
Formal Verification of a Vehicle-to-Vehicle
(V2V) Messaging System

Mark Tullsen1, Lee Pike2, Nathan Collins1, and Aaron Tomb1

1 Galois, Inc., Portland, OR, USA {tullsen,conathan,atomb}@galois.com
2 Groq, Inc. leepike@gmail.com ??

Abstract. Vehicle-to-Vehicle (V2V) communications is a “connected
vehicles” standard that will likely be mandated in the U.S. within the
coming decade. V2V, in which automobiles broadcast to one another,
promises improved safety by providing collision warnings, but it also
poses a security risk. At the heart of V2V is the communication messag-
ing system, specified in SAE J2735 using the Abstract Syntax Notation
One (ASN.1) data-description language. Motivated by numerous previ-
ous ASN.1 related vulnerabilities, we present the formal verification of
an ASN.1 encode/decode pair. We describe how we generate the imple-
mentation in C using our ASN.1 compiler. We define self-consistency for
encode/decode pairs that approximates functional correctness without
requiring a formal specification of ASN.1. We then verify self-consistency
and memory safety using symbolic simulation via the Software Analysis
Workbench.

Keywords: Automated Verification ·ASN.1 ·Vehicle-to-Vehicle · LLVM
· Symbolic execution · SMT solver

1 Introduction

At one time, automobiles were mostly mechanical systems. Today, a modern au-
tomobile is a complex distributed computing system. A luxury car might contain
tens of millions of lines of code executing on 50-70 microcontrollers, also known
as electronic control units (ECUs). A midrange vehicle might contain at least 25
ECUs, and that number continues to grow. In addition, various radios such as
Bluetooth, Wifi, and cellular provide remote interfaces to an automobile.

With all that code and remotely-accessible interfaces, it is no surprise that
software vulnerabilities can be exploited to gain unauthorized access to a vehi-
cle. Indeed, in a study by Checkoway et al. on a typical midrange vehicle, for
every remote interface, they found some software vulnerability that provided an
attacker access to the vehicle’s internal systems [4]. Furthermore, in each case,
once the interface is exploited, the attackers could parlay the exploit to make
arbitrary modifications to other ECUs in the vehicle. Such modifications could
include disabling lane assist, locking/unlocking doors, and disabling the brakes.
Regardless of the interface exploited, full control can be gained.

?? This work was performed while Dr. Pike was at Galois, Inc.

Meanwhile, the U.S. Government is proposing a new automotive standard for
vehicle-to-vehicle (V2V) communications. The idea is for automobiles to have
dedicated short-range radios that broadcast a Basic Safety Message (BSM)—
e.g., vehicle velocity, trajectory, brake status, etc.—to other nearby vehicles
(within approximately 300 meters). V2V is a crash prevention technology that
can be used to warn drivers of unsafe situations—such as a stopped vehicle
in the roadway. Other potential warning scenarios include left-turn warnings
when line-of-sight is blocked, blind spot/lane change warnings, and do-not-pass
warnings. In addition to warning drivers, such messages could have even more
impact for autonomous or vehicle-assisted driving. The U.S. Government esti-
mates that if applied to the full national fleet, approximately one-half million
crashes and 1,000 deaths could be prevented annually [15]. We provide a more
detailed overview of V2V in Section 2.

While V2V communications promise to make vehicles safer, they also provide
an additional security threat vector by introducing an additional radio and more
software on the vehicle.

This paper presents initial steps in ensuring that V2V communications are
implemented securely. We mean “secure” in the sense of having no flaws that
could be a vulnerability; confidentiality and authentication are provided in other
software layers and are not in scope here. Specifically, we focus on the security
of encoding and decoding the BSM. The BSM is defined using ASN.1, a data de-
scription language in widespread use. It is not an exaggeration to say that ASN.1
is the backbone of digital communications; ASN.1 is used to specify everything
from the X.400 email protocol to voice over IP (VoIP) to cellular telephony.
While ASN.1 is pervasive, it is a complex language that has been amended sub-
stantially over the past few decades. Over 100 security vulnerabilities have been
reported for ASN.1 implementations in MITRE’s Common Vulnerability Enu-
meration (CVE) [14]. We introduce ASN.1 and its security vulnerabilities in
Section 3.

This paper presents the first work in formally verifying a subsystem of V2V.
Moreover, despite the pervasiveness and security-critical nature of ASN.1, it is
the first work we are aware of in which any ASN.1 encoder (that translate ASN.1
messages into a byte stream) and decoder (that recovers an ASN.1 message from
a byte stream) has been formally verified. The only previous work in this direc-
tion is by Barlas et al., who developed a translator from ASN.1 into CafeOBJ,
an algebraic specification and verification system [1]. Their motivation was to
allow reasoning about broader network properties, of which an ASN.1 specifica-
tion may be one part, their work does not address ASN.1 encoding or decoding
and appears to be preliminary.

