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Abstract. The resolution proof system has been enormously helpful in deepen-
ing our understanding of conflict-driven clause-learning (CDCL) SAT solvers. In
the interest of providing a similar proof complexity-theoretic analysis of satisfia-
bility modulo theories (SMT) solvers, we introduce a generalization of resolution
called Res(T). We show that many of the known results comparing resolution
and CDCL solvers lift to the SMT setting, such as the result of Pipatsrisawat and
Darwiche showing that CDCL solvers with “perfect” non-deterministic branch-
ing and an asserting clause-learning scheme can polynomially simulate general
resolution. We also describe a stronger version of Res(T), Res∗(T), capturing
SMT solvers allowing introduction of new literals. We analyze the theory EUF
of equality with uninterpreted functions, and show that the Res∗(EUF) system is
able to simulate an earlier calculus introduced by Bjørner and De Moura for the
purpose of analyzing DPLL(EUF). Further, we show that Res∗(EUF) (and thus
SMT algorithms with clause learning over EUF, new literal introduction rules and
perfect branching) can simulate the Frege proof system, which is well-known to
be far more powerful than resolution. Finally, we prove under the Exponential
Time Hypothesis (ETH) that any reduction from EUF to SAT (such as the Acker-
mann reduction) must, in the worst case, produce an instance of size Ω(n logn)
from an instance of size n.

1 Introduction

It is common practice in formal verification literature to view SAT/SMT solver algo-
rithms as proof systems and study their properties, such as soundness, completeness
and termination, using proof-theoretic tools [GHN+04,ORC09,Tin12]. However, much
work remains in applying the powerful lens of proof complexity theory in understanding
the relative power of these solvers. All too often, the power of SAT and SMT (satisfi-
ability modulo theories) solving algorithms is determined by how they perform at the
annual SAT or SMTCOMP competitions [BHJ17, smt]. While such competitions are
an extremely useful practical test of the power of solving methods, they do not address
fundamental questions such as which heuristics are truly responsible for the power of
these solvers or what are the lower bounds for these methods when viewed as proof
systems.

Solvers, by their very nature, are a tangled jumble of heuristics that interact with
each other in complicated ways. Many SMT solvers run into hundreds of thousands of
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lines of code, making them very hard to analyze. It is often difficult to discern which
sets of heuristics are universally useful, which sets are tailored to a class of instances,
and how their interactions actually help solver performance. A purely empirical ap-
proach, while necessary, is far from sufficient in deepening our understanding of solver
algorithms. What is needed is an appropriate combination of empirical and theoretical
approaches to understanding the power of solvers. Fortunately, proof complexity theory
provides a powerful lens through which to mathematically analyze solver algorithms as
proof systems and to understand their relative power via lower bounds. The value of
using proof complexity theory to better understand solving algorithms as proof systems
is three-fold: first, it allows us to identify key ingredients of a solving algorithm and
prove lower bounds to non-deterministic combinations of such ingredients. That is, we
can analyze the countably many variants of a solving algorithm in a unified manner via
a single analysis, rather than analyzing different configurations of the same set of proof-
theoretic ingredients; second, proof complexity-theoretic tools allow us to recognize the
relative power of two proof systems, via appropriate lower bounds, even if both have
worst-case exponential time complexity; finally, proof complexity theory brings with
it a rich literature and connections to other sub-fields of complexity theory (e.g., cir-
cuit complexity) that we may be able to leverage in analyzing solver algorithms. Many
proof complexity theorists and logicians have long recognized this, and there is rich
literature on the analysis of SAT solving algorithms such as DPLL and conflict-driven
clause-learning (CDCL) solvers [PD11, BKS04, BBJ14, AFT11]. In this paper, we lift
some of these results to the setting of SMT solvers, following the work of Bjørner and
DeMoura [BM14].

Our focus is primarily the proof complexity-theoretic analysis of the “DPLL(T )
method”4, the prime engine behind many modern SMT solvers [GHN+04, Tin12].
(While other approaches to solving first-order formulas have been studied, DPLL(T)
remains a fundamental and dominant approach.) A DPLL(T)-based SMT solver takes
as input a Boolean combination of first-order theory T atoms or their negation (aka,
theory literals), and decides whether such an input is satisfiable. Informally, a typical
DPLL(T)-based SMT solver S is essentially a CDCL Boolean SAT solver that calls out
a theory solver Ts during its search to perform theory propagations and theory conflict-
clause learning. The typical theory solver Ts is designed to accept only quantifier-free
conjunction of theory T literals (the T in the term DPLL(T)), while the SAT solver
”handles” the Boolean structure of input formulas. Roughly speaking, the SMT solver
S works as follows: First, it constructs a Boolean abstraction BF of the input formula
F , by replacing theory literals by Boolean variables. If BF is UNSAT, S returns UN-
SAT. Otherwise, satisfying assignments to the Boolean abstractionBF are found, which
in turn correspond to conjunctions of theory literals. Such conjunctions are then input to

4 Prior to mid 2000’s, SAT researchers and complexity theorists confusingly used the term DPLL
to refer to both the original algorithm proposed by Davis, Putnam, Loveland, and Loeggemann
in 1960, as well as the newer algorithm by Joao Marques-Silva and Karem Sakallah that added
clause learning to DPLL (proposed in 1996), even though they are vastly different in power as
proof systems. We will follow the literature and use DPLL(T ) to indicate a “modern” SMT
solver with clause learning and restarts, but, we urge SMT solver researchers to use the more
appropriate term CDCL(T ) rather than DPLL(T ) to refer to the lazy approach to SMT.
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the theory solver Ts, which may deduce new implied formulas (via theory propagation
and conflict clause learning) that are then used to help prune the search space of as-
signments to F . The solver S returns SAT upon finding a satisfying theory assignment
to the input F , and UNSAT otherwise. (For further details, we refer the reader to the
excellent exposition on this topic by Cesare Tinelli [Tin12].)
A Brief Description of the Res(T ) Proof System: To abstractly model a DPLL(T)-
based SMT solver S, we define a proof system Res(T ) below for a given first-order
theory T . The Res in Res(T ) refers to the general resolution proof system for Boolean
logic. Without loss of generality, we assume that Res(T ) accepts theory formulas in
conjunctive normal form (CNF). Let F denote a CNF with propositional variables rep-
resenting atoms from an underlying theory T , and for any clause C in FF let vars(F )
denote the set of propositional atoms occurring in F . The proof rules of Res(T ) aug-
ment the resolution proof rule as follows: A proof in Res(T ) is a general resolution
refutation of F , where at any step the theory T -solver can add to the set of clauses an
arbitrary clause C such that T � C and every propositional atom in vars(C) occurs
in the original formula. That is, each line of a Res(T ) proof is deduced by one of the
following rules:

Resolution. C ∨ `,D ∨ ` ` C ∨D, for previously derived clauses C and D.
Theory Derivation. ` C for any clause C such that T � C and for which every theory

literal in C occurs in the input formula.

For example, a theory of linear arithmetic may introduce a clause (x ≥ 5 ∨ y ≥
7 ∨ x+ y < 12), which can then be used in the subsequent steps of a resolution proof,
provided each of those literals occurred in the original CNF formulaF . The filter on the
theory rule of Res(T ) models the fact that in many modern SMT solvers, the “theory
solver” is only allowed to reason about literals which already occur in the formula.
Recent solvers such as Z3, Yices [Yic, Z3] break this rule and allow the theory solver
to introduce new propositional atoms; to model this we introduce the stronger variant
Res∗(T ) with a strengthened theory rule:

Strong Theory Derivation: ` C for any clause C such that T � C.

1.1 Our Contributions:

We prove the following results about the two systems Res(T ), Res∗(T ) and the com-
plexity of SMT solving.

1. We show that DPLL(T ) with an arbitrary asserting clause learning scheme and non-
deterministic branching and theory propagation is equivalent (as a proof system) to
Res(T ) for any theory T . More precisely: if the theory solver in DPLL(T ) can only
reason about literals in the input, then it is equivalent to Res(T ); if it can reason
about arbitrary literals then it is equivalent to Res∗(T ). (See Section 3)

2. When the theory T is E, the theory of pure equalities, Res∗(E) is equivalent to the
SP (E) system of Bjørner, Dutertre and de Moura [BDdM08], which seems to have
no efficient proofs of the PHP. (See Section 5.1)
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3. When the theory T is EUF (equality with uninterpreted function symbols), the
proof system Res∗(EUF) can simulate E-Res, a different generalization of reso-
lution introduced by Bjorner and deMoura [BM14] for the purpose of simulating
standard implementations of DPLL(EUF). Furthermore, Res∗(EUF) can simulate
the powerful Frege proof system. (See Section 5.2)

4. When T is LA, a theory of linear arithmetic over a set of numbers containing
integers, Res(LA) can polynomially simulate the system R(lin) of Raz and Tza-
meret [RT08], and thus has polynomial size proofs of several hard tautologies such
as the pigeonhole principle and Tseitin tautologies. (See Section 5.3)

5. Finally, we prove under the Exponential Time Hypothesis (ETH) that any reduc-
tion from EUF to SAT (such as the Ackermann reduction) must, in the worst case,
produce an instance of size Ω(n log n) from an instance of size n. (See Section 6)

These results seem to suggest that our generalization is the “right” proof system
corresponding to DPLL(T ), as it characterizes proofs produced by DPLL(T ) and it
can simulate other proof systems introduced in the literature to capture DPLL(T ) for
particular theories T .

1.2 Previous work

Among the previous proof systems combining resolution with non-propositional rea-
soning are R(CP) proof system of [Kra98], where propositional variables are replaced
with linear inequalities, and R(lin) introduced by Raz and Tzameret [RT08], which
reasons with linear equalities, modifying the resolution rule. R(lin) polynomially simu-
lates R(CP) when all coefficients in an R(CP) proof are polynomially bounded. In the
SMT community, Bjørner, de Moura and Dutertre [BDdM08,BM14] introduced calculi
capturing the power of resolution over the theory of equality and equality with unin-
terpreted functions. They show that these systems capture the power of resolution over
the corresponding theories, extended with rules for introducing new atoms. Our results
supersede previous work since our simulations hold for any first-order theory T .

2 Preliminaries

2.1 Propositional Proof Systems

In this paper, all proof systems are defined by a set of “allowed lines” equipped with a
list of deduction rules that allow us to deduce new lines from old ones. We first recall
the resolution system, which is a refutation system for propositional formulas in CNF
(product of sums) form. The lines of a resolution proof are disjunctions of boolean
literals called clauses, and these lines are equipped with a single deduction rule called
the resolution rule: given two clauses of the form C ∨ `, D ∨ ` we deduce the clause
C ∨D. If φ = C1 ∧ C2 ∧ · · · ∧ Cm is an unsatisfiable CNF formula then a resolution
refutation of φ is a sequence of clauses C1, C2, . . . , Cm, Cm+1, . . . , Ct where Ct is
the empty clause and all clauses Ci with i > m are deduced from earlier clauses by
applying the resolution rule.

Observe that clauses satisfy a subsumption principle: if C, D are clauses such that
C ⊆ D then every assignment satisfying C also satisfies D. This implies that we can
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safely add a weakening rule to resolution which, from a clause C, derives the clause
C ∨ x for any literal x not already occurring in C. The subsumption principle implies
that this weakening rule does not change the power of resolution, as any use of a clause
D ⊇ C can be eliminated or replaced with C.

We also consider the Frege proof system, which captures standard “textbook-style”
proofs. The lines of a Frege system are given by arbitrary boolean formulas, and from
two boolean formulas we can deduce any new boolean formula which follows under
typical boolean reasoning (e.g. deducing the conjunction of two formulas, the disjunc-
tion of their negation, and so on). Crucially, Frege proofs allow applying a generalized
“resolution rule” to arbitrary polynomial-size formulas.

