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Abstract. We report on a machine assisted verification of an efficient
implementation of Montgomery Multiplication which is a widely used
method in cryptography for efficient computation of modular exponenti-
ation. We shortly describe the method, give a brief survey of the VeriFun

system used for verification, present the formal proofs and report on the
effort for creating them. Our work uncovered a serious fault in a pub-
lished algorithm for computing multiplicative inverses based on Newton-
Raphson iteration, thus providing further evidence for the benefit of
computer-aided verification.

Keywords Modular Arithmetic, Multiplicative Inverses, Montgomery
Multiplication, Program Verification, Theorem Proving by Induction

1 Introduction

Montgomery Multiplication [6] is a method for efficient computation of resi-
dues aj mod n which are widely used in cryptography, e.g. for RSA, Diffie-
Hellman, ElGamal, DSA, ECC etc. [4, 5]. The computation of these residues
can be seen as an iterative calculation in the commutative ring with identity
Rn = (Nn,⊕, in,�, 0, 1 mod n) where n ≥ 1, Nn = {0, . . . , n− 1}, addition
defined by a ⊕ b = a + b mod n, inverse operator defined by in(a) = a · (n − 1)
mod n, multiplication defined by a � b = a · b mod n, neutral element 0 and
identity 1 mod n.

For any m ∈ N relatively prime to n, some m-1
n ∈ Nn exists such that

m�m-1
n = 1 mod n. m-1

n is called the multiplicative inverse of m in Rn and is
used to define a further commutative ring with identity Rm

n = (Nn,⊕, in,⊗, 0,
m mod n) where multiplication is defined by a⊗b = a�b�m-1

n and identity given
as m mod n. The multiplication ⊗ of Rm

n is called Montgomery Multiplication.

The rings Rn and Rm
n are isomorphic by the isomorphism h : Rn → Rm

n

defined by h(a) = a � m and h−1 : Rm
n → Rn given by h−1(a) = a � m-1

n .
Consequently a · b mod n can be calculated in ring Rm

n as well because

a · b mod n = a� b = h−1(h(a� b)) = h−1(h(a)⊗ h(b)) . (∗)

The required operations h,⊗ and h−1 can be implemented by the so-called
Montgomery Reduction redc [6] (displayed in Fig. 1) as stated by Theorem 1:



function redc(x, z,m, n:N):N <=
if m 6= 0
then let q := (x + n · (x · z mod m))/m in

if n > q then q else q− n end if
end let

end if

function redc∗(x, z,m, n, j:N):N <=
if m 6= 0

then if n 6= 0
then if j = 0

then m mod n
else redc(x · redc∗(x, z,m, n,-(j)), z,m, n)

end if
end if

end if

Fig. 1. Procedures redc and redc∗ implementing the Montgomery Reduction

Theorem 1. Let a, b, n,m ∈ N with m > n > a, n > b and n,m relatively
prime, let I = im(n-1m) and let M = m2 mod n. Then I is called the Montgomery
Inverse and (1) h(a) = redc(a ·M, I, m, n), (2) a ⊗ b = redc(a · b, I,m, n), and
(3) h−1(a) = redc(a, I,m, n).

By (∗) and Theorem 1, a · b mod n can be computed by procedure redc and
consequently aj mod n can be computed by iterated calls of redc (implemented
by procedure redc∗ of Fig. 1) as stated by Theorem 2:

Theorem 2. Let a, n,m, I and M like in Theorem 1. Then for all j ∈ N:

aj mod n = redc(redc∗(redc(a ·M, I,m, n), I,m, n, j), I,m, n) .1

By Theorem 2, j + 2 calls of redc are required for computing aj mod n, viz.
one call to map a to h(a), j calls for the Montgomery Multiplications and one
call for mapping the result back with h−1. This approach allows for an efficient
computation of aj mod n in Rm

n (for sufficient large j), if m is chosen as a power
of 2 and some odd number for n, because x mod m then can be computed with
constant time and x/m only needs an effort proportional to log m in procedure
redc, thus saving the expensive mod n operations in Rn.

2 About XeriFun

The truth of Theorems 1 and 2 is not obvious at all, and some number theory
with modular arithmetic is needed for proving them. Formal proofs are worth-
while because correctness of cryptographic methods is based on these theorems.

1 Exponentiation is defined here with 00 = 1 so that redc(redc∗(redc(0 ·M, I,m, n), I,
m, n, 0), I,m, n) = 1 mod n holds in particular.
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structure bool <= true, false
structure N <= 0,+(−:N)
structure signs <= ‘+’, ‘−’
structure Z <= [outfix] 〈 : 〉(sign:signs, [outfix]| :N)
structure triple[@T1,@T2,@T3] <= [outfix] l : m ( [postfix]1:@T1,

[postfix]2:@T2, [postfix]3:@T3 )

lemma z 6= 0→ [x · (y mod z) ≡ x · y] mod z <= ∀ x, y, z:N
if{¬ z = 0, (x · (y mod z) mod z) = (x · y mod z), true}

Fig. 2. Data structures and lemmas in XeriFun

Proof assistants like Isabelle/HOL, HOL Light, Coq, ACL2 and others have
been shown successful for developing formal proofs in Number Theory (see e.g.