The encode/decode pair is first generated by Galois’ ASN.1 compiler, part of
the High-Assurance ASN.1 Workbench (HAAW). The resulting encode/decode
pair is verified using Galois’ open source Software Analysis Workbench (SAW),
a state-of-the-art symbolic analysis engine[6]. Both tools are further described
in Section 4.

In Section 5 we state the properties verified: we introduce the notion of
self-consistency for encode/decode verification, which approximates functional
correctness without requiring a formal specification of ASN.1 itself. Then we
describe our approach to verifying the self consistency and memory safety of the
C implementation of the encode/decode pair in Section 6 using compositional
symbolic simulation as implemented in SAW. In Section 7 we put our results
into context.

2 Vehicle-to-Vehicle Communications

As noted in the introduction, V2V is a short-range broadcast technology with
the purpose of making driving safer by providing early warnings. In the V2V
system, the BSM is the key message broadcasted, up to a frequency of 10Hz (it
can be perhaps lower due to congestion control). The BSM must be compatible
between all vehicles, so it is standardized under SAE J2735 [7].

The BSM is divided into Part I and Part II, and both are defined with ASN.1.
Part I is called the BSM Core Data and is part of every message broadcast.
Part I includes positional data (latitude, longitude, and elevation), speed, head-
ing, and acceleration. Additionally it includes various vehicle state information
including transmission status (e.g., neutral, park, forward, reverse), the steering
wheel angle, braking system status (e.g., Are the brakes applied? Are anti-lock
brakes available/engaged?, etc.), and vehicle size. Our verification, described in
Section 6, is over Part I.

Part II is optional and extensible. Part II could include, for example, regionally-
relevant data. It can also include additional vehicle safety data, including, for
example, which of the vehicle’s exterior lights are on. It may include information
about whether a vehicle is a special vehicle or performing a critical mission, such
as a police car in an active pursuit or an ambulance with a critical patient. It
can include weather data, and obstacle detection.

3 ASN.1

Abstract Syntax Notation One (ASN.1) is a standardized data description lan-
guage in widespread usage. Our focus in this section is to give a sense of what
ASN.1 is as well as its complexity. We particularly focus on aspects that have
led to security vulnerabilities.

3.1 The ASN.1 Data Description Language and Encoding Schemes

ASN.1 was first standardized in 1984, with many revisions since. ASN.1 is a data
description language for specifying messages; although it can express relations
between request and response messages, it was not designed to specify stateful
protocols. While ASN.1 is “just” a data description language, it is quite large
and complex. Indeed, merely parsing ASN.1 specifications is difficult. Dubuis-
son notes that the grammar of ASN.1 (1997 standard) results in nearly 400

shift/reduce errors and over 1,300 reduce/reduce errors in a LALR(1) parser
generator, while a LL(k) parser generator results in over 200 production rules
beginning with the same lexical token [8]. There is a by-hand transformation of
the grammar into an LL(1)-compliant grammar, albeit no formal proof of their
equivalence [9].

Not only is the syntax of ASN.1 complex, but so is its semantics. ASN.1
contains a rich datatype language. There are at least 26 base types, including
arbitrary integers, arbitrary-precision reals, and 13 kinds of string types). Com-
pound datatypes include sum types (e.g., CHOICE and SET), records with subtyp-
ing (e.g., SEQUENCE), and recursive types. There is a complex constraint system
(ranges, unions, intersections, etc.) on the types. Subsequent ASN.1 revisions
support open types (providing a sort of dynamic typing), versioning to support
forward/backward compatibility, user-defined constraints, parameterized speci-
fications, and so-called information objects which provide an expressive way to
describe relations between types.

So far, we have only highlighted the data description language itself. A set
of encoding rules specify how the ASN.1 messages are serialized for transmission
on the wire. Encoder and decoder pairs are always with respect to a specific
schema and encoding rule. There are at least nine standardized ASN.1 encoding
rules. Most rules describe 8-bit byte (octet) encodings, but three rule sets are
dedicated to XML encoding. Common encoding rules include the Basic Encoding
Rules (BER), Distinguished Encoding Rules (DER), and Packed Encoding Rules
(PER). The encoding rules do not specify the transport layer protocol to use (or
any lower-level protocols, such as the link or physical layer).

3.2 Example ASN.1 Specification

To get a concrete flavor of ASN.1, we present an example data schema. Let us
assume we are defining messages that are sent (TX) and received (RX) in a
query-response protocol.