The power of different propositional proof systems are compared using the notion
of an polynomial simulation (p-simulation). Proof system A polynomially simulates (or
p-simulates) proof system B if, for every unsatisfiable formulaF , the shortest refutation
proof of F in A is at most polynomially longer than the shortest refutation proof of a
formula F in B. For example, the Frege proof system p-simulates the Resolution proof
system, but the converse is widely conjectured not to hold.

2.2 First-order Theories

In this paper we study proof systems for first-order theories. For the sake of complete-
ness we recall some relevant definitions from first-order logic, but remark that this is
essentially standard fare.

Let L be a first-order signature (a list of constant symbols, function symbols, and
predicate symbols). Given a set of L-sentencesA and an L-sentenceB we writeA � B
if every model of A is also a model of B. A first order theory (or simply a theory) is a
set of L-sentences that is consistent (that is, it has a model) and is closed under �. The
decision problem for a theory T is the following: given a set S of literals over L, decide
if there is a model M of T such that M � S. The satisfiability problem for T , also
denoted T -SAT, is the following: given a quantifier-free formula F in T in conjunctive
normal form (CNF), decide if there is a modelM of T such thatM � F .

A simple example of a theory is E, the conjunctive theory of equality. The signature
of E contains a single predicate symbol = and an infinite list of constant symbols. It is
axiomatized by the standard axioms of equality (reflexivity, symmetry, and transitivity),
and a sample sentence in E would be the formula a 6= b∨ b 6= c∨a = c, which encodes
the transitivity of equality between the constant symbols a, b, and c. Following the SMT
literature, we will call terms from the theory (such as a and b) theory variables, and
the atoms derived from these terms (such as a 6= b or a = c) will be called theory
literals or just literals. We note that the decision problem for E can be decided very
efficiently [DST80]; in contrast, the satisfiability problem for E is easily seen to be
NP-complete.

3 Res(T ): Resolution Modulo Theories

We now define a generalization of resolution which captures the type of reasoning mod-
ulo a first-order theory that is common in SMT solvers. We give two variants: the first,
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denoted Res(T ), allows the deduction of any clauseC of theory literals such that T � C
and for which every literal in C already occurs in the input formula. This is intended
to model “standard” lazy SMT solvers [NOT06] which only reason about literals in the
input formula.

The second, more powerful variant is denoted Res∗(T ), and allows the deduction
of any clause of literals C such that T � C, even if the new clause contains literals
which do not occur in the input formula. We introduce this to explore the power of lazy
SMT solvers that are allowed to introduce new literals from the theory, and note that
there are well-known examples in the SMT literature which show that introducing new
literals can drastically decrease the length of refutations (e.g. the diamond equalities
[BDdM08]). Indeed, in Section 5.2 we show that this power can drastically increase the
proof theoretic strength of SMT solvers.

Definition 1 (Res(T ),Res∗(T )) Let T be a theory and let F be an quantifier-free CNF
formula over T . The lines of a Res(T ) (Res∗(T )) proof are quantifier-free clauses of
theory literals deduced from F and T by the following derivation rules.
Resolution. C ∨ `,D ∨ ` ` C ∨D.
Weakening. C ` C ∨ ` for any theory literal ` occurring in the input formula.
Theory Derivation (Res(T )). ` C for any clause C satisfying T � C and for which
every literal in C occurs in the input formula.
Strong Theory Derivation (Res∗(T )). ` C for any clause C satisfying T � C.
A refutation of F is a proof in which the final line is the empty clause.

It is easy to see that both Res(T ) and Res∗(T ) are sound since all rules are sound,
and completeness follows from a straightforward modification of the usual proof of
resolution completeness (see, e.g. Jukna [Juk12]).

Technically speaking, Res(T ) is not a (formal) propositional proof system as de-
fined by Cook and Reckhow [CR79] since the proofs may not be efficiently verifiable
if deductions from the theory T are computationally difficult to verify. However, all
theories considered in this paper (cf. Section 5) are very efficiently decidable, and thus
the corresponding Res(T ) proofs are efficiently verifiable.

Note that the clauses introduced by the theory derivations are arbitrary theorems
of T ; this means there is no direct information exchange between the resolution proof
and the theory. It is enough to derive clauses in the theory derivation rules rather than
arbitrary formulas since every axiom can be written in CNF form, and introduced as a
sequence of clauses. The strong theory derivation rule can introduce new theory literals
which might not have been present in the initial formula — we emphasize that the new
theory literals can even contain theory variables (i.e. first-order terms) that did not occur
in the original formula. We will see that this ability to introduce new literals seems to
give Res∗(T ) extra power over general resolution.

4 Lazy SMT Solvers and Res(T )

In this section we show that lazy SMT solvers and resolution modulo theories are
polynomially-equivalent as proof systems, provided that the SMT solvers are given a
set of branching and restart decisions a priori.
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We model SMT solvers by the algorithm schema5 DPLL(T ), which is given in
Algorithm 1. Using this schema we prove two results: first, if the theory solver in
DPLL(T ) can only reason about literals occurring in its input formula, then DPLL(T )
is polynomially equivalent to Res(T ). Second, if the theory solver is strengthened so
that it is allowed to introduce new literals then the resulting solver can polynomially
simulate Res∗(T ). The proofs of these results use techniques developed for comparing
Boolean CDCL solvers and resolution by Pipatsrisawat and Darwiche [PD11].