[14]). Here we use the XeriFun system2 [7, 10] to verify correctness of Mont-
gomery Multiplication by proving Theorems 1 and 2. The system’s object lan-
guage consists of universal first-order formulas plus parametric polymorphism.
Type variables may be instantiated with polymorphic types. Higher-order func-
tions are not supported. The language provides principles for defining data struc-
tures, procedures operating on them, and for statements (called “lemmas”) about
the data structures and procedures. Unicode symbols may be used and function
symbols can be written in out-, in-, pre- and postfix notation so that readability
is increased by use of the familiar mathematical notation. Fig. 2 displays some
examples. The data structure bool and the data structure N for natural num-
bers built with the constructors 0 and +(. . .) for the successor function are the
only predefined data structures in the system. -(. . .) is the selector of +(. . .)
thus representing the predecessor function. Subsequently we need integers Z as
well which we define in Fig. 2 as signed natural numbers. For instance, the ex-
pression 〈 ‘−’, 42 〉 is a data object of type Z, selector sign yields the sign of an
integer (like ‘−’ in the example), and selector |. . .| gives the absolute value of
an integer (like 42 in the example). Identifiers preceded by @ denote type vari-
ables, and therefore polymorphic triples are defined in Fig. 2. The expression
l 42, 〈 ‘+’, 47 〉, 〈 ‘−’, 5 〉m is an example of a data object of type triple[N,Z,Z].
The ith component of a triple is obtained by selector (. . .)i.

Procedures are defined by if - and case-conditionals, functional composition
and recursion like displayed in Fig. 1. Procedure calls are evaluated eagerly, i.e.
call-by-value. The use of incomplete conditionals like for redc and redc∗ results
in incompletely defined procedures [12]. Such a feature is required when working
with polymorphic data structures but is useful for monomorphic data structures
too as it avoids the need for stipulating artificial results, e.g. for n/0. Predi-
cates are defined by procedures with result type bool. Procedure function [infix]
>(x, y:N):bool <= . . . for deciding the greater-than relation is the only prede-

2 An acronym for “A Verifier for Functional Programs”.
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fined procedure in the system. Upon the definition of a procedure, XeriFun ’s
automated termination analysis (based on the method of Argument-Bounded
Functions [8, 11]) is invoked for generating termination hypotheses which are
sufficient for the procedure’s termination and proved like lemmas. Afterwards in-
duction axioms are computed from the terminating procedures’ recursion struc-
ture to be on stock for future use.

Lemmas are defined with conditionals if : bool × bool × bool → bool as the
main connective, but negation ¬ and case-conditionals may be used as well.
Only universal quantification is allowed for the variables of a lemma. Fig. 2
displays a lemma about (the elsewhere defined) procedure mod (computing the
remainder function) which is frequently used in subsequent proofs. The string
in the headline (between “lemma” and “<=”) is just an identifier assigning a
name to the lemma for reference and must not be confused with the statement
of the lemma given as a boolean term in the lemma body. Some basic lemmas
about equality and >, e.g. stating transitivity of = and >, are predefined in the
system. Predefined lemmas are frequently used in almost every case study so
that work is eased by having them always available instead of importing them
from some proof library.

Lemmas are proved with the HPL-calculus (abbreviating Hypotheses, Pro-
grams and Lemmas) [10]. The most relevant proof rules of this calculus are
Induction, Use Lemma, Apply Equation, Unfold Procedure, Case Analysis and
Simplification. Formulas are given as sequents of form H, IH ` goal, where H
is a finite set of hypotheses given as literals, i.e. negated or unnegated predicate
calls and equations, IH is a finite set of induction hypotheses given as partially
quantified boolean terms and goal is a boolean term, called the goalterm of the
sequent. A deduction in the HPL-calculus is represented by a tree whose nodes
are given by sequents. A lemma ` with body ∀ . . . goal is verified iff (i) the goal-
term of each sequent at a leaf of the proof tree rooted in {}, {} ` goal equals true
and (ii) each lemma applied by Use Lemma or Apply Equation when building
the proof tree is verified. The base of this recursive definition is given by lemmas
being proved without using other lemmas. Induction hypotheses are treated like
verified lemmas, however being available only in the sequent they belong to.

The Induction rule creates the base and step cases for a lemma from an induc-
tion axiom. By choosing Simplification, the system’s first-order theorem prover,
called the Symbolic Evaluator, is started for rewriting a sequent’s goalterm using
the hypotheses and induction hypotheses of the sequent, the definitions of the da-
ta structures and procedures as well as the lemmas already verified. This reasoner
is guided by heuristics, e.g. for deciding whether to use a procedure definition,
for speeding up proof search by filtering out useless lemmas, etc. Equality rea-
soning is implemented by conditional term rewriting with AC -matching, where
the orientation of equations is heuristically established [13]. The Symbolic Eva-
luator is a fully automatic tool over which the user has no control, thus leaving
the HPL-proof rules as the only means to guide the system to a proof.

Also the HPL-calculus is controlled by heuristics. When applying the Verify
command to a lemma, the system starts to compute a proof tree by choosing
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appropriate HPL-proof rules heuristically. If a proof attempt gets stuck, the user
must step in by applying a proof rule to some leaf of the proof tree (sometimes
after pruning some unwanted branch of the tree), and the system then takes over
control again. Also it may happen that a further lemma must be formulated by
the user before the proof under consideration can be completed. All interactions
are menu driven so that typing in proof scripts is avoided (see [7, 10]).

