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Abstract. The secure information flow problem, which checks whether low-
security outputs of a program are influenced by high-security inputs, has many
applications in verifying security properties in programs. In this paper we present
lazy self-composition, an approach for verifying secure information flow. It is
based on self-composition, where two copies of a program are created on which
a safety property is checked. However, rather than an eager duplication of the
given program, it uses duplication lazily to reduce the cost of verification. This
lazy self-composition is guided by an interplay between symbolic taint analysis
on an abstract (single copy) model and safety verification on a refined (two copy)
model. We propose two verification methods based on lazy self-composition.
The first is a CEGAR-style procedure, where the abstract model associated with
taint analysis is refined, on demand, by using a model generated by lazy self-
composition. The second is a method based on bounded model checking, where
taint queries are generated dynamically during program unrolling to guide lazy
self-composition and to conclude an adequate bound for correctness. We have
implemented these methods on top of the SEAHORN verification platform and
our evaluations show the effectiveness of lazy self-composition.

1 Introduction

Many security properties can be cast as the problem of verifying secure information
flow. A standard approach to verifying secure information flow is to reduce it to a safety
verification problem on a “self-composition” of the program, i.e., two “copies” of the
program are created [5] and analyzed. For example, to check for information leaks
or non-interference [16], low-security (public) inputs are initialized to identical values
in the two copies of the program, while high-security (confidential) inputs are uncon-
strained and can take different values. The safety check ensures that in all executions
of the two-copy program, the values of the low-security (public) outputs are identi-
cal, i.e., there is no information leak from confidential inputs to public outputs. The
self-composition approach is useful for checking general hyper-properties [10], and has
been used in other applications, such as verifying constant-time code for security [1]
and k-safety properties of functions like injectivity and monotonicity [32].

Although the self-composition reduction is sound and complete, it is challenging in
practice to check safety properties on two copies of a program. There have been many
efforts to reduce the cost of verification on self-composed programs, e.g., by use of type-
based analysis [33], constructing product programs with aligned fragments [4], lockstep
execution of loops [32], transforming Horn clause rules [13,24], etc. The underlying
? This work was supported in part by NSF Grant 1525936.



theme in these efforts is to make it easier to derive relational invariants between the two
copies, e.g., by keeping corresponding variables in the two copies near each other.

In this paper, we aim to improve the self-composition approach by making it lazier
in contrast to eager duplication into two copies of a program. Specifically, we use sym-
bolic taint analysis to track flow of information from high-security inputs to other pro-
gram variables. (This is similar to dynamic taint analysis [30], but covers all possible
inputs due to static verification.) This analysis works on an abstract model of a single
copy of the program and employs standard model checking techniques for achieving
precision and path sensitivity. When this abstraction shows a counterexample, we re-
fine it using on-demand duplication of relevant parts of the program. Thus, our lazy
self-composition3 approach is guided by an interplay between symbolic taint analysis
on an abstract (single copy) model and safety verification on a refined (two copy) model.

We describe two distinct verification methods based on lazy self-composition. The
first is an iterative procedure for unbounded verification based on counterexample guided
abstraction refinement (CEGAR) [8]. Here, the taint analysis provides a sound over-
approximation for secure information flow, i.e., if a low-security output is proved to
be untainted, then it is guaranteed to not leak any information. However, even a path-
sensitive taint analysis can sometimes lead to “false alarms”, i.e., a low-security output
is tainted, but its value is unaffected by high-security inputs. For example, this can occur
when a branch depends on a tainted variable, but the same (semantic, and not neces-
sarily syntactic) value is assigned to a low-security output on both branches. Such false
alarms for security due to taint analysis are then refined by lazily duplicating relevant
parts of a program, and performing a safety check on the composed two-copy program.
Furthermore, we use relational invariants derived on the latter to strengthen the abstrac-
tion within the iterative procedure.

Our second method also takes a similar abstraction-refinement view, but in the
framework of bounded model checking (BMC) [6]. Here, we dynamically generate taint
queries (in the abstract single copy model) during program unrolling, and use their result
to simplify the duplication for self-composition (in the two copy model). Specifically,
the second copy duplicates the statements (update logic) only if the taint query shows
that the updated variable is possibly tainted. Furthermore, we propose a specialized
early termination check for the BMC-based method. In many secure programs, sensi-
tive information is propagated in a localized context, but conditions exist that squash
its propagation any further. We formulate the early termination check as a taint check
on all live variables at the end of a loop body, i.e., if no live variable is tainted, then we
can conclude that the program is secure without further loop unrolling. (This is under
the standard assumption that inputs are tainted in the initial state. The early termination
check can be suitably modified if tainted inputs are allowed to occur later.) Since our
taint analysis is precise and path-sensitive, this approach can be beneficial in practice
by unrolling the loops past the point where all taint has been squashed.

We have implemented these methods in the SEAHORN verification platform [17],
which represents programs as CHC (Constrained Horn Clause) rules. Our prototype for
taint analysis is flexible, with a fully symbolic encoding of the taint policy (i.e., rules
for taint generation, propagation, and removal). It fully leverages SMT-based model

3 This name is inspired by the lazy abstraction approach [19] for software model checking.
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checking techniques for precise taint analysis. Our prototypes allow rich security speci-
fications in terms of annotations on low/high-security variables and locations in arrays,
and predicates that allow information downgrading in specified contexts.