Algorithm 1: DPLL(T )
Input: CNF formula F over T -literals;
Output: SAT or UNSAT
Let σ = ∅ be an initially empty partial assignment of T -literals;
Let Γ be an initially empty collection of learned clauses;
while true do

if F ∧ Γ ∧ σ `1 ∅ then
if σ = ∅ then

return UNSAT;
Apply the clause learning scheme to learn a conflict clause C, add it to
Γ ;

Backjump σ to the second highest decision level in C;
else if σ �T ∅ then

Apply the T -conflict scheme to learn a conflict clause C, add it to Γ ;
Backjump σ to the second highest decision level in C;

else
if σ satisfies F then

return SAT;
Apply the restart scheme to decide whether or not to restart;
if restart then

Set σ = ∅;
Restart loop;

Apply the T -propagate scheme;
Unit propagate literals to completion and update σ accordingly;
Apply the branching scheme to choose a decision literal `, set
σ = σ ∪ {`};

If T is a theory and A,B are formulas over T then we write A �T B as a shorthand
for T ∪ {A} � B (i.e. every model of the theory T that satisfies A also satisfies B). We
also define unit resolution, which describes the action of the unit propagator.

Definition 2 (Unit Resolution) Let F be a collection of clauses over an arbitrary the-
ory T . A clauseC is derivable fromF by unit resolution if there exists a resolution proof
from F of C such that in each application of the resolution rule, one of the clauses is a

5 In the literature, SMT solvers are typically defined as abstract state-transition systems (see,
for instance, [GHN+04, BM14]); we have chosen to define it instead as an algorithm schema
(cf. Algorithm 1) inspired by the abstract definition of a CDCL solver by Pipatsrisawat and
Darwiche [PD11].



8

unit clause. If C is derivable fromF by unit resolution then we writeF `1 C. IfF `1 ∅
then we say F is unit refutable, otherwise it is unit consistent.

A DPLL(T ) algorithm is defined by specifying algorithms for each of the bolded
“schemes” in Algorithm 1:

Clause Learning Scheme. When a clause in the database is falsified by the current
partial assignment, the Clause Learning Scheme is applied to learn a new clause C
which is added to the database of stored clauses.

Restart Scheme. The solver applies the Restart Scheme to decide whether or not
to restart its search, discarding the current partial assignment σ and saving the list of
learned clauses.

Branching Scheme. The Branching Scheme is applied to choose an unassigned vari-
able from the formulaF or from the learned clauses Γ and assign the variable a Boolean
value.

T -Propagate Scheme. During search, the DPLL(T ) solver can hand the theory solver
the current partial assignment σ and ask whether or not it should unit-propagate a literal;
if a unit propagation is possible the theory solver will return a clause C from the theory
witnessing this unit propagation.

T -Conflict Scheme. When the theory solver detects that the current partial assignment
σ contradicts the theory, the T -Conflict Scheme is applied to learn a new clause of
literals C, ¬C ⊆ σ, which is added to the clause database.

We pay particular interest to the specification of the T -propagate scheme. The next
definition describes two types of propagation schemes: a weak propagation scheme is
only allowed to return clauses which propagate literals in the formula, while the more
powerful strong propagation scheme returns a clause of literals from the theory that
may contain new literals.

Definition 3 A weak T -propagate scheme is an algorithm which takes as input a con-
junction of theory literals σ over T and returns (if possible) a clause C = ¬σ∨ ` where
T � C and the literal ` occurs in the input formula of the DPLL(T ) algorithm.

A strong T -propagate scheme is an algorithm which takes as input a conjunction of
literals σ over T , and if possible returns a clause C of literals from T such that T � C
and ¬σ ⊆ C. An algorithm equipped with a strong T -propagate scheme will be called
a DPLL∗(T ) solver.

A DPLL(T ) algorithm equipped with a weak T -propagation scheme is equiva-
lent to the basic theory propagation rules found in SMT solvers (see, for example,
[BM14, NOT06]). For technical convenience we assume that the weak T -propagate
scheme adds a clause to the database “certifying” the unit propagation, while in actual
implementations the clause would likely not be added and the literal would simply be
propagated. Recent SMT solvers [Yic, Z3] have strengthened the interaction between
the SAT solver and the theory solver, allowing the theory solver to return constraints
over new variables; this is modelled very generally by strong T -propagate schemes.
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4.1 DPLL(T ) and Res(T )

We now prove the main result of this section, after introducing some preliminaries from
[PD11] that are suitably modified for our setting. Fix a theory T . An assignment trail is a
sequence of pairs σ = {(`i, di)}ti=1 where each literal `i is a literal from the theory and
each di ∈ {d, p}, indicating that the literal was set by a decision or a unit propagation.
The decision level of a literal `i in σ is the number of decision literals occurring in σ
up to and including `i. Given an assignment trail σ and a clause C we say that C is
asserting if it contains exactly one literal occurring in σ at the highest decision level. A
clause learning scheme is asserting if all conflict clauses produced by the scheme are
asserting with respect to the assignment trail at the time of conflict.

An extended branching sequence is an ordered sequence B = {β1, β2, . . . , βt}
where each βi is either (1) a literal from the theory, (2) a symbol x ∈ {R,NR}, to
denote a restart or no-restart, respectively, or (3) a clauseC such that T � C. Intuitively,
extended branching sequences are used to provide a DPLL(T ) solver with a list of
instructions for how to proceed in its execution. For instance, whenever the solver calls
the Branching Scheme, we consume the next βi from the sequence, and if it is a literal
from the theory then the solver assigns that literal. Similarly, when the DPLL(T ) solver
calls the Restart Scheme it uses the branching sequence to dictate whether or not to
restart, and when the solver calls the T -propagate scheme it uses the sequence to dictate
which clause to learn. If the symbol does not correctly match the current scheme being
called then the solver halts in error, and if the branching sequence is empty, then the
algorithm proceeds using the heuristics defined by the algoritm.

We now introduce absorbed clauses (and their duals, empowering clauses), which
were originally defined by Pipatsrisawat and Darwiche [PD11] and independently by
Atserias, Fichte and Thurley [AFT11]. One should think of the absorbed clauses as
being learned “implicitly” — they may not necessarily appear in F , but, if we assign
all but one of the literals in the clause to false then unit propagation in DPLL(T ) will
set the final literal to true.