XeriFun is implemented in Java and installers for running the system under
Windows, Unix/Linux or Mac are available from the web [7]. When working
with the system, we use proof libraries which had been set up over the years
by extending them with definitions and lemmas being of general interest. When
importing a definition or a lemma from a library into a case study, all program
elements and proofs the imported item depends on are imported as well. The cor-
rectness proofs for Montgomery Multiplication depend on 9 procedures and 96
lemmas from our arithmetic proof library, which ranges from simple statements
like associativity and commutativity of addition up to more ambitious theorems
about primes and modular arithmetic. In the sequel we will only list the lemmas
which are essential to understand the proofs and refer to [7] for a complete
account of all used lemmas and their proofs.

3 Multiplicative Inverses

We start our development by stipulating how multiplicative inverses are com-
puted. To this effect we have to define some procedure I : N× N→ N satisfying

∀x, y:N y 6= 0 ∧ gcd(x, y) = 1→ [x · I(x, y) ≡ 1] mod y (1)

∀x, y, z:N y 6= 0 ∧ gcd(x, y) = 1→ [z · x · I(x, y) ≡ z ] mod y (2)

∀n, x, y, z:N y 6= 0 ∧ gcd(x, y) = 1→ [n+ z · x · I(x, y) ≡ n+ z ] mod y. 3 (3)

Lemma 2 is proved with Lemma 1 and library lemma

∀n,m, x, y:N gcd(n,m) = 1 ∧ [m · x ≡ m · y] mod n→ [x ≡ y] mod n (4)

after instructing the system to use library lemma

∀x, y, z:N z 6= 0→ [x · (y mod z) ≡ x · y ] mod z (5)

and XeriFun proves Lemma 3 automatically using Lemma 2 as well as library
lemma

∀n, x, y, z:N z 6= 0 ∧ [x ≡ y] mod z → [x+ n ≡ y + n] mod z . (6)

Multiplicative inverses can be computed straightforwardly with Euler’s φ-
function, where Lemma 1 then is proved with Euler’s Theorem [7, 14]. But this
approach is very costly and therefore unsuitable for an implementation of Mont-
gomery Multiplication.

3 If x, y, z ∈ Z and n ∈ N, then n | z abbreviates z mod n = 0, where z mod n = −(|z|
mod n) if z < 0, and [x ≡ y] mod n stands for n | x − y. x mod n = y mod n is
sufficient for [x ≡ y] mod n but only necessary, if x and y have same polarity.
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function euclid(x, y:N):triple[N, Z, Z] <=
if y = 0
then l x, 〈‘+’, 1〉, 〈‘+’, 0〉 m
else let e := euclid(y, (x mod y)), g := (e)1, s := (e)2, t := (e)3 in

case sign(s) of
‘+’ : l g, 〈‘ – ’, | t |〉, 〈‘+’, | s |+ (x/y) · | t |〉 m,
‘ – ’: l g, 〈‘+’, | t |〉, 〈‘ – ’, | s |+ (x/y) · | t |〉 m

end case
end let

end if

function IB(x, y:N):N <=
if y 6= 0
then let s := (euclid(x, y))2 in

case sign(s) of ‘+’ : (| s | mod y), ‘ – ’ : y − (| s | mod y) end case
end let

end if

Fig. 3. Computation of multiplicative inverses by the extended Euclidean algorithm

3.1 Bézout’s Lemma

A more efficient implementation of procedure I is based on Bézout’s Lemma
stating that the greatest common divisor can be represented as a linear combi-
nation of its arguments:

Bézout’s Lemma
For all x, y ∈ N some s, t ∈ Z exist such that gcd(x, y) = x · s+ y · t .

If y 6= 0, IB(x, y) := s mod y is defined and gcd(x, y) = 1 holds, then by
Bézout’s Lemma [x ·IB(x, y) = x · (s mod y) ≡ x · s ≡ x · s+ y · t = 1] mod y. To
implement this approach, the integer s need to be computed which can be per-
formed by the extended Euclidean algorithm displayed in Fig. 3. This approach
is more efficient because a call of euclid(x, y) (and in turn of IB(x, y) given as
in Fig. 3) can be computed in time proportional to (log y)2 if x < y, whereas
the use of Euler’s φ-function needs time proportional to 2log y in the context of
Montgomery Multiplication (as φ(2k+1) = 2k).

However, s ∈ Z might be negative so that y + (s mod y) ∈ N instead of
s mod y then must be used as the multiplicative inverse of x because the car-
riers of the rings Rn and Rm

n are subsets of N. We therefore define IB as shown
in Fig. 3 which complicates the proof of Lemma 1 (with I replaced by IB) as
this definition necessitates a proof of [x · y + x · (s mod y) ≡ 1] mod y if s < 0.

Bézout’s Lemma is formulated in our system’s notation by the pair of lemmas
displayed in Fig. 4. When prompted to prove Lemma 7, the system starts a Peano
induction upon x but gets stuck in the step case. We therefore command to use
induction corresponding to the recursion structure of procedure euclid. XeriFun

6



lemma Bézout’s Lemma #1 <= ∀ x, y : N
let e := euclid(x, y), g := (e)1, s := (e)2, t := (e)3 in
case sign(s) of ‘+’ : x · | s | = y · | t |+ g, ‘–’ : x · | s |+ g = y · | t | end case

end let

(7)

lemma Bézout’s Lemma #2 <= ∀ x, y : N (euclid(x, y))1 = gcd(x, y) . (8)

Fig. 4. Bézout’s Lemma

responds by proving the base case and simplifying the induction conclusion in
case sign(s) = ‘+’ to

y 6= 0→ x · |t|+ g = (x mod y) · |t|+ g + |t| · (y − 1) · (x/y) + |t| · (x/y) (i)

(where e abbreviates euclid(y, x mod y), g := (e)1, s := (e)2 and t := (e)3) using
the induction hypothesis

∀x′:N let{e := euclid(x′, (x mod y), g := (e)1, s := (e)2, t := (e)3;
case{sign(s);

‘+’ : x′ · | s | = (x mod y) · | t |+ g,
‘−’ : x′ · | s |+ g = (x mod y) · | t |}}

and some basic arithmetic properties. We then instruct the system to use the
quotient-remainder theorem for replacing x at the left-hand side of the equation
in (i) by (x/y)·y+(x mod y) causing XeriFun to complete the proof. The system
computes a similar proof obligation for case sign(s) = ‘−’ which is proved in the
same way.

