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Abstract

In this paper, we study the tedious link between the properties of sensibility and
approximability of models of untyped λ-calculus. Approximability is known to
be a slightly, but strictly stronger property that sensibility. However, we will see
that so far, each and every (filter) model that have been proven sensible are in fact
approximable. We explain this result as a weakness of the sole known approach of
sensibility: the Tait reducibility candidates and its realizability variants.

In fact, we will reduce the approximability of a filter model D for the λ-calculus
to the sensibility of D but for an extension of the λ-calculus that we call λ-calculus
with D-tests. Then we show that traditional proofs of sensibility of D for the
λ-calculus are smoothly extendable for this λ-calculus with D-tests.

Introduction
Sensibility. It is the ability, for a model, to distinguish non terminating programs from
meaningful ones by collapsing the interpretations of the formers (Def. 3). Through
Curry-Howard isomorphism, it also corresponds to the consistence of the internal theory
of the model. This shows the importance in understanding sensibility, but also the
undecidability of such a property.

Such profound but undecidable results are often targets for classification into a
hierarchy of subclasses, serving as grinding stone for proof techniques. Here we take an
unorthodox approach consisting in classifying sensible models by using as discriminator
a slightly stronger property called “approximability”. To our surprise, we found out
that available methods to prove sensibility (reducibility) where not powerful enough to
distinguish sensibility from approximability.
Approximability. The approximation theorem (Def. 5) is an important concept when
considering denotational models of the head reduction. In order to study head reduction,
λ-calculists systematically use Böhm trees, which are basically normal forms of a degen-
erated λ-calculus using an error symbol (Def. 4). Such objects are able to approximate
terms, the same way as partial evaluations approximate the notion of evaluation. A
model is approximable if the interpretation of a term is the limit of its finite Böhm
approximants; i.e., infinite behaviors are, in the model, limits of finite ones.
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This notion has been extensively studied [1, Section III.17.3] and this article presents
a new sufficient condition for approximability, the weak positivity by far encompassing
any previous results on approximability (of filter models). As a property on models, ap-
proximability is supposed to be strictly stronger than sensibility. Indeed, approximability
implies that the interpretation of any diverging terms (and only those) are collapsed
into the interpretation of the error symbol Ω. This inclusion is supposed to be strict
as, for example, approximable models are not able to distinguish the Turing fixpoint
from the Church fixpoint. In fact, there is a continuity of sensible but non-approximable
λ-theories, it is surprising that we are not able to model any of those.
Reducibility. In this title, “Reducibility” refers to Tait reducibility methods [23] and
its modern extensions (including realisability). These methods used to prove structural
properties of type systems and models, such as sensibility and approximability but also
more practical properties [24]. For type systems, it consists of constructing saturated
sets of terms with the wanted property by induction on types, and then in proving that
every typable term has been included. For denotational models, the method is more
subtle due to the structure not being inductive : one must find a fixpoint to be able to
apply the method, but the fixpoint does not need to be computable or constructive.

In Section 2, we use the sensibility and the approximability as a grinding stone to
perform yet a new dissection of those reducibility/realisability methods. We try to be
as general as possible until the last moment in order to get the the coarsest possible
characterization, but also in order to point over the specific weaknesses of the method.
We will discuss in the conclusion and along the paper why we were not able to fill the
gap between approximability and sensibility. In particular, we insist on the link between
this obstacle and the difficulty to perform fixpoint on non-monotonous functions.
Filter Models. Introduced in the 80s using the notion of type as the elementary brick
for their construction, filter models [12] (Def.1) are extracted from a type theory with
simple types enlarged by intersection types and subtyping. Formally, the interpretation
of a λ-term is the filter generated by the set of its types. Variations on the intersection
type theory induce different filter models. The resulting class essentially corresponds to
the class of Scott complete lattices.

Filter models (and domains) form one of the classes of models of untyped λ-calculus
that have been the more broadly studied, but properties such as sensibility and approx-
imability are yet to be understood perfectly. In particular, a simple bibliographical
analysis show that that the theoretically huge gap between sensible and approximable
models have never been filed by any model. The best advancements toward this direction
are covered by the third part of “Lambda-calculus with types” [1].
λ-calculi with tests. In order to exhibit the link between sensibility and approximability,
we are using λ-calculi with tests. These are syntactic extensions of the untyped λ-
calculus with operators defining types of the underlying intersection type system. The
approximability of a filter model D is equivalent to the sensibility of the same model D
for the λ-calculus with D-tests Λτ,D (with respect to a notion of head convergence). This
theorem brings together the notions of sensibility and approximability in a novel way.
Originally inspired from Wadsworth’s labeled λ⊥-calculus [25] and Girard experiments
[17, 14], λ-calculi with D-tests are syntactic extensions of the λ-calculus with operators
defining compact elements of the given models. Expressing the model in the syntax
allows perform inductions directly on the reduction steps, rather than on the construction
of Böhm trees.
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1 Preliminaries

1.1 Filter Models
We introduce here the main semantical object of this article: distributive extensional
filter models (DEFiM).