Definition 4 (Empowering Clauses) Let F be a collection of clauses over an arbi-
trary theory T and let A be a DPLL(T ) solver. Let α be a conjunction of literals, and
let C = (¬α ⇒ `) be a clause. We say that C is empowering with respect to F at ` if
the following holds: (1) F ∪ T � C, (2) F ∧ α is unit consistent, and (3) any execution
of A on F that satisfies α without setting ` does not unit-propagate `. The literal ` is
said to be empowering. If item (1), (2) are satisfied but (3) is false then we say that the
solver A and F absorbs C at `; if A and F absorbs C at at every literal then the clause
is simply absorbed.

For an example, consider the set of clauses (x ∨ y ∨ z), (¬z ∨ a), (¬a ∨ b). The
clause (x ∨ y ∨ b) is absorbed by this set of clauses as, for instance, if we falsify x and
y then the unit-propagator will force b to be set to true. Thus in the DPLL(T ) algorithm
the unit propagator will behave as though this clause is learned even though it is not (if
we remove the final clause ¬a ∨ b, then (x ∨ y ∨ b) is empowering but not absorbed).

The next lemma shows that for any theory clause C, there is an extended branching
sequence which can be applied to absorb that clause.
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Lemma 5 Let F be an unsatisfiable CNF over a theory T and let Π be any Res(T )
proof from F . LetΠT ⊆ Π be the set of clauses inΠ derived using the theory rule. For
any DPLL(T ) algorithm A there is an extended branching sequence B such that after
applying B to the solver A every clause in ΠT will be absorbed.

Proof. Order ΠT arbitrarily as C1, C2, . . . , Ct and remove any clause that is absorbed
or already in F , as these are clearly already absorbed. We construct B directly: add the
negations of literals in C1 to B until one literal remains, and then add the clause C1 to
the extended branching sequence. By definition the weak T -propagator will be called
and will return C1, adding it to the clause database. Restart and continue to the next
theory clause in order.

Our proof of mutual simulations between Res(T ) and DPLL(T ) crucially relies on
the following technical lemma (which is a modified version of a lemma from [PD11]).

Lemma 6 Let F be an unsatisfiable, unit-consistent CNF over literals from a theory
T and let Π be any Res(T ) proof from F . Let ΠT be the set of clauses in Π derived
using the theory rule. Then there exists a clause C in Π that is both empowering and
unit-refutable with respect to F ∪ΠT .

Proof. Let Π denote a Res(T )-refutation of F and assume without loss of generality
(by applying Lemma 5) that the first derived clauses in Π are in ΠT . If every clause in
Π is unit-refutable from F , then the empty clause is unit-refutable and thus F is not
unit-consistent, which is a contradiction. So, assume that there exists a clause Ci which
is the first clause in Π by this ordering such that it is not unit-refutable. Since Π is a
Res(T )-proof, Ci is one of three types: either it is a clause in F , it is a clause derived
from the theory rule, or Ci was derived by applying the resolution rule to two clauses
Cj , Ck. If Ci ∈ F then it is clearly unit-refutable, which is a contradiction. If Ci was
derived from the theory rule then it is unit-refutable with respect to ΠT , which is again
a contradiction. Finally, suppose that Ci was derived by applying the resolution rule to
clauses Cj and Ck, and write Cj = (α ⇒ `), Ck = (β ⇒ `) where ` is the resolved
literal and j, k < i in the ordering of clauses in Π . Since Cj and Ck are both unit-
refutable, assume by way of contradiction that neither Cj nor Ck are empowering. It
follows by definition that both clauses are absorbed at every literal. Thus, if we consider
F ∧α∧ β, it follows by the absorption property that F ∧α∧ β `1 `,F ∧α∧ β `1 ¬`
which implies that F ∧α∧β `T1 ∅. However, Ci = α∧β, and thus we have concluded
Ci is unit-refutable, which is a contradiction! Thus at least one of Cj or Ck is both
empowering and unit-refutable.

The gist of the lemma 6 is simple: if clauses C ∨ ` and D ∨ ` are both absorbed by
a collection of clauses C, then asserting C ∧ D in the DPLL solver will hit a conflict
since it will unit-imply both ` and `. In the main theorem, proved next, we show that
empowering and unit-refutable clauses will be absorbed by the solver after sufficiently
many restarts.

Theorem 7. The DPLL(T ) system with an asserting clause learning scheme, non-
deterministic branching and T -propagation polynomially simulates Res(T ). Equiva-
lently: for any unsatisfiable CNF F over a theory T , and any Res(T ) refutationΠ of F
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there exists an extended branching sequenceB such that running a DPLL(T ) algorithm
on input F using B will refute F in time polynomial in the length of |Π|.

Proof. Let F be an unsatisfiable CNF over the theory T , and let Π be a Res(T ) refu-
tation of F . Let ΠT ⊆ Π be the set of clauses in Π derived using the theory rule, and
write Π = C1, C2, . . . , Cm. As a first step, apply Lemma 5 and construct an extended
branching sequence B′ which leads to the absorbtion of all clauses in ΠT . We prove
the following claim, from which the theorem directly follows.

Claim. Let C be any unit-refutable and empowering clause with respect to F . Then
there exists an extended branching sequence B of polynomial size such that after ap-
plying B the clause C will be absorbed.

Let ` be any empowering literal of C, and write C = (α ⇒ `). Let B be any
extended branching sequence in which all literals in α are assigned. Since C is empow-
ering, it follows that F ∧ α is unit-consistent. Extending B with the decision literal ¬`
will therefore cause a conflict since C is unit-refutable. Let C ′ be the asserting clause
obtained by applying the clause learning scheme to B ∪ {¬`}. If F ∧ C ′ absorbs C
at `, then we are done and we continue to the next empowering literal. Otherwise, we
resolve whatever conflicts the solver needs to resolve (possibly adding more learned
clauses along the way) until the branching sequence is unit-consistent.