By “basic arithmetic properties” we mean well known facts like associativi-
ty, commutativity, distributivity, cancellation properties etc. of +,−, ·, /, gcd , . . .
which are defined and proved in our arithmetic proof library. These facts are
used almost everywhere by the Symbolic Evaluator so that we will not mention
their use explicitly in the sequel.

When called to prove Lemma 8 by induction corresponding to the recursion
structure of procedure euclid, XeriFun responds by proving the base case and
rewrites the step case with the induction hypothesis to

y 6= 0→ gcd(x, y) = gcd(y, (x mod y)) . (ii)

It then automatically continues with proving (ii) by induction corresponding to
the recursion structure of procedure gcd where it succeeds for the base and the
step case. Lemma 8 is useful because it relates procedure euclid to procedure gcd
of our arithmetic proof library so that all lemmas about gcd can be utilized for
the current proofs.

For proving the inverse property

∀x, y:N y 6= 0 ∧ gcd(x, y) = 1→ [x · IB(x, y) ≡ 1] mod y (9)
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of procedure IB , we call the system to unfold procedure call IB(x, y). XeriFun
responds by proving the statement for case sign(s) = ‘+’ using Bézout’s Lemma
7 and 8 and the library lemmas

∀x, y, z:N z 6= 0 ∧ z | x→ [x+ y ≡ y] mod z (10)

∀x, y:N y 6= 0→ y | x · y (11)

as well as (5), but gets stuck in the remaining case with proof obligation

y 6= 0 ∧ sign(s) = ‘−’∧ g = 1→ [x · y − x · (|s| mod y) ≡ 1] mod y (iii)

where g abbreviates (euclid(x, y))1 and s stands for (euclid(x, y))2. Proof obli-
gation (iii) represents the unpleasant case of the proof development and necessi-
tates the invention of an auxiliary lemma for completing the proof. After some
unsuccessful attempts, we eventually came up with lemma

∀x, y, z, u:N y 6= 0 ∧ y | (x · z + u) ∧ x ≥ u→ [x · y − x · (z mod y) ≡ u] mod y .
(12)

For proving (iii), we command to use Lemma 12 for replacing the left-hand side

of the congruence in (iii) by g, and XeriFun computes

y 6= 0 ∧ sign(s) = ‘−’∧ g = 1→
(x ≥ g → y | (x · |s|+ g)) ∧
(x < g → [x · y − x · (|s| mod y) ≡ 1] mod y .

(iv)

Now we can call the system to use Bézout’s Lemma 7 for replacing x · |s| + g

in (iv) by y · |t| causing XeriFun to complete the proof with Bézout’s Lemma 8
and library lemma (11) in case of x ≥ g and otherwise showing that x < g = 1
entails x = 0 and 1 = g = gcd(0, y) = y in turn, so that x · y − x · (|s| mod y)
simplifies to 0 and [0 ≡ 1] mod y rewrites to true.

It remains to prove auxiliary lemma (12) for completing the proof of Lem-
ma 9: After being called to use library lemma

∀x, y, z:N z 6= 0 ∧ z | (x− y) ∧ z | (y − x)→ [x ≡ y ] mod z 4 (13)

for replacing the left-hand side of the congruence in (12) by u,XeriFun computes

y 6= 0 ∧ y | (x · z + u) ∧ x ≥ u→ y | (u− (x · y − x · (z mod y))) (v)

with the library lemmas (11) and

∀x, y, z:N z 6= 0 ∧ [x ≡ y] mod z → z | (x− y) (14)

∀x, y, z, n:N n 6= 0→ [x+ y · (z mod n) ≡ x+ y · z ] mod n . (15)

We then command to use library lemma ∀x, y, z:N z 6= 0 ∧ x ≤ y → x ≤ y · z
(with u substituted for x, x for y and y− (z mod y) for z) after x factoring out,

causing XeriFun to prove (v) with the synthesized lemma5

∀x, y:N y 6= 0→ y > (x mod y) . (16)
4 At least one of z | (x− y) or z | (y−x) holds trivially because subtraction is defined

such that a− b = 0 iff a ≤ b.
5 Synthesized lemmas are a spin-off of the system’s termination analysis.