The models consists of a set D of “types” (or compact elements), and two opera-
tions: the intersection ∧ (characterizing the induced order) and the functional arrow→
(characterizing the reflexive embedding). Moreover, we will consider extensionality,
which means that the η-conversion is viable, it is enabled by (and is equivalent to) the
existence of a specific function extD : D→ P f (D×D).

Definition 1 ([12]). A filter model is a triple (D,∧,→) where:

• D = (|D|,∧) is a pointed meet-semilattice, with ω and ≥D denoting top element
and the order

• → is a binary operation on D such that for any finite sequence (αi, βi) ∈ (D×D)n:

γ→δ ≥D

∧
i

αi→βi ⇔ δ ≥D

∧
{i|γ≤αi}

βi,

in particular, γ→δ = ω iff δ = ω.

A filter model is extensional whenever there is a function extD : D→P f (D × D) that
associates to each α ∈ D a finite subset extD(α) ⊆ D × D such that:

α =
∧

(β,γ)∈extD(α)

β→γ

Unfortunately, the choice of the function extD is generally not unique or even canonical.
In order remove any influence from this choice, we restrict our study to distributive filter
models. A filter model D is distributive whenever any α ≥ β∧ γ is accessible in the sens
that there exists a decomposition α = β′ ∧ γ′ such that β′ ≥D β and γ′ ≥D γ.

For short, we call DEFiM the distributive extensional filter models.
Creating a DEFiM from scratch is often heavy, as they have to satisfy complex

rules even forcing the model to be an infinite object. Fortunately, there is a way to
automatically infer the required properties from a smaller (often finite) core object. This
core object is a partial DEFiM which is a basically a subset of a DEFiM that can be
completed into a proper DEFIM.

Example 2. 1. Scott’s D∞ [22] is the completion of

|D| := {ω, ∗}, ω ∧ ∗ := ∗, ω→∗ := ∗ extD(∗) := {(ω, ∗)}.

Notice, that ∗→∗ is undefined in D so that we need the completion.

2. Z∞ is the completion of

|Z| := {n | n ≥ 0}, n ∧ ω := n, ω→n+1 := n extD(n) := {(ω, n+1)}.

3. U∞ is the completion of

|U | := {n | n ≥ 0}, n ∧ ω := n, n+1→n+1 := n extD(n) := {(n+1, n+1)}.

Definition 3 (Sensibility). A filter model D is sensible for the untyped λ-calculus if
diverging terms corresponds exactly to those of empty interpretation:

M⇓h ⇔ ~M�~x , ∅ .
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1.2 Böhm Approximants
The Böhm approximants (or finite Böhm trees) are the normal forms of a λ-calculus
extended with a constant1 Ω and an additional reduction→Ω.

Definition 4. Let M ∈ λ.

1. The direct approximant of M, written ap(M), is the λ-term defined as:

• ap(M) := Ω if M = λx1 . . . xk.(λy.M′)NM1 · · ·Mk,

• ap(M) := λx1 . . . xn.xiap(M1) · · · ap(Mk) if M = λx1 . . . xn.xiM1 · · ·Mk,

2. The set of finite approximants of M is defined by B(M) :=
{
ap(M′) | M →∗h M′

}
.

Definition 5. A filter model is approximable iff the interpretation of any term M ∈ Λ is
the sup of its approximants: ~M�~x =

⋃
~N�~x over all N ∈ B(M).

1.3 Collapsing Sensibility and Approximability for Tests
The original idea of using tests to recover full abstraction (via a theorem of definability)
is due to Bucciarelli et al. [10]. In [5, 7], the author caried a precise study of variants
of Bucciarelli et al.’s calculus adapted to Krivine’s models. Here we extend a bit his
definition to get all DEFiMs.

Directly dependent on a given DEFiM D, the λ-calculus with D-tests Λτ,D is, to
some extent, an internal calculus for D. In fact, we will see that, for D to be fully
abstract for Λτ,D, it is sufficient to be sensible (Th. 6). Notice that in the notation Λτ,D, τ
stands for tests and D if the considered DEFiM.

Proposition 1. Any DEFiM D is a model for its own test extension (the λ-calculus with
D-tests), in the sens that the interpretation is contextual and invariant under reduction.

Theorem 6 (full abstraction). For any DEFiM D, if D is sensible for Λτ,D, then D is
inequationaly fully abstract for the observational preorder of Λτ,D:

~M� ⊆ ~N� ⇔ ∀C ∈ T(|·|)
τ,D,C(|M|)⇓h ⇒ C(|N |)⇓h.