Observe that after this process we must have that F ∧ C ′ `1 `′ where `′ is some
literal at the same decision level as `, since the clause learning scheme is asserting. Thus
the number of literals at the maximum decision level has reduced by one. At this point,
we restart and do exactly the same sequence of branchings — each time, as argued
above, we reduce the number of literals at the maximum decision level by 1. Since ` is
a literal at the maximum decision level, it implies that after at most O(n) restarts (and
O(n2) learned clauses) we will have absorbed the clause C at `. Repeating this process
at most n times for each empowering literal in C we can absorb C, and it is clear that
the number of learned clauses is polynomial from the analysis.

We are now ready to finish the proof. Apply the claim repeatedly to the first em-
powering and unit-refutable clause in Π to absorb that clause — by Lemma 6, such
a clause will exist as long as the CNF F is not unit-refutable; a DPLL(T ) solver can
obtain an arbitrary theory clause by setting relevant literals in the branching sequence
and using theory propagation. Since the length of the proof Π is finite (length m), it
follows that this process must terminate after at most m iterations. At this point, there
can not be such an empowering and unit-refutable clause, and so by Lemma 6 it follows
that F (with its learned clauses) is now unit-refutable, and so the DPLL(T ) algorithm
halts and outputs UNSAT.

The reverse direction of the theorem is straightforward, and thus we have the fol-
lowing corollary:

Corollary 8 The DPLL(T ) system with an asserting clause learning scheme, non-
deterministic branching and T -propagation is polynomially equivalent to Res(T ).

A key point of the above simulation is that it does not depend on whether or not the
T -propagation scheme is weak or strong — since the clauses learned by the scheme are
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specified in advance by the extended branching sequence the same proof will apply if
we began with a Res∗(T ) proof instead. Of course, if we begin with a Res∗(T ) proof
instead of a Res(T ) proof we may use the full power of the theory derivation rule, re-
quiring that we use a DPLL∗(T ) algorithm with a strong T -propagation scheme instead.
We record this observation as a second theorem.

Theorem 9. The DPLL∗(T ) system with an asserting clause learning scheme, non-
deterministic branching and T -propagation is polynomially equivalent to Res∗(T ).

5 Case Studies: Resolution Modulo Common Theories

In this section, we study the power of Res(T ) over theories that are common in the SMT
context — namely, we focus on the theory of equality E, the theory of uninterpreted
function symbols EUF, and the theory of linear arithmetic LA.

5.1 Resolution over E: a theory of equality

We first consider E, the theory of equality. Bjørner, Dutertre and de Moura [BDdM08]
introduced a proof-theoretic calculus called SP(E) for reasoning over the theory of
equality — in a prototype of our main result, they showed that proofs in SP(E) exactly
characterized proofs produced by a simple model SMT solver. In this section we show
that the theory Res∗(E) is polynomially-equivalent to SP(E), which is evidence that
our general framework is the correct way of capturing the power of SMT solvers.

Let us first reproduce the rules of SP(E) from [BDdM08]: Cut. C ∨ `, D ∨ ¬` `
C ∨ D, E-Dis. C ∨ a 6= a ` C, E-Eqs. C ∨ a = b ∨ a = c ` C ∨ a = b ∨ b 6= c,
Sup. C ∨ a = b, D[a] ` C ∨ D[b]. Observe that the Sup rule allows replacing some
occurrences of a term a in atoms of a clauseD with b (not necessarily for all occurrences
of a). Both the Sup rule and the E-Eqs rule can introduce literals that did not occur in
the initial formula.

Proposition 10 Res∗(E) and SP(E) are polynomially equivalent.

Proof (Sketch). Bjørner, Dutertre, and de Moura show that SP(E) exactly characterizes
the proofs produced by a simple theoretical model of an SMT solver, which we will
denote by DPLL(e+∆) [BDdM08, Theorem 4.1]. Examining the solver DPLL(e+∆)
from [BDdM08], it is not hard to see it is equivalent to the algorithm DPLL∗(E) (that
is, DPLL(T ) with a strong T -propagation rule). The equivalence between Res∗(E) and
DPLL∗(E) follows by the Corollary of Theorem 9.

In the conclusion of [BDdM08] it is stated that there are no short SP(E) proofs of
the following encoding of the pigeonhole principle (PHP): there are clauses of the form
(di = r1 ∨ . . . di = rn), for i ∈ [1, n + 1], enforcing that the ith pigeon must travel
to some hole, and clauses of the form (di 6= dj) for i, j ∈ [1, n + 1] which, when
combined with the first family of clauses and the transitivity axioms of E, imply that
no two pigeons can travel to the same hole. Since their SP(E) system is equivalent to
Res∗(E) it follows that the lower bounds on SP(E) carry over:

Corollary 11 If SP(E) does not have polynomial-size refutations of the pigeonhole
principle, then neither does Res∗(E).
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5.2 Resolution over EUF: Equality with uninterpreted functions

Next, we study the theory EUF, which is an extension of the theory of equality to
contain uninterpreted function symbols. The signature of EUF consists of an unlimited
set of uninterpreted function symbols and constant symbols; a term in the theory is thus
inductively defined as either a constant symbol or an application of a function symbol
to a sequence of terms: f(t1, . . . , tk). There is one relational symbol = interpreted as
equality between terms, so theory literals of EUF are of the form t = t′ for terms t, t′.

The axioms of EUF state that = is an equivalence relation, together with a family
of congruence axioms for the function symbols stating, for any k-ary function symbol
f and any sequences of terms t1, t2, . . . , tk, t′1, t

′
2, . . . , t

′
k, if t1 = t′1, . . . , tk = t′k, then

f(t1, . . . , tk) = f(t′1, . . . , t
′
k). The decision problem for EUF can be decided in time

O(n log n) by the Downey-Sethi-Tarjan congruence closure algorithm [DST80].
Using EUF as a central example, Bjorner and de Moura [BM14] observed that

DPLL(T ) suffers some serious limitations in terms of access to the underlying the-
ory. To resolve this, they modified DPLL(EUF) with a set of non-deterministic rules
that allowed it to dynamically introduce clauses corresponding to the congruence and
transitivity axioms. To characterize the strength of this new algorithm, they introduced a
variant of resolution called E-Res, extending SP(E) from [BDdM08] to reasoning over
uninterpreted functions. We show that the Res∗(EUF) proof system can polynomially-
simulate the E-Res system, which again suggests that we have the “correct” proof sys-
tem for capturing SMT reasoning. Due to space considerations, we leave the proof to
the full version of the paper.