We present an experimental evaluation on benchmark examples. Our results clearly
show the benefits of lazy self-composition vs. eager self-composition, where the for-
mer is much faster and allows verification to complete in larger examples. Our initial
motivation in proposing the two verification methods was that we would find examples
where one or the other method is better. We expect that easier proofs are likely to be
found by the CEGAR-based method, and easier bugs by the BMC-based method. As it
turns out, most of our benchmark examples are easy to handle by both methods so far.
We believe that our general approach of lazy self-composition would be beneficial in
other verification methods, and both our methods show its effectiveness in practice.

To summarize, this paper makes the following contributions.

– We present lazy self-composition, an approach to verifying secure information flow
that reduces verification cost by exploiting the interplay between a path-sensitive
symbolic taint analysis and safety checking on a self-composed program.

– We present IFC-CEGAR, a procedure for unbounded verification of secure in-
formation flow based on lazy self-composition using the CEGAR paradigm. IFC-
CEGAR starts with a taint analysis abstraction of information flow and iteratively
refines this abstraction using self-composition. It is tailored toward proving that
programs have secure information flow.

– We present IFC-BMC, a procedure for bounded verification of secure information
flow. As the program is being unrolled, IFC-BMC uses dynamic symbolic taint
checks to determine which parts of the program need to be duplicated. This method
is tailored toward bug-finding.

– We develop prototype implementations of IFC-CEGAR and IFC-BMC and present
an experimental evaluation of these methods on a set of benchmarks/microbench-
marks. Our results demonstrate that IFC-CEGAR and IFC-BMC easily outperform
an eager self-composition that uses the same backend verification engines.

2 Motivating Example

Listing 1 shows a snippet from a function that performs multiword multiplication. The
code snippet is instrumented to count the number of iterations of the inner loop that
are executed in bigint shiftleft and bigint add (not shown for brevity). These
iterations are counted in the variable steps. The security requirement is that steps
must not depend on the secret values in the array a; array b is assumed to be public.

Static analyses, including those based on security types, will conclude that the vari-
able steps is “high-security.” This is because steps is assigned in a conditional branch
that depends on the high-security variable bi. However, this code is in fact safe because
steps is incremented by the same value in both branches of the conditional statement.

Our lazy self-composition will handle this example by first using a symbolic taint
analysis to conclude that the variable steps is tainted. It will then self-compose only
those parts of the program related to computation of steps, and discover that it is set
to identical values in both copies, thus proving the program is secure.
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1 int steps = 0;
2 for (i = 0; i < N; i++) { zero[i] = product[i] = 0; }
3 for (i = 0; i < N*W; i++) {
4 int bi = bigint_extract_bit(a, i);
5 if (bi == 1) {
6 bigint_shiftleft(b, i, shifted_b, &steps);
7 bigint_add(product, shifted_b, product, &steps);
8 } else {
9 bigint_shiftleft(zero, i, shifted_zero, &steps);

10 bigint_add(product, shifted_zero, product, &steps);
11 }
12 }

Listing 1: “BigInt” Multiplication

Now consider the case when the code in Listing 1 is used to multiply two “big-ints”
of differing widths, e.g., a 512b integer is multiplied with 2048b integer. If this occurs,
the upper 1536 bits of a will all be zeros, and bi will not be a high-security variable for
these iterations of the loop. Such a scenario can benefit from early-termination in our
BMC-based method: our analysis will determine that no tainted value flows to the low
security variable steps after iteration 512 and will immediately terminate the analysis.

3 Preliminaries

We consider First Order Logic modulo a theory T and denote it by FOL(T ). Given
a program P , we define a safety verification problem w.r.t. P as a transition system
M = 〈X, Init(X),Tr(X,X ′),Bad(X)〉 where X denotes a set of (uninterpreted)
constants, representing program variables; Init ,Tr and Bad are (quantifier-free) for-
mulas in FOL(T ) representing the initial states, transition relation and bad states, re-
spectively. The states of a transition system correspond to structures over a signature
Σ = ΣT ∪ X . We write Tr(X,X ′) to denote that Tr is defined over the signa-
ture ΣT ∪ X ∪ X ′, where X is used to represent the pre-state of a transition, and
X ′ = {a′ | a ∈ X} is used to represent the post-state.

A safety verification problem is to decide whether a transition system M is SAFE
or UNSAFE. We say that M is UNSAFE iff there exists a number N such that the
following formula is satisfiable:

Init(X0) ∧

(
N−1∧
i=0

Tr(Xi, Xi+1)

)
∧ Bad(XN ) (1)

where Xi = {ai | a ∈ X} is a copy of the program variables (uninterpreted constants)
used to represent the state of the system after the execution of i steps.

When M is UNSAFE and sN ∈ Bad is reachable, the path from s0 ∈ Init to sN is
called a counterexample (CEX).