MsgTx ::= SEQUENCE {
txID INTEGER(1..5),

txTag UTF8STRING

}
MsgRx ::= SEQUENCE {
rxID INTEGER(1..7),

rxTag SEQUENCE(SIZE(0..10)) OF INTEGER

}

We have defined two top-level types, each a SEQUENCE type. A SEQUENCE is an
named tuple of fields (like a C struct). The MsgTx sequence contains two fields:
txID and txTag. These are typed with built-in ASN.1 types. In the definition
of MsgRx, the second field, rxTag, is the SEQUENCE OF structured type; it is
equivalent to an array of integers that can have a length between 0 and 10,
inclusively. Note that the txID and rxID fields are constrained integers that fall
into the given ranges.

ASN.1 allows us to write values of defined types. The following is a value of
type MsgTx:

msgTx MsgTx ::= {
txID 1,

txTag "Some msg"

}

3.3 ASN.1 Security

There are currently over 100 vulnerabilities associated with ASN.1 in the MITRE
Common Vulnerability Enumeration (CVE) database [14]. These vulnerabilities
cover many vendor implementations as well as encoders and decoders embedded
in other software libraries (e.g., OpenSSL, Firefox, Chrome, OS X, etc.). The
vulnerabilities are often manifested as low-level programming vulnerabilities.
A typical class of vulnerabilities are unallowed memory reads/writes, such as
buffer overflows and over-reads and NULL-pointer dereferences. While generally
arcane, ASN.1 was recently featured in the popular press when an ASN.1 vender
flaw was found in telecom systems, ranging from cell tower radios to cellphone
baseband chips [11]; an exploit could conceivably take down an entire mobile
phone network.

Multiple aspects of ASN.1 combine to make ASN.1 implementations a rich
source for security vulnerabilities. One reason is that many encode/decode pairs
are hand-written and ad-hoc. There are a few reasons for using ad-hoc en-
coders/decoders. While ASN.1 compilers exist that can generate encoders and
decoders (we describe one in Section 4.1), many tools ignore portions of the
ASN.1 specification or do not support all encoding standards, given the com-
plexity and breadth of the language. A particular protocol may depend on ASN.1
language features or encodings unsupported by most existing tools. Tools that
support the full language are generally proprietary and expensive. Finally, gen-
erated encoders/decoders might be too large or incompatible with the larger
system (e.g., a web browser), due to licensing or interface incompatibilities.

Even if an ASN.1 compiler is used, the compiler will include significant hand-
written libraries that deal with, e.g., serializing or deserializing base types and
memory allocation. For example, the unaligned packed encoding rules (UPER)
require tedious bit operations to encode types into a compact bit-vector repre-
sentation. Indeed, the recent vulnerability discovered in telecom systems is not
in protocol-specific generated code, but in the associated libraries [11].

Finally, because ASN.1 is regularly used in embedded and performance-
critical systems, encoders/decoders are regularly written in unsafe languages,
like C. As noted above, many of the critical security vulnerabilities in ASN.1
encoders/decoders are memory safety vulnerabilities in C.

4 Our Tools for Generating and Verifying ASN.1 Code

We briefly introduce the two tools used in this work. First we introduce our
ASN.1 compiler for generating the encode/decode pair, then we introduce the
symbolic analysis engine used in the verification.

4.1 High-Assurance ASN.1 Workbench (HAAW)

Our High-Assurance ASN.1 Workbench (HAAW) is a suite of tools developed
by Galois that supports each stage of the ASN.1 protocol development lifecycle:
specification, design, development, and evaluation. It is composed of an inter-
preter, compiler, and validator, albeit with varying levels of maturity. HAAW is
implemented in Haskell.

The HAAW compiler is built using semi-formal design techniques and is
thoroughly tested to help ensure correctness. The implementation of the HAAW
compiler is structured to be as manifestly correct as feasible. It effectively im-
ports a (separately tested) ASN.1 interpreter which is then “partially-evaluated”
on the fly to generate code. The passes are as follows: An input ASN.1 speci-
fication is “massaged” to a specification-like form which can be interpreted by
a built-in ASN.1 interpreter. This specification-like form is combined with the
interpreter code and is converted into a lambda-calculus representation; to this
representation we apply multiple optimization rules; we finally “sequentialize”
to a monadic lambda-calculus (where we are left with the lambda calculus, se-
quencing operators, and encoding/decoding primitives), this last representation
is then transformed into C code. The generated code is linked with a library that
encodes and decodes the basic ASN.1 types.

Moreover, while the HAAW compiler improves the quality of the code gen-
erated, we verify the generated code and libraries directly, so HAAW is not part
of the trusted code-base.

