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The use of intersection type systems in the study of denotational semantics of the untyped λ-
calculus has been a fruitful line of research over the past thirty-five years. In this extended abstract
we present a research project aiming at broaden the boundaries of such type-theoretical approach
to semantics, possibly to other idealized programming languages. The key idea is to exploit a more
abstract view on what a type system is. This view finds its root in higher-dimensional category
theory.

The context

Melliès and Zeilberger recently suggested a new paradigmatic way of conceiving type refinement
systems [11]. One can see any category T as a type system/idealized programming language, by
considering every object a as a type, every morphism t : a→ b as a term x : a ` t : b intrinsically
typed (à la Church) in a single-free-variable context, and composition t◦u as substitution t{u/x}.
If one wants a more refined syntax, allowing for instance multivariable contexts x1 : a1, . . . , xn : an
or some specific type constructors, then it suffices to take a more refined category T , by adding for
instance a monoidal structure, a cartesian structure, some form of closure, and so on. On the other
side, when the category T is just a monoid this view provides an untyped term system. Melliès
and Zeilberger remarked that when this ‘categories-as-type systems à la Church’ correspondence
is taken seriously, then every functor F : D → T is a type refinement system for T . An object α
of D is a type refinement of the only type a of T such that F (α) = a. A morphism δ ∈ D(α, β) is
a derivation of refined typing δ :: x : α ` t : β for the only term x : a ` t : b such that F (δ) = t.
Finally, a composition δ ◦ψ is nothing but a pasting δ{ψ /x : α} of derivation trees. This view
naturally accommodates (and actually generalizes) the common notion of subtyping: the fact that
α ≤ α′ (actually α ≤ψ α′) is represented by a derivation ψ ∈ D(α, α′) such that F (ψ) = ida.
(Notice that when T is a monoid, then a functor F : D → T is just a type system à la Curry for
the untyped language T .)

Although not formalized in [11], Melliès-Zeilberger’s paradigm also allows reductions of terms
t ⇒ t′, and even rewritings of corresponding typing derivations δ ⇒ δ′, as first-class citizens. At
that purpose, one takes T and D to be 2-categories, with 2-arrows playing the role of rewritings.
This approach has been undertaken by the first author in a recent joint work with Pellissier and
Vial [10]. More precisely, that article advocates the idea that a type refinement system is a 2-
morphism F : D → T of colored 2-operads. Considering colored operads (just ‘operads’ from now
on), i.e. multicategories, rather than monoidal categories as in [11], is mostly a matter of taste:
the visualization of programs as multi-entries terms fits very naturally in an operadic framework.
In particular the free variables x1, x2, . . . , xn, . . . of the language T are nothing but names for the
entrances of multimorphisms, while the horizontal composition t◦ iu of the operad corresponds to
the substitution t{u/xi}.

What is really relevant here is the Cat-enriched perspective: for all objects α1, . . . , αn, β of
the operad D such that F (αi) = ai and F (β) = b, we are given a small category D(α1, . . . , αn;β)
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whose arrows are derivation rewritings δ ⇒ δ′, a small category L(a1, . . . , an; b) whose arrows are
term rewritings t ⇒ t′, and a functor F(a1,...,an;b) : D(α1, . . . , αn;β) → T (a1, . . . , an; b) between
them. The functor F(a1,...,an;b) describes how every rewriting ρ of a derivation δ for a term t = F (δ)

δ
(

:: x1 : α1, . . . , xn : αn ` t : β
)

ρ
=⇒ δ′

(
:: x1 : α1, . . . , xn : αn ` t′ : β

)
follows the underlying reduction of the program t into the program t′ = F (δ′)(

x1 : a1, . . . , xn : an ` t : b
) F(a1,...,an;b)(ρ)

=⇒
(
x1 : a1, . . . , xn : an ` t′ : b

)
.