A transition system M is SAFE iff the transition system has no counterexample,
of any length. Equivalently, M is SAFE iff there exists a formula Inv , called a safe
inductive invariant, that satisfies: (i) Init(X)→ Inv(X), (ii) Inv(X)∧Tr(X,X ′)→
Inv(X ′), and (iii) Inv(X)→ ¬Bad(X).
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In SAT-based model checking (e.g., based on IC3 [?] or interpolants [?,?]), the
verification procedure maintains an inductive trace of formulas [F0(X), . . . , FN (X)]
that satisfy: (i) Init(X) → F0(X), (ii) Fi(X) ∧ Tr(X,X ′) → Fi+1(X ′) for every
0 ≤ i < N , and (iii) Fi(X) → ¬Bad(X) for every 0 ≤ i ≤ N . A trace [F0, . . . , FN ]

is closed if ∃1 ≤ i ≤ N · Fi ⇒
(∨i−1

j=0 Fj

)
. There is an obvious relationship between

existence of closed traces and safety of a transition system: A transition system T is
SAFE iff it admits a safe closed trace. Thus, safety verification is reduced to searching
for a safe closed trace or finding a CEX.

4 Information Flow Analysis

Let P be a program over a set of program variables X . Recall that Init(X) is a formula
describing the initial states and Tr(X,X ′) a transition relation. We assume a “stutter-
ing” transition relation, namely, Tr is reflexive and therefore it can non-deterministically
either move to the next state or stay in the same state. Let us assume that H ⊂ X is a
set of high-security variables and L := X\H is a set of low-security variables.

For each x ∈ L, let Obsx(X) be a predicate over program variables X that de-
termines when variable x is adversary-observable. The precise definition of Obsx(X)
depends on the threat model being considered. A simple model would be that for each
low variable x ∈ L,Obsx(X) holds only at program completion – this corresponds to a
threat model where the adversary can run a program that operates on some confidential
data and observe its public (low-security) outputs after completion. A more sophis-
ticated definition of Obsx(X) could consider, for example, a concurrently executing
adversary. Appropriate definitions of Obsx(X) can also model declassification [29], by
settingObsx(X) to be false in program states where the declassification of x is allowed.

The information flow problem checks whether there exists an execution of P such
that the value of variables in H affects a variable in x ∈ L in some state where the
predicate Obsx(X) holds. Intuitively, information flow analysis checks if low-security
variables “leak” information about high-security variables.

We now describe our formulations of two standard techniques that have been used
to perform information flow analysis. The first is based on taint analysis [30], but we use
a symbolic (rather than a dynamic) analysis that tracks taint in a path-sensitive manner
over the program. The second is based on self-composition [5], where two copies of the
program are created and a safety property is checked over the composed program.

4.1 Symbolic Taint Analysis

When using taint analysis for checking information flow, we mark high-security vari-
ables with a “taint” and check if this taint can propagate to low-security variables. The
propagation of taint through program variables of P is determined by both assignments
and the control structure of P . In order to perform precise taint analysis, we formu-
late it as a safety verification problem. For this purpose, for each program variable
x ∈ X , we introduce a new “taint” variable xt. Let Xt := {xt | x ∈ X} be the set
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of taint variables where xt ∈ Xt is of sort Boolean. Let us define a transition system
Mt := 〈Y, Init t,Tr t,Bad t〉 where Y := X ∪Xt and

Init t(Y ) := Init(X) ∧

( ∧
x∈H

xt

)
∧

(∧
x∈L
¬xt

)
(2)

Tr t(Y, Y
′) := Tr(X,X ′) ∧ T̂r(Y,X ′t) (3)

Bad t(Y ) :=

(∨
x∈L

Obsx(X) ∧ xt

)
(4)

Since taint analysis tracks information flow from high-security to low-security vari-
ables, variables in Ht are initialized to true while variables in Lt are initialized to
false . W.l.o.g., let us denote the state update for a program variable x ∈ X as: x′ =
cond(X) ? ϕ1(X) : ϕ2(X). Let ϕ be a formula over Σ. We capture the taint of ϕ by:

Θ(ϕ) =

false if ϕ ∩X = ∅∨
x∈ϕ

xt otherwise

Thus, T̂r(Xt, X
′
t) is defined as:

∧
xt∈Xt

x′t = Θ(cond) ∨ (cond ? Θ(ϕ1) : Θ(ϕ2))

Intuitively, taint may propagate from x1 to x2 either when x1 is assigned an expres-
sion that involves x2 or when an assignment to x1 is controlled by x2. The bad states
(Bad t) are all states where a low-security variable is tainted and observable.

4.2 Self-Composition

When using self-composition, information flow is tracked over an execution of two
copies of the program, P and Pd. Let us denote Xd := {xd | x ∈ X} as the set of
program variables of Pd. Similarly, let Initd(Xd) and Trd(Xd, X

′
d) denote the initial

states and transition relation of Pd. Note that Initd and Trd are computed from Init
and Tr by means of substitutions. Namely, substituting every occurrence of x ∈ X
or x′ ∈ X ′ with xd ∈ Xd and x′d ∈ X ′d, respectively. Similarly to taint analysis,
we formulate information flow over a self-composed program as a safety verification
problem: Md := 〈Z, Initd,Trd,Badd〉 where Z := X ∪Xd and

Initd(Z) := Init(X) ∧ Init(Xd) ∧

(∧
x∈L

x = xd

)
(5)

Trd(Z,Z ′) := Tr(X,X ′) ∧ Tr(Xd, X
′
d) (6)

Badd(Z) :=

(∨
x∈L

Obsx(X) ∧Obsx(Xd) ∧ ¬(x = xd)

)
(7)

In order to track information flow, variables in Ld are initialized to be equal to their
counterpart in L, while variables in Hd remain unconstrained. A leak is captured by the
bad states (i.e. Badd). More precisely, there exists a leak iff there exists an execution
of Md that results in a state where Obsx(X), Obsx(Xd) hold and x 6= xd for a low-
security variable x ∈ L.
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5 Lazy Self-Composition for Information Flow Analysis

In this section, we introduce lazy self-composition for information flow analysis. It
is based on an interplay between symbolic taint analysis on a single copy and safety
verification on a self-composition, which were both described in the previous section.