Once we have said that sensibility and full abstraction are equivalent properties for
test, it should not surprise the reader to learn that approximability is also equivalent
to those properties. Indeed, approximability usually corresponds to the adequation of
the Böhm-tree’s equality, which is a property between sensibility and full abstraction.
However, the situation is a bit mere subtle: if the properties of sensibility and full
abstraction for Λτ,D strongly refer to tests mechanisms, the property of approximability
is defined independently from tests. This really means that D-tests will behave well
exactly whenever D is approximable.

Theorem 7. Any extensional filter model D, is approximable if and only if it is sensible
for D-tests.

Proof. Both implications are considered separately. �

1In other context, the constant Ω has been replaced by ⊥.
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2 Sufficient Condition for the Sensibility of Tests
Using standard (but technical) realisability methods, we can prove the sensibility of
calculi with D-tests for the associated model D provided a positiveness condition. Due
to the shortness of the abstract, we cannot present the proof, but it follows exactly the
proof of sensibility of the λ-caluculus for the same model.

Definition 8. A (partial) DEFiM D is stratified positive (SP for short) if there exist

• a valuationV, called polarity, from D − {ω} in the Booleans {t, f},

• a well founded and total preorder � in D with ω as a bottom,

such that for all γ ∈ D and all (α, β) ∈ extD(γ):

γ � β, γ ' β ⇒ V(γ) = V(β), γ � α, γ ' α ⇒ V(γ) , V(α),

(where ':= (� ∩ �) is the equivalence relation induced by the preorder) and such that:

α ∧ β � γ for γ = α or for γ = β (α ∧ β) ≺ α⇒ (α ∧ β) = β

Moreover, we also require that the polarity is coherent with the intersections on '-
equivalence classes:

α ' β ⇒ V(α ∧ β) = V(α) ∧V(β).

This condition can be seen as a stratification given by �, where the quotient D/'
represents the different levels of the stratification, each level endowed with a positive
polarityV. This stratification improves the condition of [3] that only considers comple-
tions of positive partial DEFiM. This condition is the invariant by completion, which
simplify the proof of stratified positivity of DEFiMs of Example 2 (save for P∞).

Example 9. • D∞ is SP: The stratified positivity is given byV(∗) = f and ω ≺ ∗.

• Z∞ is SP: Idem, we setV(2n) = t,V(2n + 1) = f and ω ≺ m ' n for all m and n.

• U∞ is not SP: Since n = n+1→n+1, we must have n � n+1, which creates a non
well-founded chain.

Theorem 10. Any stratified positive DEFiM D is sensible for Λτ,D and approximable.

Unfortunately, those standard realizability proofs does not allows for a full charac-
terization of sensible models due to the need of exhibiting a fixpoint for the realizability
candidates. Here are few conjectures for which such approach is inefficient:

Conjecture 1. Let D a filter model satisfying all the conditions of stratified positiveness
except for the well foundedness of the preorder �. If Conjecture ?? is true, then D is
approximable. In particular U∞ is approximable.

Conjecture 2. Consider the two partial DEFIM generated by the equations:

α = ω→α β = ω→α γ = (γ ∧ δ)→β δ = ω→α→α (1)
α = ω→α β = (β→α)→α γ = (γ ∧ δ)→β δ = ω→α→α (2)

The first one is conjectured both sensible and approximable while the last example is
also conjectured sensible but can be shown non-approximable.
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2015.

[6] Flavien Breuvart. On the characterization of models ofH∗: the semantical aspect.
Lecture and Methodes in Computer Sciences, 2016. Invited.

[7] Flavien Breuvart. On the characterization of models of H* : The operational aspect.
CoRR, abs/1801.05150, 2018. URL: http://arxiv.org/abs/1801.05150,
arXiv:1801.05150.

[8] Flavien Breuvart. Refining Properties of Filter Models: Sensibility, Approximabil-
ity and Reducibility. CoRR, abs/1801.05153, 2018. URL: http://arxiv.org/
abs/1801.05153, arXiv:1801.05153.

[9] Flavien Breuvart, Giulio Manzonetto, Polonsky Andrew, and Domenico Ruoppolo.
New Results on Morris’s Observational Theory: the benefits of separating the
inseparable. In FSCD, 2016.

[10] Antonio Bucciarelli, Alberto Carraro, Thomas Ehrhard, and Giulio Manzonetto.
Full abstraction for resource calculus with tests. In Marc Bezem, editor, Computer
Science Logic, volume 12, pages 97–111, 2011.

[11] Alberto Carraro and Antonino Salibra. Reflexive scott domains are not complete
for the extensional lambda calculus. In Logic In Computer Science, 2009. LICS’09.
24th Annual IEEE Symposium on, pages 91–100. IEEE, 2009.

[12] M. Coppo, M. Dezani-Ciancaglini, F. Honsell, and G. Longo. Extended Type
Structures and Filter Lambda Models. In Logic Colloquium 82, pages 241–262,
1984.

[13] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Maddalena Zacchi. Type
theories, normal forms, and D∞ lambda-models. Information and Computation,
72(2):85–116, 1987.
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