8



function IN′(x, k:N):N <=
if 2 > k
then k
else let h := dk/2e; r := IN′((x mod 2 ↑ h), h); y := 2 ↑ k in

(2 · r + ((r · r mod y) · x mod y) mod y)
end let

end if

function IN (x, y:N):N <= if y 6= 0 then y − IN′(x, log2(y)) end if

Fig. 5. Computation of multiplicative inverses by Newton-Raphson iteration

3.2 Newton’s Method

Newton-Raphson iteration is a major tool in arbitrary-precision arithmetic and
efficient algorithms for computing multiplicative inverses are developed in com-
bination with Hensel Lifting [2]. Fig. 5 displays an implementation by procedure
IN for odd numbers x and powers y of 2 (where ↑ computes exponentiation sa-
tisfying 0 ↑ 0 = 1). Procedure IN is defined via procedure IN ′ which is obtained
from [3], viz. Algorithm 2 ′ Recursive Hensel, where however ‘−’ instead of ‘+’ is
used in the result term. Algorithm 2 ′ was developed to compute a multiplicative
inverse of x modulo pk for any x not dividable by a prime p and returns a negative
integer in most cases. By replacing ‘−’ with ‘+’, all calculations can be kept
within N so that integer arithmetic is avoided. As procedure IN ′ computes the
absolute value of a negative integer computed by Algorithm 2 ′, one additional
subtraction is needed to obtain a multiplicative inverse which is implemented by
procedure IN . The computation of IN (x, 2k) only requires log k steps (compared
to k2 steps for IB(x, 2k)), and therefore IN is the method of choice for computing
a Montgomery Inverse.

However, Algorithm 2 ′ is flawed so that we wasted some time with our verifi-
cation attempts: The four mod-calls in the algorithm are not needed for correct-
ness, but care for efficiency as they keep the intermediate numbers small. Now
instead of using modulus 2k for both inner mod-calls, Algorithm 2 ′ calculates
mod 2dk/2e thus spoiling correctness. As the flawed algorithm cares for even
smaller numbers, the use of mod 2dk/2e could be beneficial indeed, and therefore
it was not obvious to us whether we failed in the verification only because some
mathematical argumentation was missing. But this consideration put us on the
wrong track. Becoming eventually frustrated by the unsuccessful verification at-
tempts, we started XeriFun ’s Disprover [1] which—to our surprise—came up
with the counter example x = 3, k = 2 for Lemma 17 in less than a second.6 We

6 The Disprover is based on two heuristically controlled disproving calculi, and its
implementation provides four selectable execution modes (Fast Search, Extended
Search, Simple Terms and Structure Expansion). For difficult problems, the user
may support the search for counter examples by presetting some of the universally
quantified variables with general terms or concrete values.
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then repaired the algorithm as displayed in Fig. 5 and subsequently verified it
(cf. Lemma 20). Later we learned that the fault in Algorithm 2 ′ has not been
recognized so far and that one cannot do better to patch it as we did.7

For proving the inverse property (20) of procedure IN , we first have to verify
the correctness statement

∀x, k:N 2 - x→ (x · IN ′(x, k) mod 2k) = 2k − 1 (17)

for procedure IN ′ : We call the system to use induction corresponding to the
recursion structure of procedure IN ′ which provides the induction hypothesis

∀x′:N k ≥ 2 ∧ 2 - x′ → (x′ · IN ′(x′, dk/2e) mod 2dk/2e) = 2dk/2e − 1 . (18)

XeriFun proves the base case, but gets stuck in the step case with

k ≥ 2 ∧ 2 - x→
(x · (2A+ (x · (A2 mod 2k) mod 2k) mod 2k) mod 2k) = 2k − 1

(i)

where A stands for IN ′((x mod 2dk/2e), dk/2e). By prompting the system to use
Lemma 5, proof obligation (i) is simplified to

k ≥ 2 ∧ 2 - x→ (2B +B2 mod 2k) = 2k − 1 (ii)

(where B abbreviates x · A) thus eliminating the formal clutter resulting from
the mod-calls in procedure IN ′ . Next we replace 2B + B2 by (B + 1)2 − 1 and
then call the system to replace B by (B/C) · C +R where C = 2dk/2e and R =
((x mod C) ·A mod C), which is justified by the quotient-remainder theorem as
R rewrites to (B mod C) by library lemma (5). This results in proof obligation

k ≥ 2 ∧ 2 - x→ (((B/C) · C +R+ 1)2 − 1 mod 2k) = 2k − 1 (iii)

and we command to use the induction hypothesis (18) for replacing R in (iii) by

C − 1. XeriFun then responds by computing

k ≥ 2 ∧ 2 - x→ (((B/C) · C + C)2 − 1 mod 2k) = 2k − 1 (iv)

using library lemmas ∀x, y, z:N y 6= 0∧z 6= 0∧z | y → [(x mod y) ≡ x] mod z and
(5) to prove 2 - (x mod 2dk/2e) for justifying the use of the induction hypothesis.

When instructed to factor out C in (iv), the system computes

k ≥ 2 ∧ 2 - x→ ((2dk/2e)2 · (B/C + 1)2 − 1 mod 2k) = 2k − 1 . (v)

We command to use library lemma

∀x, y, z:N z 6= 0 ∧ z - x ∧ z | y ∧ y ≥ x→ (y − x mod z) = z − (x mod z) (19)

for replacing the left-hand side of the equation in (v) yielding

k ≥ 2 ∧ 2 - x→ 2k − (1 mod 2k) = 2k − 1 (vi)

7 Personal communication with Jean-Guillaume Dumas.
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justified by proof obligation

k ≥ 2 ∧ 2 - x→
2k 6= 0 ∧ 2k - 1 ∧ 2k | (2dk/2e)2 · (B/C + 1)2 ∧ (2dk/2e)2 · (B/C + 1)2 ≥ 1

which XeriFun simplifies to

k ≥ 2 ∧ 2 - x→ 2k | (2dk/2e)2 · (B/C + 1)2 (vii)

in a first step. It then uses auxiliary lemma ∀x:N x ≤ 2 · dx/2e and the library
lemmas (11) and ∀x, y, z:N x 6= 0 ∧ z ≤ y → xz | xy for rewriting (vii) subse-
quently to true. Finally the system simplifies (vi) to true as well by unfolding
procedure mod, and Lemma 17 is proved.