Theorem 12. The system E-Res is polynomially simulated by Res∗(EUF).

However, unlike the case of SP(E) the converse direction is not so clear. The theory
rule in Res∗(EUF) is fundamentally semantic: it allows one to derive any clause which
follows from the theory EUF semantically; this is in contrast to the E-Res system which
is fundamentally syntactic. Thus, to show that E-Res polynomially simulates EUF, one
would need to show that any use of the theory rule in a Res∗(EUF) proof could be
somehow replaced with a short proof in E-Res. We leave this as an open problem.

Next, we show that Res∗(EUF) and E-Res can efficiently simulate the Frege proof
system, which is a very powerful propositional proof system studied in proof com-
plexity. We note that the simulation crucially relies on the introduction of new theory
literals; this suggests that an SMT solver which can intelligently introduce new theory
literals has the potential to be extremely powerful.

Theorem 13. Res∗(EUF) (and, in fact, E-Res) can efficiently simulate the Frege proof
system.

Proof Sketch. We show the stronger statement that E-Res simulates Frege. The idea
of the proof is to introduce constants e0 6= e1 corresponding to FALSE and TRUE;
every positive literal x in the original formula is replaced by x = e1, and negative
literal ¬x by x = e0. Then introduce uninterpreted function symbols N,O,A, together
with constraints that make N,O,A behave as NOT, OR and AND, respectively (such
as N(e0) = e1 ∧ N(e1) = e0). So formulas in the Frege refutation are iteratively
transformed into expressions of the form tF = e0 or tF = e1, where tF is a term
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obtained by replacing Boolean connectives in a formula F by N,O,A. As the Frege
proof ends with an empty sequent, the corresponding E-Res proof ends with an empty
clause. See the full version for details.

5.3 Resolution over LA: a theory of linear arithmetic

Finally, we study the theory of linear arithmetic LA. A formula in the theory LA
over a domain D is a conjunction of expressions of the form Σn

i=1aixi ◦ b, where
◦ ∈ {=,≤, <, 6=,≥, >}, and ai, xi ∈ D — usually, D is integers or reals6. We show
that Res(LA) polynomially simulates the proof system R(lin) introduced by Raz and
Tzameret [RT08]. This is interesting, as R(lin) has polynomial-size proofs of several
difficult tautologies considered in proof complexity, such as the pigeonhole principle,
Tseitin tautologies and the clique-colouring principle.

In the proof system R(lin) propositional variables are linear equations over integers.
The input formula is a CNF over such equations, together with

∧n
i=1(xi = 0∨ xi = 1)

clauses ensuring 0/1 assignment. The rules of inference consist of a modified resolution
rule, together with two structural rules, weakening and simplification:

R(lin)-cut Let (A ∨ L1), (B ∨ L2) be two clauses containing linear equalities L1 and
L2, respectively. From these two clauses, derive a clause (A ∨B ∨ (L1 − L2)).

Weakening From a (possibly empty) clause A derive (A ∨ L) for any equation L.
Simplification From (A ∨ k = 0), where k 6= 0 is a constant, derive A.

Proposition 14 Res(LA) polynomially simulates R(lin).

Proof. We show how to simulate rules of R(lin) in Res(LA). We can assume, without
loss of generality, that Res(LA) has a weakening rule which simulates weakening of
R(lin) directly. For the simplification rule, note that LA � k 6= 0 for any k 6= 0; one
application of the resolution rule on (k 6= 0) and (A ∨ k = 0) results in A.

Finally, let L1 beΣn
i=1aixi = b and L2 beΣn

i=1cixi = d. From (A∨L1), (B∨L2)
we want to derive (A ∨ B ∨ L1 − L2). First derive in LA a clause C = (Σn

i=1aixi 6=
b ∨Σn

i=1cixi 6= d ∨Σn
i=1(ai − ci)xi = b− d). Resolving (A ∨ L1) with C, and then

resolving the resulting clause with (B ∨ L2) gives the desired (A ∨B ∨ (L1 − L2)).

Note that we didn’t need to specify whether LA is over the integers, rationals or
reals, and hence the proof works for any of them. Also, in order to establish our simula-
tions it is sufficient to consider a fragment of LA with only equalities and inequalities,
and produce only unit clauses and width-3 clauses of a fixed form.

Corollary 15 Res(LA) has polynomial-size proofs of the pigeonhole principle, Tseitin
tautologies and a clique-colouring principle for k =

√
(n) size clique and k′ =

(log n)2/8 log log n size colouring.
6 Some definitions of linear arithmetic do not include disequalities; however, as disequalities

and strict inequalities occur naturally in SMT context, SMT-oriented linear arithmetic solvers
do incorporate mechanisms for dealing with them
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6 Lazy vs. Eager Reductions and the Exponential Time Hypothesis

Throughout this paper we have primarily discussed the Lazy approach to SMT. In this
section, we consider the Eager approach, in which an input formula F over a theory T
is reduced to an equisatisfiable propositional formula G, which is then solved using a
suitable (Boolean) solver.

The Eager approach is still used in several modern SMT solvers such as the STP
solver for bit-vectors and arrays [GD07]. A common eager reduction used when solving
equations over the theory of equality, E (or its generalization to uninterpreted function
symbols EUF), is the Ackermann reduction. Let us first describe a simple version of
the Ackermann reduction over the theory E.