Mazza, Pellissier and Vial require that such a functor satisfies three natural properties:

• fixed δ and δ′ as above, different rewritings δ ⇒ δ′ must correspond to different underlying
reductions t⇒ t′ (categorically, this means that the functor F(a1,...,an;b) is faithful);

• only an ‘empty’ rewriting δ ⇒ δ can correspond to the ‘empty’ reduction t⇒ t (categorically,
this is a notion of identity lifting : if F(a1,...,an;b)(ρ) = idt then ρ = idδ);

• if the reduction t ⇒ t′ that underlies ρ : δ ⇒ δ′ factorizes as t ⇒ u ⇒ t′, then also ρ
factorizes accordingly (categorically, this gives a notion of factorization lifting).

These three properties, which we adopt here, correspond to a notion of Niefield fibration.

Definition (Mazza, Pellissier, Vial [10]). A type system is a 2-morphism F : D → T of (colored)
2-operads such that for all objects α1, . . . , αn, β of D the functor F(a1,...,an;b) is a Niefield fibration.

Provided with a suitable notion of morphism, the collection of all such type systems for a
fixed 2-operad T form a category TS(T ). Through a kind of construction à la Grothendieck, it
is proved in [10] that TS(T ) is equivalent to a quite different category. This equivalence provides
an alternative formalization of the very same notion of type systems, as described here below.

Firstly, one defines a bioperad RelDist. Its objects are all small categories. A morphism
A1, . . . ,An → B in RelDist is a relational distributor, i.e. a notion of profunctor A1 × · · · ×An ×
Bop → Rel that goes into the category Rel of sets and relations (rather then the usual Set). We
omit the description of the 2-arrows, which are of course suitable natural transformations. Then,
the following is an alternative characterization of the definition above

Definition (Mazza, Pellissier, Vial [10]). A type system is a lax morphism F : T → RelDist of
bicategories.

Although being less intuitive, this characterization has the following nice feature: it explicitly
organizes the subtyping relations as categories. Remember that every object a of T represents
a type à la Church of the programming language T . Then the objects of F (a) are exactly the
refinement types of a. A morphism f ∈ F (a)(α, β) witnesses the fact that α is a subtyping of β,
namely α ≤f β. For a term t ∈ T (a1, . . . , an; b), the corresponding profuncton

F (t) : F (b1)× · · · ×F (bn)×F (a)op → Rel

has the following meaning. Given (β1, . . . , βn, α) ∈ Ob(F (b1))×· · ·×Ob(F (bn))×Ob(F (a)), the

set F (t)
(
~β, α

)
contains all the typing derivations δ :: x1 : β1, . . . , xn : βn ` t : α that the system

F gives to the term x1 : b1, . . . , xn : bn ` t : a. As concerns the action of F (t) on morphisms
(f1, . . . , fn) ∈ F (b1)(β1, β

′
1) × · · · × F (bn)(βn, β

′
n) and f ∈ F (a)op(α, α′) = F (a)(α′, α), the

relation F (t)
(
~f, f

)
⊆ F (t)

(
~β, α

)
×F (t)

(
~β′, α′) contains pairs (δ, δ′) such that the derivation δ

differs from δ′ only in the application of the subtyping rules ~f, f in a certain way. As an example,
let T be the 2-monoid representing the untyped λ-calculus. Let us take as F a refinement type
system for T allowing arrow types (denoted by ⇒) and the usual subtyping rule

Γ ` t : ψ ψ ≤f ϕ
Γ ` t : ϕ

sub
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(For instance, F could be one of the traditional intersection type systems.) Suppose that this
system has three specific types α, β, γ provided with the subtyping morphism β ≤f γ ⇒ α.
Formally this means that there is a morphism f : β → γ⇒α in the category F (∗), where ∗ is the
only object of T . Let us see a pair (δ, δ′) in the relation F (x1x2)

(
f, idγ , idα

)
⊆ F (x1x2)