When called to verify the inverse property

∀x, y:N 2 - x ∧ 2?(y)→ [x · IN (x, y) ≡ 1] mod y (20)

of procedure IN (where 2?(y) decides whether y is a power of 2),XeriFun unfolds
the call of procedure IN and returns

y ≥ 2 ∧ 2 - x ∧ 2?(y)→ (x · y − x · IN ′(x, log2(y)) mod y) = 1 . (viii)

Now we instruct the system to use library lemma (19) for replacing the left-hand

side of the equation in (viii), and XeriFun computes

y ≥ 2 ∧ 2 - x ∧ 2?(y)→
(x · IN ′(x, log2(y)) mod y) 6= 0 ∧ y − (x · IN ′(x, log2(y)) mod y) = 1

(ix)

using auxiliary lemma ∀x, y:N 2?(y) → y > IN ′(x, log2(y)) and the library
lemmas (11), (14) and

∀x, y, z:N x · y > x · z → y > z . (21)

Finally we let the system use library lemma ∀x:N 2?(x)→ 2log2(x) = x to replace

both moduli y in (ix) by 2log2(y) causing XeriFun to rewrite both occurrences
of (x · IN ′(x, log2(y)) mod y) with Lemma 17 to y − 1 and proof obligation (ix)
to true in turn, thus completing the proof of (20).

4 Correctness of Montgomery Multiplication

We continue by defining procedures for computing the functions i, h,⊗ and h−1

as displayed in Fig. 6, where we write i(x, y) instead of iy(x) in the proce-
dures and lemmas. As we aim to prove correctness of Montgomery Multiplica-
tion using procedure IN for computing the Montgomery Inverse with minimal
costs, 2 - n ∧ 2?(m) instead of gcd(n,m) = 1 must be demanded to enable the
use of Lemma 20 when proving the statements of Theorems 1 and 2. However,
the multiplicative inverses n-1m and m-1

n both are needed in the proofs (whereas

11



function i(x, y:N):N <= if y 6= 0 then (x · -(y) mod y) end if

function h(x,m, n:N):N <= if n 6= 0 then (x ·m mod n) end if

function ⊗(x, y,m, n:N):N <= if n 6= 0 then (x · y · I(m, n) mod n) end if

function h−1(x,m, n:N):N <= if n 6= 0 then (x · I(m, n) mod n) end if

function I(x, y:N):N <= if 2?(y) then IN (x, y) else IB(x, y) end if

Fig. 6. Procedures for verifying Montgomery Multiplication

only n-1m is used in applications of redc and redc∗). Consequently procedure IN
cannot be used in the proofs as it obviously fails in computing m-1

n (except
for case n = m = 1, of course). This problem does not arise if procedure IB
is used instead, where gcd(n,m) = 1 is demanded, because IB(n,m) = n-1m
and IB(m,n) = m-1

n for any coprimes n and m by Lemma 9. The replacement
of IB by IN when computing the Montgomery Inverse then must be justified
afterwards by additionally proving

∀x, y:N 2 - x ∧ 2?(y)→ IB(x, y) = IN (x, y) . (22)

However, proving (22) would be a complicated and difficult enterprise because
the recursion structures of procedures euclid and IN ′ differ significantly. But we
can overcome this obstacle by a simple workaround: We use procedure I of Fig. 6
instead of IB in the proofs and let the system verify the inverse property

∀x, y:N y 6= 0 ∧ gcd(x, y) = 1→ [x · I(x, y) ≡ 1] mod y (1)

of procedure I before: XeriFun easily succeeds with library lemma (4) and the
inverse property (9) of procedure IB after being instructed to use library lemma
∀x, y, n:N n ≥ 2 ∧ n | y ∧ gcd(x, y) = 1→ n - x and the inverse property (20) of
procedure IN . Consequently I(n,m) = n-1m and I(m,n) = m-1

n for any coprimes
n and m, and therefore I can be used in the proofs. The use of IN instead of I
when computing the Montgomery Inverse is justified afterwards with lemma

∀x, y : N 2?(y)→ I(x, y) = IN (x, y)

having an obviously trivial (and automatic) proof.
Central for the proofs of Theorems 1 and 2 is the key property

∀m,n, x:N m > n ∧ n ·m > x ∧ gcd(n,m) = 1→
redc(x, i(I(n,m),m),m, n) = (x · I(m,n) mod n)

(23)

of procedure redc: For proving Theorem 1.1

∀m,n, a:N m > n > a ∧ gcd(n,m) = 1→
h(a,m, n) = redc(a · (m ·m mod n), i(I(n,m),m),m, n)

(Thm 1.1)

12



we command to use (23) for replacing the right-hand side of the equation by
a · (m ·m mod n) · I(m,n) mod n. The system then replaces the left-hand side
of the equation with a · m mod n by unfolding procedure call h(a,m, n) and
simplifies the resulting equation to true with Lemma 2, the synthesized lemma
(16) and the library lemmas (5) and

∀x, y, u, v:N x > y ∧ u > v → x · u > y · v . (24)

Theorems 1.2 and 1.3, viz.