4.2 The Software Analysis Workbench (SAW)

The Software Analysis Workbench (SAW)3 is Galois’ open-source, state-of-the-
art symbolic analysis engine for multiple programming languages. Here we briefly
introduce SAW, see Dockins et al. [6] for more details.

An essential goal of SAW is to generate semantic models of programs inde-
pendent of a particular analysis task and to interface with existing automated
reasoning tools. SAW is intended to be mostly automated but supports user-
guidance to improve scalability.

The high-level architecture of SAW is shown in Figure 1. At the heart of SAW
is SAWCore. SAWCore is SAW’s intermediate representation (IR) of programs.
SAWCore is a dependently-typed functional language, providing a functional rep-
resentation of the semantics of a variety of imperative and functional languages.

3 saw.galois.com

C LLVM

Java JVM

Cryptol

Other language

SAWCore

SAWScript

AIG

CNF

SMT-Lib

Other prover input

clang

javac Sym. exec.

Sym. exec.

Compilation

Sym. exec.

Sym. exec.

Sym. exec.

Rewriting

Fig. 1. SAW architecture, reproduced from [6].

SAWCore includes common built-in rewrite rules. Additionally, users can pro-
vide domain-specific rewrite rules, and because SAWCore is a dependently-typed
language, rewrite rules can be given expressive types to prove their correctness.

SAW currently supports automated translation of both low-level virtual ma-
chine (LLVM) and Java virtual machine (JVM) into SAWCore. Thus, program-
ming languages that can be compiled to these two targets are supported by SAW.
Indeed, SAW can be used to prove the equivalence between programs written in
C and Java.

SAWCore can also be generated from Cryptol. Cryptol is an open-source lan-
guage4 for the specification and formal verification of bit-precise algorithms [10],
and we use it to specify portions of our code, as we describe in Section 6.

A particularly interesting feature of Cryptol is that it is a typed functional
language, similar to Haskell, but includes a size-polymorphic type system that
includes linear integer constraints. To give a feeling for the language, the con-
catenate operator (#) in Cryptol has the following type:

(#) : fst, snd, a (fin fst)

=> [fst]a -> [snd]a -> [fst + snd]a

It concatenates two sequences containing elements of type a, the first of length
fst—which is constrained to be of finite (fin) length (infinite sequences are
expressible in Cryptol)—and the second of length snd. The return type is a se-
quence of a’s of length fst + snd. Cryptol relies on satisfiability modulo theories
(SMT) solving for type-checking.

SAWCore is typically exported to various formats supported by external
third-party solvers. This includes SAT solver representations (and inverter graphs
(AIG), conjunctive normal form (CNF), and ABC’s format [3]), as well as SMT-
Lib2 [2], supported by a range of SMT solvers.

4 https://cryptol.net/

SAW allows bit-precise reasoning of programs, and has been used to prove
optimized cryptographic software is correct [6]. SAW’s bit-level reasoning is also
useful for encode/decode verification, and in particular, ASN.1’s UPER encoding
includes substantial bit-level operations.

Finally, SAW includes SAWScript, a scripting language that drives SAW and
connects specifications with code.

5 Properties: Encode/Decode Self Consistency

Ideally, we would prove full functional correctness for the encode/decode pair:
that they correctly implement the ASN.1 UPER encoding/decoding rules for
the ASN.1 types defined in SAE J2735. However, to develop a specification
that would formalize all the required ASN.1 constructs, their semantics, and the
proper UPER encoding rules would be an extremely large and tedious undertak-
ing (decades of “man-years”?). Moreover, it is not clear how one would ensure
the correctness of such a specification.

Instead of proving full functional correctness, we prove a weaker property
by proving consistency between the encoder and decoder implementations. We
call our internal consistency property self-consistency, which we define as the
conjunction of two properties, round-trip and rejection. We show that self-
consistency implies that decode is the inverse of encode, which is an intuitive
property we want for an encode/decode pair.

The round-trip property states that a valid message that is encoded and then
decoded results in the original message. This is a completeness property insofar
as the decoder can decode all valid messages.

A less obvious property is the rejection property. The rejection property in-
formally states that any invalid byte stream is rejected by the decoder. This is
a soundness property insofar as the decoder only decodes valid messages.

In the context of general ASN.1 encoders/decoders, let us fix a schema S and
an encoding rule. Let MS be the set of all ASN.1 abstract messages that satisfy
the schema. Let B the set of all finite byte streams. Let encs : Ms → B be an
encoder, a total function on Ms. Let error be a fixed constant such that error 6∈
Ms. Let the total function decs : B → (Ms ∪ {error}) be its corresponding
decoder.

The round-trip and rejection properties can respectively be stated as follows:

Definition 1 (Round-trip).