Recall that taint analysis is imprecise for determining secure information flow in the
sense that it may report spurious counterexamples, namely, spurious leaks. In contrast,
self-composition is precise, but less efficient. The fact that self composition requires a
duplication of the program often hinders its performance. The main motivation for lazy
self-composition is to target both efficiency and precision.

Intuitively, the model for symbolic taint analysisMt can be viewed as an abstraction
of the self-composed model Md, where the Boolean variables in Mt are predicates
tracking the states where x 6= xd for some x ∈ X . This intuition is captured by the
following statement: Mt over-approximates Md.

Corollary 1. If there exists a path in Md from Initd to Badd then there exists a path
in Mt from Init t to Bad t.

Corollary 2. If there exists no path in Mt from Init t to Bad t then there exists no path
in Md from Initd to Badd.

This abstraction-based view relating symbolic taint analysis and self-composition
can be exploited in different verification methods for checking secure information flow.
In this paper, we focus on two – a CEGAR-based method (IFC-CEGAR) and a BMC-
based method (IFC-BMC). These methods using lazy self-composition are now de-
scribed in detail.

5.1 IFC-CEGAR

We make use of the fact that Mt can be viewed as an abstraction w.r.t. to Md, and pro-
pose an abstraction-refinement paradigm for secure information flow analysis. In this
setting, Mt is used to find a possible counterexample, i.e., a path that leaks informa-
tion. Then, Md is used to check if this counterexample is spurious or real. In case the
counterexample is found to be spurious, IFC-CEGAR uses the proof that shows why
the counterexample is not possible in Md to refine Mt.

A sketch of IFC-CEGAR appears in Alg 1. Recall that we assume that solving a
safety verification problem is done by maintaining an inductive trace. We denote the
traces forMt andMd by G = [G0, . . . , Gk] and H = [H0, . . . ,Hk], respectively. IFC-
CEGAR starts by initializing Mt, Md and their respective traces G and H (lines 1-4).
The main loop of IFC-CEGAR (lines 5-18) starts by looking for a counterexample
over Mt (line 6). In case no counterexample is found, IFC-CEGAR declares there are
no leaks and returns SAFE.

If a counterexample π is found in Mt, IFC-CEGAR first updates the trace of Md,
i.e. H , by rewriting G (line 10). In order to check if π is spurious, IFC-CEGAR cre-
ates a new safety verification problem Mc, a version of Md constrained by π (line 11)
and solves it (line 12). If Mc has a counterexample, IFC-CEGAR returns UNSAFE.
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Algorithm 1: IFC-CEGAR (P,H)
Input: A program P and a set of high-security variables H
Output: SAFE, UNSAFE or UNKNOWN.

1 Mt ← ConstructTaintModel(P,H)
2 Md ← ConstructSCModel(P,H)
3 G← [G0 = Initt]
4 H ← [H0 = Initd]
5 repeat
6 (G, Rtaint, π)← MC.Solve(Mt,G)
7 if Rtaint = SAFE then
8 return SAFE
9 else

10 H ← ReWrite(G,H)
11 Mc ← Constraint(Md, π)
12 (H, Rs, π)← MC.Solve(Mc,H)
13 if Rs = UNSAFE then
14 return UNSAFE
15 else
16 G← ReWrite(H,G)
17 Mt ← Refine(Mt,G)

18 until∞
19 return UNKNOWN

Otherwise, G is updated by H (line 16) and Mt is refined such that π is ruled out
(line 17).

The above gives a high-level overview of how IFC-CEGAR operates. We now go
into more detail. More specifically, we describe the functions ReWrite, Constraint
and Refine. We note that these functions can be designed and implemented in several
different ways. In what follows we describe some possible choices.

Proof-based Abstraction Let us assume that when solving Mt a counterexample π
of length k is found and an inductive trace G is computed. Following a proof-based
abstraction approach, Constraint() uses the length of π to bound the length of pos-
sible executions in Md by k. Intuitively, this is similar to bounding the length of the
computed inductive trace over Md.

In case Mc has a counterexample, a real leak (of length k) is found. Otherwise,
since Mc considers all possible executions of Md of length k, IFC-CEGAR deduces
that there are no counterexamples of length k. In particular, the counterexample π is
ruled out. IFC-CEGAR therefore uses this fact to refine Mt and G.

Inductive Trace Rewriting Consider the set of program variables X , taint variables
Xt, and self compositions variables Xd. As noted above, Mt over-approximates Md.
Intuitively, it may mark a variable x as tainted when x does not leak information. Equiv-
alently, if a variable x is found to be untainted in Mt then it is known to also not leak
information in Md. More formally, the following relation holds: ¬xt → (x = xd).
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This gives us a procedure for rewriting a trace over Mt to a trace over Md. Let
G = [G0, . . . , Gk] be an inductive trace over Mt. Considering the definition of Mt, G
can be decomposed and rewritten as: Gi(Y ) := Ḡi(X)∧ Ḡt

i(Xt)∧ψ(X,Xt). Namely,
Ḡi(X) and Ḡt

i(Xt) are sub-formulas of Gi over only X and Xt variables, respectively,
and ψ(X,Xt) is the part connecting X and Xt.