∀m,n, a, b:N m > n > a ∧ n > b ∧ gcd(n,m) = 1
→ ⊗(a, b,m, n) = redc(a · b, i(I(n,m),m),m, n)

(Thm 1.2)

∀m,n, a:N m > n > a ∧ gcd(n,m) = 1
→ h−1(a,m, n) = redc(a, i(I(n,m),m),m, n)

(Thm 1.3)

are (automatically) proved in the same way.
Having proved Theorem 1, it remains to verify the key property (23) for

procedure redc (before we consider Theorem 2 subsequently). We start by proving
that division by m in Rn can be expressed by I: We call the system to prove

∀m,n, x:N n 6= 0 ∧m | x ∧ gcd(n,m) = 1→ [x/m ≡ x · I(m,n)] mod n (25)

and XeriFun automatically succeeds with Lemma 2 and the library lemmas (4)
and ∀x, y, z:N y 6= 0 ∧ y | x→ (x/y) · y = x.

As a consequence of Lemma 25, the quotient q in procedure redc can be
expressed in Rn by I in particular (if redc is called with the Montgomery Inverse
as actual parameter for the formal parameter z), which is stated by lemma

∀m,n, x:N n 6= 0 ∧ gcd(n,m) = 1
→ [(x+ n · (x · i(I(n,m),m) mod m))/m ≡ x · I(m,n)] mod n .

(26)

For obtaining a proof, we command to use Lemma 25 for replacing the left-hand
side of the congruence in (26) by (x + n · (x · i(I(n,m),m) mod m)) · I(m,n)

causing XeriFun to complete the proof using Lemma 3 as well as the library
lemmas (5), (10), (11), (15) and ∀x, y:N y 6= 0→ y | (x+ (y − 1) · x).

An obvious correctness demand for the method is that each call of redc (under
the given requirements) computes some element of the residue class mod n. This
is guaranteed by the conditional subtraction of n from the quotient q in the body
of procedure redc. However, at most one subtraction of n from q results in the
desired property only if n+ n > q holds, which is formulated by lemma

∀m,n, x:N m · n > x→ n+ n > (x+ n · (x · i(I(n,m),m) mod m)/m . (27)

We prompt the system to use a case analysis upon m · (n + n) > x + n · (x ·
i(I(n,m),m) mod m) causing XeriFun to prove the statement in the positive
case with the library lemmas (5) and ∀x, y, z:N x · z > y → x > y/z and to
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verify it in the negative case with the synthesized lemma (16) and the library
lemmas (5), (21) and ∀x, y, u, v:N x > y ∧ u ≥ v → x+ u > y + v.

Now the mod n property of procedure redc can be verified by proving lemma

∀m,n, x:N m > n ∧ n ·m > x ∧ gcd(n,m) = 1→
redc(x, i(I(n,m),m),m, n) = (redc(x, i(I(n,m),m),m, n) mod n) .

(28)

We let the system unfold the call of procedure mod in (28) causing XeriFun to
use the synthesized lemma (16) for computing the simplified proof obligation

m > n ∧ n ·m > x ∧ gcd(n,m) = 1→ n > redc(x, i(I(n,m),m),m, n) . (i)

Then we command to unfold the call of procedure redc which simplifies to

m > n ∧ n ·m > x ∧ gcd(n,m) = 1∧
(x+ n · (x · i(I(n,m),m) mod m))/m ≥ n
→ n > (x+ n · (x · i(I(n,m),m) mod m))/m− n .

(ii)

Finally we let the system use library lemma ∀x, y, z:N x > y ∧ y ≥ z → x− z >
y − z resulting in proof obligation

m > n ∧ n ·m > x ∧ gcd(n,m) = 1
∧ (x+ n · (x · i(I(n,m),m) mod m))/m ≥ n

∧
[ n+ n > (x+ n · (x · i(I(n,m),m) mod m))/m∧
(x+ n · (x · i(I(n,m),m) mod m))/m ≥ n
→ (n+ n)− n > (x+ n · (x · i(I(n,m),m) mod m))/m− n ]

→ n > (x+ n · (x · i(I(n,m),m) mod m))/m− n

(iii)

which simplifies to

m > n ∧ n ·m > x ∧ gcd(n,m) = 1
∧ (x+ n · (x · i(I(n,m),m) mod m))/m ≥ n
∧ (n+ n)− n > (x+ n · (x · i(I(n,m),m) mod m))/m− n
→ n > (x+ n · (x · i(I(n,m),m) mod m))/m− n

(iv)

by Lemma 27 and to true in turn using the plus-minus cancellation.
Now all lemmas for proving the key lemma (23) are available: We demand

to use Lemma 28 for replacing the left-hand side of the equation in (23) by
(redc(x, i(I(n,m),m),m, n) mod n) and to apply lemma (26) for replacing the
right-hand side by ((x+n · (x · i(I(n,m),m) mod m))/m mod n) resulting in the
simplified proof obligation

m > n ∧ n ·m > x ∧ gcd(n,m) = 1→
[redc(x, i(I(n,m),m),m, n) ≡ (x+ n · (x · i(I(n,m),m) mod m))/m] mod n .

(v)
Then we unfold the call of procedure redc causing the system to prove (v) with
library lemma (5).
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Having proved the key lemma (23), the proof of Theorem 2

∀m,n, a, j:N m > n > a ∧ gcd(n,m) = 1→
(aj mod n) = redc(redc∗(redc(a ·M, I,m, n), I,m, n, j), I,m, n)

(Thm 2)

(where M = (m ·m) mod n and I = i(I(n,m),m)) is easily obtained by support
of a further lemma, viz.