∀m ∈Ms.decs(encs(m)) = m.

Definition 2 (Rejection).

∀b ∈ B.decs(b) = error ∨ encs(decs(b)) = b.

The two properties are independent: a decoder could properly decode valid
byte streams while mapping invalid byte streams to valid messages. Such a de-
coder would be allowed by Round-trip but not by Rejection. An encode/decode

pair that fails the Rejection property could mean that dec does not terminate
normally on some inputs (note that error is a valid return value of dec). Clearly,
undefined behavior in the decoder is a security risk.

Definition 3 (Self-consistency). An encode/decode pair encS and decS is
self-consistent if and only if it satisfies the round-trip and rejection properties.

Self-consistency does not require any reference to a specification of ASN.1
encoding rules, simplifying the verification. Indeed, they are applicable to any
encode/decode pair of functions.

However, as noted at the outset, self-consistency does not imply ful functional
correctness. For example, for an encoder encS and decoder decS pair, suppose the
messages MS = {m0, m1} and the byte streams B includes {b0, b1} ⊆ B. Sup-
pose that according to the specification, it should be the case that encS(m0) =
b0, encS(m1) = b1, decs(b0) = m0 and dec(b1) = m1, and for all b ∈ B
such that b 6= b0 and b 6= b1, decS(b) = error . However, suppose that in fact
encS(m0) = b1, encS(m1) = b0, decS(b0) = m1 and decS(b1) = m0, and for all
other b ∈ B, dec(b) = error . Then encS and decS satisfy both the round-trip
and rejection properties, while being incorrect.

That said, if self-consistency holds, then correctness reduces to showing that
either encoder or decoder matches its specification, but showing both hold is
unnecessary.

In our work, we formally verify self-consistency and memory safety. We also
give further, informal, evidence of correctness by both writing individual test
vectors and by comparing our test vectors to that produced by other ASN.1
compilers.

6 Verification

Figure 2 summarizes the overall approach to generating and verifying the en-
code/decode pair, which we reference throughout this section.

6.1 First Steps

The given SAE J2735 ASN.1 specification (J2735.asn) is given as input to HAAW
to generate C code for the encoder and decoder. A HAAW standard library is
emitted (the dotted line from HAAW to libHAAW.c in Figure 2 denotes that
the standard library is not specific to the SAE-J2735 specification and is not
compiled from HAAW).

We wrote the round-trip and rejection properties (Section 5) as two C func-
tions. For example, the round-trip property is encoded, approximately, as follows:

bool round_trip(BSM *msg_in) {
unsigned char str[BUF_SIZE];

enc(msg_in, str);

BSM *msg_out;

J2735.asn

HAAW

enc.c dec.c driver.c

driver.llvm

libHAAW.c

libHAAW.llvm enc.llvm dec.llvm

script.saw overrides.sawSAW

spec.cry

Z3

Fig. 2. Code generation and verification flow.

dec(msg_out, str);

return equal_msg(msg_in, msg_out);

}

The actual round trip property is slightly longer as we need to deal with C
level setup, allocation, etc. This is why we chose to implement this property in
C (rather than in SAWScript).

Now all we need to do is verify, in SAWScript, that the C function round trip

returns 1 for all inputs. At this point, it would be nice to say the power of our
automated tools was sufficient to prove round trip without further programmer
intervention. This, unsurprisingly, was not the case. Most of the applications of
SAW have been to cryptographic algorithms where code typically has loops with
statically known bounds. In our encoder/coder code we have a number of loops
with unbounded iterations: given such code we need to provide some guidance
to SAW.

In the following sections we present how we were able to use SAW, as well as
our knowledge of our specific code, to change an intractable verification task into
one that could be done (by automated tools) in less than 5 hours. An important
note: the rest of this section describes SAW techniques that allow us to achieve
tractability, they do not change the soundness of our results.

6.2 Compositional Verification with SAW Overrides

SAW supports compositional verification. A function (e.g., compiled from Java or
C) could be specified in Cryptol and verified against its specification. That Cryp-
tol specification can then be used in analyzing the remainder of the program,
such that in a symbolic simulation, the function is replaced with its specification.
We call this replacement an override. Overrides can be used recursively and can
dramatically improve the scalability of a symbolic simulation. SAW’s scripting
language ensures by construction that an override has itself been verified.

Overrides are like lemmas, we prove them once, separately, and can re-use
them (without re-proof). The lemma that an override provides is an equivalence
between a C function and a declarative specification provided by the user (in
Cryptol). The effort to write a specification and add an override is often required
to manage intractability of the automated solvers used.