Since G is an inductive trace Gi(Y ) ∧ Tr t(Y, Y
′) → Gi+1(Y ′) holds. Following

the definition of Tr t and the above decomposition of Gi, the following holds:

Ḡi(X) ∧ Tr(X,X ′)→ Ḡi+1(X ′)

Let H = [H0, . . . ,Hk] be a trace w.r.t. Md. We define the update of H by G as
the trace H∗ = [H∗0 , . . . ,H

∗
k ], which is defined as follows:

H∗0 := Initd (8)

H∗i (Z) := Hi(Z) ∧ Ḡi(X) ∧ Ḡi(Xd) ∧
(∧
{x = xd | Gi(Y )→ ¬xt}

)
(9)

Intuitively, if a variable x ∈ X is known to be untainted in Mt, using Corollary 2
we conclude that x = xd in Md.

A similar update can be defined when updating a trace G w.r.t. Mt by a trace
H w.r.t. Md. In this case, we use the following relation: ¬(x = xd) → xt. Let
H = [H0(Z), . . . ,Hk(Z)] be the inductive trace w.r.t. Md. H can be decomposed
and written as Hi(Z) := H̄i(X) ∧ H̄d

i (Xd) ∧ φ(X,Xd).
Due to the definition of Md and an inductive trace, the following holds:

H̄i(X) ∧ Tr(X,X ′)→ H̄i(X
′)

H̄d
i (Xd) ∧ Tr(Xd, X

′
d)→ H̄d

i (X ′d)

We can therefore update a trace G = [G0, . . . , Gk] w.r.t. Mt by defining the trace
G∗ = [G∗0, . . . , G

∗
k], where:

G∗0 := Initd (10)

G∗i (Y ) := Gi(Y ) ∧ H̄i(X) ∧ H̄d
i (X) ∧

(∧
{xt | Hi(Z)→ ¬(x = xd)}

)
(11)

Updating G by H , and vice-versa, as described above is based on the fact that
Mt over-approximates Md w.r.t. tainted variables (namely, Corollary 1 and 2). It is
therefore important to note that G∗ in particular, does not “gain” more precision due to
this process.

Lemma 1. Let G be an inductive trace w.r.t. Mt and H an inductive trace w.r.t. Md.
Then, the updated H∗ and G∗ are inductive traces w.r.t. Md and Mt, respectively.

Refinement Recall that in the current scenario, a counterexample was found in Mt,
and was shown to be spurious in Md. This fact can be used to refine both Mt and G.

As a first step, we observe that if x = xd in Md, then ¬xt should hold in Mt.
However, since Mt is an over-approximation it may allow x to be tainted, namely,
allow xt to be evaluated to true .
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In order to refine Mt and G, we define a strengthening procedure for G, which re-
sembles the updating procedure that appears in the previous section. Let H = [H0, . . . ,Hk]
be a trace w.r.t. Md and G = [G0, . . . , Gk] be a trace w.r.t. Mt, then the strengthening
of G is denoted as Gr = [Gr

0, . . . , G
r
k] such that:

Gr
0 :=Initd (12)

Gr
i (Y ) :=Gi(Y ) ∧ H̄i(X) ∧ H̄s

i (X) ∧
(∧
{xt | Hi(Z)→ ¬(x = xd)}

)
∧(∧

{¬xt | Hi(Z)→ (x = xd)}
) (13)

The above gives us a procedure for strengthening G by using H . Note that sinceMt

is an over-approximation of Md, it may allow a variable x ∈ X to be tainted, while in
Md (and therefore in H), x = xd. As a result, after strengthening Gr is not necessarily
an inductive trace w.r.t. Mt, namely, Gr

i ∧ Tr t → Gr
i+1
′ does not necessarily hold. In

order to make Gr an inductive trace, Mt must be refined.
Let us assume that Gr

i ∧ Tr t → Gr
i+1
′ does not hold. By that, Gr

i ∧ Tr t ∧ ¬Gr
i+1
′

is satisfiable. Considering the way Gr is strengthened, three exists x ∈ X such that
Gr

i ∧ Tr t ∧ x′t is satisfiable and Gr
i+1 ⇒ ¬xt. The refinement step is defined by:

x′t = Gr
i ? false : (Θ(cond) ∨ (cond ? Θ(ϕ1) : Θ(ϕ2)))

This refinement step changes the next state function of xt such that whenever Gi

holds, xt is forced to be false at the next time frame.

Lemma 2. Let Gr be a strengthened trace, and let Mr
t be the result of refinement as

defined above. Then, Gr is an inductive trace w.r.t Mr
t .

Theorem 1. Let A be a sound and complete model checking algorithm w.r.t. FOL(T )
for some T , such that A maintains an inductive trace. Assuming IFC-CEGAR uses A,
then IFC-CEGAR is both sound and complete.

Proof (Sketch). Soundness follows directly from the soundness of taint analysis. For
completeness, assume Md is SAFE. Due to our assumption that A is sound and com-
plete, A emits a closed inductive trace H . Intuitively, assuming H is of size k, then the
next state function of every taint variable in Mt can be refined to be a constant false
after a specific number of steps. Then, H can be translated to a closed inductive trace
G over Mt by following the above presented formalism. Using Lemma 2 we can show
that a closed inductive trace exists for the refined taint model.

