. A Local Shape Analysis Based on Separation Logic.
In Tools and Algorithms for the Construction and Analysis of Systems. Springer.

DUCK, G. 2012. SMCHR: Satisfiability Modulo Constraint Handling Rules. Theory and Practice of Logic
Programming 12, 4-5, 601–618.

DUCK, G. 2013. Satisfiability Modulo Constraint Handling Rules (Extended Abstract). In International
Joint Conference on Artificial Intelligence. AAAI.

DUCK, G., JAFFAR, J., AND KOH, N. 2013. Constraint-based Program Reasoning with Heaps and Sepa-
ration. In Constraint Programming. Springer.

DUCK, G. AND YAP, R. 2016. Heap Bounds Protection with Low Fat Pointers. In Compiler Construction.
ACM.

DUCK, G., YAP, R., AND CAVALLARO, L. 2017. Stack Bounds Protection with Low Fat Pointers. In
Network and Distributed System Security Symposium. The Internet Society.

DUDKA, K., PERINGER, P., AND VOJNAR, T. 2011. Predator: A Practical Tool for Checking Manipulation
of Dynamic Data Structures Using Separation Logic. In Computer Aided Verification. Springer.

DUDKA, K., PERINGER, P., AND VOJNAR, T. 2013. Byte-Precise Verification of Low-Level List Manip-
ulation. In Static Analysis. Springer.

FRÜHWIRTH, T. 1998. Theory and Practice of Constraint Handling Rules. Journal of Logic Program-
ming 37.

FRÜHWIRTH, T. 2009. Constraint Handling Rules. Cambridge University Press.
HINZE, R. AND PATERSON, R. 2006. Finger Trees: A Simple General-purpose Data Structure. Journal of

Functional Programming 16, 2.
JACOBS, B., SMANS, J., PHILIPPAERTS, P., VOGELS, F., PENNINCKX, W., AND PIESSENS, F. 2011.

VeriFast: a Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA Formal methods. Springer.
KROENING, D. AND TAUTSCHNIG, M. 2014. CBMC: C Bounded Model Checker. In Tools and Algorithms

for the Construction and Analysis of Systems. Springer.
LLVM 2018. http://llvm.org.
MATTHEWS, J., MOORE, J., RAY, S., AND VROON, D. 2006. Verification Condition Generation Via

Theorem Proving. In Logic for Programming, Artificial Intelligence, and Reasoning. Springer.
MERZ, F., FALKE, S., AND SINZ, C. 2012. LLBMC: Bounded Model Checking of C and C++ Programs

Using a Compiler IR. In Verified Software: Theories, Tools, Experiments. Springer.
REYNOLDS, J. 2002. Separation Logic: A Logic for Shared Mutable Data Objects. In Logic in Computer

Science. IEEE.

	1 Introduction
	2 Preliminaries
	3 Data-Structure Analysis
	4 Solving for Data-Structures
	5 Experiments
	6 Conclusion
	References