6.3 Overriding “copy bits” in SAW

There are two critical libHAAW functions that we found to be intractable to verify
using symbolic simulation naively. Here we describe generating overrides for one
of them:

copy_bits

(unsigned char * dst

, uint32_t *dst_i

, unsigned char const * src

, uint32_t *src_i

, uint32_t const length)

{
uint32_t src_i_bound = *src_i + length;

while (*src_i < src_i_bound) {
copy_overlapping_bits (dst, dst_i, src, src_i, src_i_bound);

}
return 0;

}

The above function copies length bits from the src array to the dst array,
starting at the bit indexed by src i in src and index dst i in dst; src i and
dst i are incremented by the number of bits copied; copy overlapping bits is
a tedious but loop-free function with bit-level computations to convert to/from
a bit-field and byte array. This library function is called by both the encoder
and decoder.

One difficulty with symbolically executing copy bits with SAW is that SAW
unrolls loops. Without a priori knowledge of the size of length and src i, there
is no upper bound on the number of iterations of the loop. Indeed, memory
safety is dependent on an invariant holding between the indices, the number of
bits to copy, and the length of the destination array: the length of the destination
array is not passed to the function, so there is no explicit check to ensure no
write-beyond-array in the destination array.

Even if we could fix the buffer sizes and specify the relationship between
the length and indexes so that the loop could be unrolled in theory, in practice,
it would still be computationally infeasible for large buffers. In particular, we
would have to consider every valid combination of the length and start indexes,
which is cubic in the bit-length of the buffers.

To override copy bits, we write a specification of copy bits in Cryptol.
The specification does not abstract the function, other than eliding the details
of pointers, pointer arithmetic, and destructive updates in C. The specification
is given below:

copy_bits : dst_n, src_n

[dst_n][8] -> [32] -> [src_n][8] -> [32] -> [32]

-> ([dst_n][8], [32], [32])

copy_bits dst0 dst_i0 src src_i0 length = (dst1, dst_i1, src_i1)

where

dst_bits0 = join dst0

src_bits0 = join src

dst1 = split (copy dst_bits0 0)

copy dst_bits i =

if i == length

then dst_bits

else copy dst_bits’’ (i + 1)

where

dst_bits’’ = update dst_bits (dst_i0 + i)

(src_bits0 @ (src_i0 + i))

dst_i1 = dst_i0 + length

src_i1 = src_i0 + length

We refer to the Cryptol User Manual for implementation details [10], but to
provide an intuition, we describe the type signature (the first three lines above):
the type is polymorphic, parameterized by dst n and src n. A type [32] is a
bit-vector of length 32. A type [dst n][8] is an array of length dst n containing
byte values. The function takes a destination array of bytes, a 32-bit destination
index, a source array of bytes, a source index, an a length, and returns a triple
containing a new destination array, and new destination and source indices,
respectively. Because the specification is pure, the values that are destructively
updated through pointers in the C implementation are part of the return value
in the specification.

6.4 Multiple Overrides for “copy bits” in SAW

Even after providing the above override for copy bits, we are still beyond
the limits of our underlying solvers to automatically prove the equivalence of
copy bits with its Cryptol specification.

However, we realize that for the SAE J2735 encode/decode, copy bits is
called with a relatively small number of specific concrete values for the sizes of

the dst and src arrays, the indexes dst i and src i, and the length of bits to
copy length. The only values that we need to leave symbolic are the bit values
within the dst and src arrays. Therefore, rather than creating a single override
for an arbitrary call to copy bits, we generate separate overrides for each unique
set of “specializable” arguments, i.e., dst i, src i, and length.

Thus we note another feature of SAW: SAW allows us to specify a set of con-
crete function arguments for an override; for each of these, SAW will specialize
the override. (I.e., it will prove each specialization of the override.) In our case
this turns one intractable override into 56 tractable ones. The 56 specializations
(which corresponds to the number of SEQUENCE fields in the BSM specifi-
cation) were not determined by trial and error but by running instrumented
code.

It is important to note that the consequence of a missing overrride special-
ization cannot change the soundness of SAW’s result: Overrides in SAW cannot
change the proof results, they only change the efficiency of proof finding. If we
had a missing override specialization for copy bits we would only be back where
we started: a property that takes “forever” to verify.

This approach works well for the simple BSM Part I. However, once we begin
to verify encoders/decoders for more complex ASN.1 specifications (e.g., contain-
ing CHOICE and OPTIONAL constructs), this method will need to be generalized.

6.5 Results

A SAW script (script.saw) ties everything together and drives the symbolic
execution in SAW and lifts LLVM variables and functions into a dependent logic
to state pre- and post-conditions and provide Cryptol specifications as needed.
Finally, SAW then generates a SMT problem; Z3 [5] is the default solver we use.