5.2 IFC-BMC

In this section we introduce a different method based on Bounded Model Checking
(BMC) [6] that uses lazy self-composition for solving the information flow security
problem. This approach is described in Alg 2. In addition to the program P , and the
specification of high-security variables H , it uses an extra parameter BND that limits
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Algorithm 2: IFC-BMC (P,H,BND)
Input: A program P , a set of high-security variables H , max unroll bound BND
Output: SAFE, UNSAFE or UNKNOWN.

1 i← 0
2 repeat
3 M(i)← LoopUnroll(P, i)
4 Mt(i)← EncodeTaint(M(i))
5 TR of Ms(i)← LazySC(M(i),Mt(i))
6 Bad of Ms(i)←

∨
y∈L

¬(y = y′)

7 result← SolveSMT(Ms(i))
8 if result = counterexample then
9 return UNSAFE

10 live taint← CheckLiveTaint(Mt(i))
11 if live taint = false then
12 return SAFE
13 i← i+ 1

14 until i = BND
15 return UNKNOWN

Algorithm 3: LazySC(Mt,M)

Input: A program model M and the corresponding taint program model Mt

Output: Transition relation of the self-composed program Trs
1 for each state update x← ϕ in transition relation of M do
2 add state update x← ϕ to Trs
3 tainted← SolveSMT(query on xt in Mt)
4 if tainted = false then
5 add state update x′ ← x to Trs
6 else
7 add state update x′ ← duplicate(ϕ) to Trs

8 return Trs

the maximum number of loop unrolls performed on the program P . (Alternatively, one
can fall back to an unbounded verification method after BND is reached in BMC.)

In each iteration of the algorithm (line 2), loops in the program P are unrolled
(line 3) to produce a loop-free program, encoded as a transition system M(i). A new
transition system Mt(i) is created (line 4) following the method described in sec-
tion 4.1, to capture precise taint propagation in the unrolled program M(i). Then lazy
self-composition is applied (line 5), as shown in detail in Alg 3, based on the interplay
between the taint model Mt(i) and the transition system M(i). In detail, for each vari-
able x updated in M(i), where the state update is denoted x := ϕ, we use xt in Mt(i)
to encode whether x is possibly tainted. We generate an SMT query to determine if xt
is satisfiable. If it is unsatisfiable, i.e., xt evaluates to False, we can conclude that high
security variables cannot affect the value of x. In this case, its duplicate variable x′ in
the self-composed program Ms(i) is set equal to x, eliminating the need to duplicate
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the computation that will produce x′. Otherwise if xt is satisfiable (or unknown), we
duplicate ϕ and update x′ accordingly.

The self-composed program Ms(i) created by LazySC (Alg 3) is then checked by
a bounded model checker, where a bad state is a state where any low-security output y
(y ∈ L, where L denotes the set of low-security variables) has a different value than its
duplicate variable y′ (line 6). (For ease of exposition, a simple definition of bad states is
shown here. This can be suitably modified to account forObsx(X) predicates described
in Section 4.) A counterexample produced by the solver indicates a leak in the original
program P . We also use an early termination check for BMC encoded as an SMT-based
query CheckLiveTaint, which essentially checks whether any live variable is tainted
(line 10). If none of the live variables is tainted, i.e., any initial taint from high-security
inputs has been squashed, then IFC-BMC can stop unrolling the program any further.
If no conclusive result is obtained, IFC-BMC will return UNKNOWN .

6 Implementation and Experiments

We have implemented prototypes of IFC-CEGAR and IFC-BMC for information flow
checking. Both are implemented on top of SEAHORN [17], a software verification plat-
form that encodes programs as CHC (Constrained Horn Clause) rules. It has a frontend
based on LLVM [22] and backends to Z3 [14] and other solvers. Our prototype has a
few limitations. First, it does not support bit-precise reasoning and does not support
complex data structures such as lists. Our implementation of symbolic taint analysis is
flexible in supporting any given taint policy (i.e., rules for taint generation, propagation,
and removal). It uses an encoding that fully leverages SMT-based model checking tech-
niques for precise taint analysis. We believe this module can be independently used in
other applications for security verification.

6.1 Implementation Details

IFC-CEGAR Implementation. As discussed in Section 5.1, the IFC-CEGAR imple-
mentation uses taint analysis and self-composition synergistically and is tailored toward
proving that programs are secure. Both taint analysis and self-composition are imple-
mented as LLVM-passes that instrument the program. Our prototype implementation
executes these two passes interchangeably as the problem is being solved. The IFC-
CEGAR implementation uses Z3’s CHC solver engine called SPACER. SPACER, and
therefore our IFC-CEGAR implementation, does not handle the bitvector theory, limit-
ing the set of programs that can be verified using this prototype. Extending the prototype
to support this theory will be the subject of future work.

IFC-BMC Implementation. In the IFC-BMC implementation, the loop unroller, taint
analysis, and lazy self-composition are implemented as passes that work on CHC, to
generate SMT queries that are passed to the backend Z3 solver. Since the IFC-BMC
implementation uses Z3, and not SPACER, it can handle all the programs in our evalua-
tion, unlike the IFC-CEGAR implementation.
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Input Format. The input to our tools is a C-program with annotations indicating which
variables are secret and the locations at which leaks should be checked. In addition,
variables can be marked as untainted at specific locations.