Let F denote a CNF over literals from the theory E — so, each literal is of the form
a = b for constant terms a, b— which we will ultimately transform into a Boolean SAT
instance. Let n denote the number of constant terms occurring in F , let m denote the
number of distinct literals occurring in F , and consider the literal a = b and the literal
b = a to be the same. For each literal a = b introduce a Boolean variable xa=b, and for
each clause of literals

∨
i ai = bi create a clause

∨
i xai=bi . To encode the transitivity

of equality, for each triple of terms (a, b, c) occurring in the initial CNF F introduce a
clause of the form ¬xa=b ∨¬xb=c ∨ xa=c. Note that the final formula will have O(n2)
Boolean variables corresponding to each possible term a = b — a potential quadratic
blow-up — which is unavoidable using this encoding due to the transitivity axioms.
Observe that this blow-up only occurs in the eager approach — in the lazy approach to
solving we only need to consider the literals a = b which occur in the original formula
F . It is therefore natural to wonder if this blow-up in the number of input variables can
somehow be avoided.

In fact, one can construct a more clever Eager reduction from E-SAT to SAT which
only introduces O(n log n) boolean variables; however, this more clever encoding does
not represent the literals a = b as Boolean variables xa=b and instead uses a more com-
plicated pointer construction. This improved reduction turns out to be the best possible
under the well-known (and widely believed) Exponential Time Hypothesis, which is a
strengthening of P 6= NP.

Exponential Time Hypothesis (ETH). There is no deterministic or randomized algo-
rithm for SAT running in time 2o(n), where n is the number of input variables.

Theorem 16. LetF be an instance of E-SAT with n distinct terms. For any polynomial-
time reduction R from E-SAT to SAT, the boolean formula R(F) must have Ω(n log n)
variables unless ETH fails.

Proof. By way of contradiction, suppose that ETH holds and let R be a reduction from
E-SAT to SAT which introduces o(n log n) variables. Let 2-CSP denote a constraint
satisfaction problem with two variables per constraint. The theorem follows almost im-
mediately from the following result of Traxler [Tra08].

Theorem 17 (Theorem 1 in [Tra08], rephrased). Consider any 2-CSPC1∧C2∧· · ·∧
Cm over an alphabet Σ of size d, where each constraint is of the form x 6= a ∨ y 6= b
for variables x, y and constants a, b ∈ Σ. Unless ETH fails, every algorithm for this
problem requires time dcn for some universal constant c > 0.
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There is a simple reduction from the restriction of 2-CSP described in the above
theorem to E-SAT. Introduce terms e1, e2, . . . , ed, each intended to represent a symbol
from the universe Σ, and also terms x1, x2, . . . , xn for each variable x occurring in
the original CSP instance. Now, for each i 6= j introduce unit clauses ei 6= ej , and
similarly for each i ∈ [n] add a clause of the form xi = e1 ∨ xi = e2 ∨ · · · ∨ xi = ed.
Finally, for each constraint in the 2-CSP of the form xi 6= a∨xj 6= b introduce a clause
xi 6= ea ∨ xj 6= eb, where ea, eb are the terms corresponding to the symbols a, b. Let
F ′ denote the final E-SAT instance, and it is clear that F ′ is satisfiable if and only if the
original 2-CSP is satisfiable, and also that F ′ has n+ d constant terms.

Now, apply the Ackermann reduction R to F ′, obtaining a SAT instance R(F ′).
By assumption the final SAT instance has o((n+ d) log(n+ d)) variables; running the
standard brute-force algorithm for SAT gives an algorithm running in 2o((n+d) log(n+d))

time for the 2-CSP variant described above. However, by the above theorem, every
algorithm for this 2-CSP variant requires time at least dcn = 2cn log d, which violates
ETH if d ≈ n.

7 Conclusion

In this paper, we studied SMT solvers through the lens of proof complexity, introducing
a generalization of the resolution proof system and arguing that it correctly models
the “lazy” SMT framework DPLL(T ) [NOT06]. We further presented and analyzed a
stronger version Res∗(T ) that allows for the introduction of new literals, and showed
that it models DPLL∗(T ), which is a modification of an SMT solver that can introduce
new theory literals; this captures the new literal introduction in solvers such as Yices
and Z3 [Yic, Z3].

There are many natural directions to pursue. First, although we have not considered
it here, it is natural to introduce an intermediate proof system between Res(T ) and
Res∗(T ) which is allowed to introduce new theory literals but not new theory variables.
For instance, if we have the formula a = f(b) ∧ a = c in EUF, then this intermediate
proof system could introduce the theory literal c = f(b) but not the theory literal f(c) =
f(a), whereas both are allowed to be introduced by Res∗(T ). It is not clear to us if this
intermediate system can simulate Frege, and we suggest studying it in its own right.

A second direction that we believe is quite interesting is extending our results on
EUF to capture the extended Frege system, which is the most powerful proof system
typically studied in proposition proof complexity. Intuitively, it seems that EUF by
itself is not strong enough to capture extended Frege; we consider finding a new theory
T which can capture it an interesting open problem.
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[Kra98] Jan Krajı́ček. Discretely ordered modules as a first-order extension of the cutting
planes proof system. The Journal of Symbolic Logic, 63(04):1582–1596, 1998.

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT
Modulo Theories. Journal of the ACM, 53(6):937–977, nov 2006.

[ORC09] Albert Oliveras and Enric Rodrıguez-Carbonell. Combining Decision Procedures :
The Nelson-Oppen approach. Techniques, 2009.

[PD11] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT
solvers as resolution engines. Artif. Intell., 175(2):512–525, 2011.

[RT08] Ran Raz and Iddo Tzameret. Resolution over linear equations and multilinear proofs.
Annals of Pure and Applied Logic, 155(3):194–224, 2008.

[smt] The Annual SMTCOMP Competition Website. http://www.smtcomp.org.
[Tin12] Cesare Tinelli. Foundations of Lazy SMT and DPLL (T). 2012.
[Tra08] Patrick Traxler. The time complexity of constraint satisfaction. In International Work-

shop on Parameterized and Exact Computation, pages 190–201. Springer, 2008.
[Yic] The Yices SMT Solver. http://yices.csl.sri.com/.
[Z3] The Z3 Theorem Prover. https://github.com/Z3Prover.