Just under 3100 lines of C code were verified, not counting blank or comment
lines. The verification required writing just under 100 lines of Cryptol specifi-
cation. There are 1200 lines of SAW script auto-generated by the test harness
in generating the override specifications. Another 400 lines of SAW script is
hand-written for the remaining overrides and to drive the overall verification.

Executed on a modern laptop with an Intel Core i7-6700HQ 2.6 GHz proces-
sor and 32G of memory, the verification takes 20 minutes to prove the round-
trip property and 275 minutes to prove the rejection property. The round-trip
property is less expensive to verify because symbolic simulation is sensitive to
branching, and for the round-trip property, we assert the data is valid to start,
which in turn ensures that all of the decodings succeed. In rejection, on the other
hand, we have a branch at each primitive decode, and we need to consider both
possibilities (success and failure).

7 Discussion

7.1 LLVM and Definedness

Note that our verification has been with respect to the LLVM semantics not the
C source of our code. SAW does not model C semantics, but inputs LLVM as the

program’s semantics (we use clang to generate LLVM from the C). By verifying
LLVM, SAW is made simpler (it need only model LLVM semantics rather than
C) and we can do inter-program verification more easily. The process of proving
that a program satisfies a given specification within SAW guarantees definedness
of the program (and therefore memory safety) as a side effect. That is, the
translation from LLVM into SAWCore provides a well-defined semantics for the
program, and this process can only succeed if the program is well-defined. In
some cases, this well-definedness is assumed during translation and then proved
in the course of the specification verification. For instance, when analyzing a
memory load, SAW generates a semantic model of what the program does if
the load was within the bounds of the object it refers to, and generates a side
condition that the load was indeed in bounds.

Verifying LLVM rather than the source program is a double-edged sword. On
the one hand, the compiler front-end that generates LLVM is removed from the
trusted computing base. On the other hand, the verification may not be sound
with respect to the program’s source semantics. In particular, C’s undefined
behaviors are a superset of LLVM’s undefined behaviors; a compiler can soundly
remove undefined behaviors but not introduce them. For example, a flaw in the
GCC compiler allowed the potential for an integer overflow when multiplying
the size of a storage element by the number of elements. The result could be
insufficient memory being allocated, leading to a subsequent buffer overflow.
clang, however, introduces an implicit trap on overflow [12].

Moreover, the LLVM language reference does not rigorously specify well-
definedness, and it is possible that our formalization of LLVM diverges from a
particular compiler’s [13].

7.2 Other Assumptions

We made some memory safety assumptions about how the encode/decode rou-
tines are invoked. First, we assume that the input and output buffers provided
to the encoder and decoder, respectively, do not alias. We also assume that each
buffer is 37 bytes long (sufficient to hold a BSM with Part I only). A meta ar-
gument shows that buffers of at least 37 bytes are safe: we verify that for all
37-byte buffers, we never read or write past their ends. So, if the buffers were
longer, we would never read the bytes above the 37th element.

For more complex data schemas (and when we extend to BSM Part II) whose
messages require a varying octet size, we would need to ensure the buffers are
sufficiently large for all message sizes.

7.3 Proof Robustness

By “proof robustness” we mean how much effort is required to verify another
protocol or changes to the protocol. We hypothesize that for other protocols
that use UPER and a similar set of ASN.1 constructs, the verification effort
would be small. Most of our manual effort focused on the libHAAW libraries,
which is independent of the particular ASN.1 protocol verified. That said, very

large protocol specifications may require additional proof effort to make them
compositional.

In future work, we plan to remove the need to generate overrides as a separate
step (as described in Section 6.2) by modifying HAAW to generate overrides as
it generates the C code.

8 Conclusion

Hopefully we have motivated the security threat to V2V and the need for elimi-
nating vulnerabilities in ASN.1 code. We have presented a successful application
of automated formal methods to real C code for a real-world application domain.

There are some lessons to be learned from this work:
(1) Fully automated proofs of correctness properties are possible, but not

trivial. The encoding of properties into C and SAWScript and getting the proofs
to go through took one engineer approximately 3 months, this engineer had some
experience with SAW; we were also able to get support and bug-fixes from the
SAW developers. (It also helped that the code was bug-free so no “verification”
time was spent on finding counter-examples and fixing code.)

(2) The straightforward structure of the C used in the encode/decode routines
made them more amenable to automated analysis (see Section 6). It certainly
helped that the code verified was compiler-generated and was by design intended
to be, to some degree, manifestly correct. The lesson is not “choose low-hanging
fruit” but “look, low-hanging fruit in safety critical code” or possibly even “create
low-hanging fruit!” (by using simpler C).