6.2 Evaluation Benchmarks

For experiments we used a machine running Intel Core i7-4578U with 8GB of RAM.
We tested our prototypes on several micro-benchmarks4 in addition to benchmarks in-
spired by real-world programs. For comparison against eager self-composition, we used
the SEAHORN backend solvers on a 2-copy version of the benchmark. fibonacci is
a micro-benchmark that computes the N-th Fibonacci number. There are no secrets in
the micro-benchmark, and this is a sanity check taken from [33]. list 4/8/16 are
programs working with linked lists, the trailing number indicates the maximum number
of nodes being used. Some linked list nodes contain secrets while others have public
data, and the verification problem is to ensure that a particular function that operates on
the linked list does not leak the secret data. modadd safe is program that performs
multi-word addition; modexp safe/unsafe are variants of a program performing
modular exponentiation; and pwdcheck safe/unsafe are variants of program that
compares an input string with a secret password. The verification problem in these ex-
amples is to ensure that an iterator in a loop does not leak secret information, which
could allow a timing attack. Among these benchmarks, the list 4/8/16 use structs
while modexp safe/unsafe involve bitvector operations, both of which are not
supported by SPACER, and thus not by our IFC-CEGAR prototype.

6.3 IFC-CEGAR Results

Table 1 shows the IFC-CEGAR results on benchmark examples with varying parameter
values. The columns show the time taken by eager self-composition (Eager SC) and
IFC-CEGAR, and the number of refinements in IFC-CEGAR. “TO” denotes a timeout
of 300 seconds.

Benchmark Parameter Eager SC IFC-CEGAR
Time (s) Time (s) #Refinements

pwdcheck safe

4 8.8 0.2 0
8 TO 0.2 0

16 TO 0.2 0
32 TO 0.2 0

pwdcheck2 safe N > 8 TO 61 1

modadd safe
2048b 180 0.2 0
4096b TO 0.3 0

Table 1: IFC-CEGAR results (time in seconds)

We note that all examples are secure and do not leak information. Since our path-
sensitive symbolic taint analysis is more precise than a type-based taint analysis, there

4 http://www.cs.princeton.edu/˜aartig/benchmarks/ifc_bench.zip
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are few counterexamples and refinements. In particular, for our first example pwdcheck safe,
self-composition is not required as our path-sensitive taint analysis is able to prove
that no taint propagates to the variables of interest. It is important to note that type-
based taint analysis cannot prove that this example is secure. For our second exam-
ple, pwdcheck2 safe, our path-sensitive taint analysis is not enough. Namely, it
finds a counterexample, due to an implicit flow where a for-loop is conditioned on
a tainted value, but there is no real leak because the loop executes a constant num-
ber of times. Our refinement-based approach can easily handle this case, where IFC-
CEGAR uses self-composition to find that the counterexample is spurious. It then re-
fines the taint analysis model, and after one refinement step, it is able to prove that
pwdcheck2 safe is secure. While these examples are fairly small, they clearly show
that IFC-CEGAR is superior to eager self-composition.

6.4 IFC-BMC Results

The experimental results for IFC-BMC are shown in Table 2, where we use some unsafe
versions of benchmark examples as well. Results are shown for total time taken by eager
self-composition (Eager SC) and the IFC-BMC algorithm. (As before, “TO” denotes
a timeout of 300 seconds.) IFC-BMC is able to produce an answer significantly faster
than eager self-composition for all examples. The last two columns show the time spent
in taint checksin IFC-BMC, and the number of taint checks performed.

Benchmark Result Eager SC IFC-BMC Taint checks #Taint checks
Time (s) Time (s) Time (s)

fibonacci SAFE 0.55 0.1 0.07 85
list 4 SAFE 2.9 0.15 0.007 72
list 8 SAFE 3.1 0.6 0.02 144
list 16 SAFE 3.2 1.83 0.08 288
modexp safe SAFE TO 0.05 0.01 342
modexp unsafe UNSAFE TO 1.63 1.5 364
pwdcheck safe SAFE TO 0.05 0.01 1222
pwdcheck unsafe UNSAFE TO 1.63 1.5 809

Table 2: IFC-BMC results (time in seconds)

To study the scalability of our prototype, we tested IFC-BMC on the modular ex-
ponentiation program with different values for the maximum size of the integer array
in the program. These results are shown in Table 3. Although the IFC-BMC runtime
grows exponentially, it is reasonably fast – less than 2 minutes for an array of size 64.

7 Related Work

A rich body of literature has studied the verification of secure information flow in pro-
grams. Initial work dates back to Denning and Denning [15], who introduced a program
analysis to ensure that confidential data does not flow to non-confidential outputs. This
notion of confidentiality relates closely to: (i) non-interference introduced by Goguen
and Meseguer [16], and (ii) separability introduced by Rushby [27]. Each of these study
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Benchmark Parameter Time (s) #Taint checks

modexp

8 0.19 180
16 1.6 364
24 3.11 548
32 8.35 732
40 11.5 916
48 21.6 1123
56 35.6 1284
64 85.44 1468

Table 3: IFC-BMC results on modexp (time in seconds)

a notion of of secure information flow where confidential data is strictly not allowed to
flow to any non-confidential output. These definitions are often too restrictive for practi-
cal programs, where secret data might sometimes be allowed to flow to some non-secret
output (e.g., if the data is encrypted before output), i.e. they require declassification [29].
Our approach allows easy and fine-grained de-classification.