∀m,n, a, j:N m > n > a ∧ gcd(n,m) = 1→
(m · aj mod n) = redc∗(redc(a ·M, I,m, n), I,m, n, j) .

(29)

When called to use Peano induction upon j for proving (29), XeriFun proves
the base case and rewrites the step case with the induction hypothesis to

m > n > a ∧ gcd(n,m) = 1 ∧ j 6= 0→
(m · aj−1 · a mod n) = redc(redc(a ·M, I,m, n) · (m · aj−1 mod n), I,m, n)

(vi)
Then we command to replace both calls of redc with the key lemma (23) causing

XeriFun to succeed with the lemmas (2), (5), (16) and (24).
Finally the system proves (Thm 2) using lemmas (2), (5), (16), (29) and

library lemma ∀x, y, z:N x 6= 0 ∧ y > z → x · y > z after being prompted use
(Thm 1.3) for replacing the right-hand side of the equation in (Thm 2).

5 Discussion and Conclusion

We presented machine assisted proofs verifying an efficient implementation of
Montgomery Multiplication, where we developed the proofs ourselves as we are
not aware of respective proofs published elsewhere. Our work also uncovered a
serious fault in a published algorithm for computing multiplicative inverses based
on Newton-Raphson Iteration [3], which could have dangerous consequences
(particularly when used in cryptographic applications) if remained undetected.

Fig. 7 displays the effort for obtaining the proofs (including all procedures and
lemmas which had been imported from our arithmetic proof library). Column
Proc. counts the number of user defined procedures (the recursively defined ones
given in parentheses), Lem. is the number of user defined lemmas (the number
of synthesized lemmas given in parentheses), and Rules counts the total number
of HPL-proof rule applications, separated into user invoked (User) and system
initiated (System) ones (with the number of uses of Induction given in paren-
theses). Column % gives the automation degree, i.e. the ratio between System
and Rules, Steps lists the number of first-order proof steps performed by the
Symbolic Evaluator and Time displays the runtime of the Symbolic Evaluator.8

The first two rows show the effort for proving Lemmas 9 and 20 as illustrated
in Sec. 3. As it can be observed from the numbers, verifying the computation of

8 Time refers to running XeriFun 3.5 under Windows 7 Enterprise with an INTEL
Core i7-2640M 2.80 GHz CPU using Java 1.8.0 45.
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Proc. Lem. Rules User System % Steps mm:ss

IB(n,m) = n-1
m 8 (7) 49 (3) 241 (39) 36 (3) 205 (36) 85, 1 (92, 3) 3171 0:19

IN (n,m) = n-1
m 10 (9) 76 (3) 368 (59) 59 (3) 309 (56) 84, 0 (94, 9) 6692 1:32

Theorems 1 & 2 20 (12) 116 (3) 547 (78) 96 (6) 451 (72) 82, 4 (92, 3) 9739 2:19

Fig. 7. Proof statistics

multiplicative inverses by Newton-Raphson Iteration is much more challenging
for the system and for the user than the method based on Bézout’s Lemma.
Row Theorems 1 & 2 below displays the effort for proving Theorems 1 and 2 as
illustrated in Sec. 4 (with the effort for the proofs of Lemmas 9 and 20 included).

The numbers in Fig. 7 almost coincide with the statistics obtained for other
case studies in Number Theory performed with the system (see e.g. [14] and also
[7] for more examples), viz. an automation degree of ∼ 85% and a success rate
of ∼ 95% for the induction heuristic. All termination proofs (hence all required
induction axioms in turn) had been obtained without user support, where 6 of
the 12 recursively defined procedures, viz. mod, /, gcd, log2, euclid and IN ′ , do
not terminate by structural recursion.9 While an automation degree up to 100%
can be achieved in mathematically simple domains, e.g. when sorting lists [7, 9],
values of 85% and below are not that satisfying when concerned with automated
reasoning. The cause is that quite often elaborate ideas for developing a proof are
needed in Number Theory which are beyond the ability of the system’s heuristics
guiding the proof search.10 We also are not aware of other reasoning systems
offering more machine support for obtaining proofs in this difficult domain.

From the user’s perspective, this case study necessitated more work than ex-
pected, and it was a novel experience for us to spend some effort for verifying a
very small and non-recursively defined procedure. The reason is that correctness
of procedure redc depends on some non-obvious and tricky number theoretic
principles which made it difficult to spot the required lemmas. In fact, almost
all effort was spend for the invention of the auxiliary lemmas in Sec. 4 and
of Lemma 12 in Sec. 3.1. Once the “right” lemma for verifying a given proof
obligation eventually was found, its proof turned out to be a routine task. The
proof of Lemma 17 is an exception as it required some thoughts to create it and
some effort as well to lead the system (thus spoiling the proof statistics). Proof
development was significantly supported by the system’s Disprover [1] which
(besides detecting the fault in Algorithm 2 ′) often helped not to waste time
with trying to prove a false conjecture, where the computed counterexamples
provided useful hints how to debug a lemma draft.

9 Procedure 2?(. . .) is not user defined, but synthesized as the domain procedure [12]
of the incompletely defined procedure log2.

10 Examples are the use of the quotient-remainder theorem for proving (i) in Sec. 3.1
and (iii) in Sec. 3.2 which are the essential proof steps there although more complex
proof obligations result.
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