(3) For non-trivial software, the likelihood of having a correct specification at
hand, or having the resources to create it, is quite slim! For instance, to fully spec-
ify correct UPER encoding/decoding for arbitrary ASN.1 specifications would
be a Herculean task. But in our case, we formulated two simple properties—
Round-Trip and Rejection—and by proving them we have also shown memory
safety and some strong (not complete, see Section 5) guarantees of functional
correctness. This technique could be applied to any encode/decode pair.

There are many ways we hope to extend this work:
(1) We plan to extend our verification to the full BSM. This now gets us

to more challenging ASN.1 constructs (e.g., CHOICE) that involve a more com-
plicated control-flow in the encoders/decoders. We do not expect a proof to be
found automatically, but our plan is to generate lemmas with the generated C
code that will allow proofs to go through automatically.

(2) Once we can automatically verify the full BSM, we expect to be able
to perform a similar fully-automatic verification on many ASN.1 specifications
(most do not use the full power of ASN.1). We would like to explore what
properties of a given ASN.1 specification might guarantee the ability to perform
such a fully-automatic verification.

(3) By necessity, parts of our SAWScript and the verification properties have
a dependence on the particular API of the HAAW compiler (how abstract values
are encoded, details of the encoding/decoding functions, memory-management

design choices, etc.). Currently the authors are working on generalizing this so
that one can abstract over ASN.1-tool-specific API issues. The goal is to be able
to extend our results to other encode/decode pairs (generated by hand or by
other ASN.1 compilers.).

(4) Note that the self-consistency property is generic (and has no reference
to ASN.1). As a result, we believe our work can be extended to encode/decode
pairs on non-ASN.1 data.

Acknowledgments. This work was performed under subcontract to Battelle
Memorial Institute for the National Highway Safety Transportation Adminis-
tration (NHTSA). We thank Arthur Carter at NHTSA and Thomas Bergman
of Battelle for their discussions and guidance. Our findings and opinions do not
necessarily represent those of Battelle or the United States Government.

References

1. Barlas, K., Koletsos, G., Stefaneas, P.S., Ouranos, I.: Towards a correct translation
from ASN.1 into CafeOBJ. IJRIS 2(3/4), 300–309 (2010)

2. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.5. Tech.
rep., Department of Computer Science, The University of Iowa (2015), available
at w.SMT-LIB.org

3. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification
tool. In: Proceedings of the 22nd International Conference on Computer Aided
Verification (CAV). pp. 24–40. Springer-Verlag (2010)

4. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive experimental
analyses of automotive attack surfaces. In: USENIX Security (2011)

5. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings of the
Theory and Practice of Software, 14th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS). pp. 337–340.
Springer-Verlag (2008)

6. Dockins, R., Foltzer, A., Hendrix, J., Huffman, B., McNamee, D., Tomb, A.: Con-
structing semantic models of programs with the software analysis workbench. In:
Verified Software. Theories, Tools, and Experiments - 8th International Conference,
VSTTE, Revised Selected Papers. pp. 56–72 (2016)

7. DSRC Technical Committee: Dedicated Short Range Communications (DSRC)
message set dictionary (j2735 20103). Tech. rep., SAE International (20016)

8. Dubuisson, O.: ASN.1 Communication between heterogeneous Systems. Elsevier-
Morgan Kaufmann (2000)

9. Fouquart (P.), D.O., (F.), D.: Une analyse syntaxique d’ASN.1:1994. Tech. Rep.
Internal Report RP/LAA/EIA/83, France Télécom R&D (March 1996)

10. Galois, Inc.: Cryptol: the language of cryptography. Galois, Inc. (2016), available
at http://www.cryptol.net/files/ProgrammingCryptol.pdf

11. Goodin, D.: Software flaw puts mobile phones and networks at risk of complete
takeover. Ars Technica (2016)

12. Lattner, C.: What every C programmer should know about undefined
behavior #3/3. Online blog (May 2011), http://blog.llvm.org/2011/05/

what-every-c-programmer-should-know_21.html

13. Lee, J., andYoungju Song, Y.K., Hur, C.K., Das, S., Majnemer, D., Regehr, J.,
Lopes, N.P.: Taming undefined behavior in LLVM. In: Proceedings of 38th Con-
ference on Programming Language Design and Implementation (PLDI) (2017)

14. MITRE: Common vulnerabilities and exposures for ASN.1. Website (February
2017), available at https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=ASN.1

15. U.S. Dept. of Transportation: Fact sheet: Improving safety and mobility through
vehicle-to-vehicle communications technology. Online (2016), available at https:

//icsw.nhtsa.gov/safercar/v2v/pdf/V2V_NPRM_Fact_Sheet_121316_v1.pdf