A large body of work has also studied the use of type systems that ensure secure
information flow. Due to a lack of space, we review a few exemplars and refer the reader
to Sabelfeld and Myers [28] for a detailed survey. Early work in this area dates back to
Volpano et al. [34] who introduced a type system that maintains secure information in-
formation based on the work of Denning and Denning [15]. Myers introduced the JFlow
programming language (later known as Jif: Java information flow) [25] which extended
Java with security types. Jif has been used to build clean slate, secure implementations
of complex end-to-end systems, e.g. the Civitas [9] electronic voting system. More re-
cently, Patrigiani et al. [26] introduced the Java Jr. language which extends Java with a
security type system, automatically partitions the program into secure and non-secure
parts and executes the secure parts inside so-called protected module architectures.In
contrast to these approaches, our work can be applied to existing security-critical code
in languages like C with the addition of only a few annotations.

A different approach to verifying secure information flow is the use of dynamic taint
analysis (DTA) [30,3,21,31,12,11] which instruments a program with taint variables
and taint tracking code. Advantages of DTA are that it is scalable to very large applica-
tions [21], can be accelerated using hardware support [12], and tracks information flow
across processes, applications and even over the network [11]. However, taint analysis
necessarily involves imprecision and in practice leads to both false positives and false
negatives. False positives arise because taint analysis is an overapproximation. Some-
what surprisingly, false negatives are also introduced because tracking implicit flows
using taint analysis leads to a deluge of false-positives [30], thus causing practical taint
tracking systems to ignore implicit flows. Our approach does not have this imprecision.

Our formulation of secure information flow is based on the self-composition con-
struction proposed by Barthe et al. [5]. A specific type of self-composition called prod-
uct programs was considered by Barthe et al. [4], which does not allow control flow
divergence between the two programs. In general this might miss certain bugs as it
ignores implicit flows. However, it is useful in verifying cryptographic code which typ-
ically has very structured control flow. Almeida et al. [1] used the product construction
to verify that certain functions in cryptographic libraries execute in constant-time.

Terauchi and Aiken [33] generalized self-composition to consider k-safety, which
uses k − 1 compositions of a program with itself. Note that self-composition is a 2-
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safety property. An automated verifier for k-safety properties of Java programs based
on Cartesian Hoare Logic was proposed by Sousa and Dillig [32]. A generalization of
Cartesian Hoare Logic, called Quantitative Cartesian Hoare Logic was introduced by
Chen et al. [7]; the latter can also be used to reason about the execution time of cryp-
tographic implementations. Among these efforts, our work is mostly closely related to
that of Terauchi and Aiken [33], who used a type-based analysis as a preprocessing step
to self-composition. We use a similar idea, but our taint analysis is more precise due to
being path-sensitive, and it is used within an iterative CEGAR loop. Our path-sensitive
taint analysis leads to fewer counterexamples and thereby cheaper self-composition,
and our refinement approach can easily handle examples with benign branches. In con-
trast to the other efforts, our work uses lazy instead of eager self-composition, and is
thus more scalable, as demonstrated in our evaluation. A recent work [2] also employs
trace-based refinement in security verification, but it does not use self-composition.

Our approach has some similarities to other problems related to tainting [18]. In par-
ticular, Change-Impact Analysis is the problem of determining what parts of a program
are affected due to a change. Intuitively, it can be seen as a form of taint analysis, where
the change is treated as taint. To solve this, Gyori et al. [18] propose a combination of an
imprecise type-based approach with a precise semantics-preserving approach. The lat-
ter considers the program before and after the change and finds relational equivalences
between the two versions. These are then used to strengthen the type-based approach.
While our work has some similarities, there are crucial differences as well. First, our
taint analysis is not type-based, but is path-sensitive and preserves the correctness of
the defined abstraction. Second, our lazy self-composition is a form of an abstraction-
refinement framework, and allows a tighter integration between the imprecise (taint)
and precise (self-composition) models.

8 Conclusions and Future Work

A well-known approach for verifying secure information flow is based on the notion of
self-composition. In this paper, we have introduced a new approach for this verification
problem based on lazy self-composition. Instead of eagerly duplicating the program,
lazy self-composition uses a synergistic combination of symbolic taint analysis (on a
single copy program) and self-composition by duplicating relevant parts of the pro-
gram, depending on the result of the taint analysis. We presented two instances of lazy
self-composition: the first uses taint analysis and self-composition in a CEGAR loop;
the second uses bounded model checking to dynamically query taint checks and self-
composition based on the results of these dynamic checks. Our algorithms have been
implemented in the SEAHORN verification platform and results show that lazy self-
composition is able to verify many instances not verified by eager self-composition.

In future work, we are interested in extending lazy self-composition to support
learning of quantified relational invariants. These invariants are often required when
reasoning about information flow in shared data structures of unbounded size (e.g.,
unbounded arrays, linked lists) that contain both high- and low-security data. We are
also interested in generalizing lazy self-composition beyond information-flow to han-
dle other k-safety properties like injectivity, associativity and monotonicity.
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