(
β, γ, α

)
×

F (x1x2)
(
γ⇒α, γ, α

)
. Consider the derivation δ′ ∈ F (x1x2)

(
γ⇒α, γ, α

)
given as

x1 : γ ⇒ α ` x1 : γ ⇒ α x2 : γ ` x2 : γ

x1 : γ ⇒ α , x2 : γ ` x1x2 : α

Then a possible δ ∈ F (x1x2)
(
β, γ, α

)
such that (δ, δ′) ∈ F (x1x2)

(
f, idγ , idα

)
is

x1 : β ` x1 : β β ≤f γ ⇒ α

x1 : β ` x1 : γ ⇒ α
sub
x2 : γ ` x2 : γ

x1 : β , x2 : γ ` x1x2 : α

The problem

Since the introduction of the first filter model by Barendregt, Coppo and Dezani [1] in the
early ‘80s, intersection type systems have become a significant tool for denotational semantics
of the untyped λ-calculus. There is indeed a form of Stone duality between certain classes of
models of the λ-calculus and certain classes of intersection type systems. Such a correspondence
tells us that the interpretation JMK of a λ-term M in one of these models can be characterized in
a type-theoretical form, following the intuition: ` M : α ⇐⇒ α ∈ JMK. The inference rules of
the typing system reflect the structure of the corresponding model, and vice versa the elements
of the model can be seen as some specific sets of types. The most known instance is the one of
filter models [2, 13], a large class of models living in Scott-continuous semantics. In their case
the elements of the model can be defined as filters on the set of types ordered by the subtyping
preorder. Another class of Scott-continuous models provided with a Stone duality is the class of
K-models, where K stands for Krivine [8]. In their case the elements of the model can be defined
as initial segments on the set of types ordered by the subtyping preorder. (Actually, the initial
segments can even be replaced by anti-chains, as clarified in [3].) In recent years a similar form
of Stone duality has appeared for relational semantics, a resource-sensitive interpretation of the
λ-calculus coming from the study of linear logic [6]. Many relational models can be characterized
by means of relevant (i.e., without weakening) intersection type systems, where the intersection is
actually a non-idempotent operator (corresponding to the tensor ⊗ of linear logic). Typically, in
these models the subtyping is just an equivalence relation. The idea, already present in [5], is that
in the absence of idempotency and partial orders the type α1 ∧ · · · ∧αn → β can be seen as a rela-
tion associating the multiset [α1, . . . , αn] with the element β. Paolini, Ronchi and Piccolo called
these models strongly linear relational models [12]. The second author, together with Manzonetto
and Breuvart, extensively studied a vast class of them, called relational graph models [14, 4]. In
their case the elements of the model can just be seen as equivalence classes [α]' of types modulo
the subtyping relation '.

Inspired by the type-theoretical semantics reminded above, we ask the following question.
Consider a type system in the abstract sense depicted in the previous section, no matter if as
a 2-morphism F : D → T or in the form of a lax morphism F : T → RelDist. Suppose that
this system enjoys subject expansion and subject reduction w.r.t. the notion of reduction carried
by the 2-arrows of the operad T . (In the case of F : D → T this hypothesis corresponds to
a lifting/op-lifting property, whereas in the case of F : T → RelDist it means that the target
bicategory of F can be specialized to a certain sub-bicategory of RelDist.) Is it possible to define
a denotational model of the programming language T via this typing system?

In the semantics of the λ-calculus seen above, which we use as blueprints for our problem,
the models are always built in one way or another from the set of refinement types ordered by
the subtyping relation. As a consequence, we find more natural to use here the formalization
F : T → RelDist, which groups together refinement types and subtyping morphisms in explicit
small categories F (a).
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So, given a type system F : T → RelDist, we wish to define a 2-morphism J KF : T → O,
where the 2-operad O represents the mathematical universe in which the interpretations live. (The
natural candidate for O is Set itself, seen as a 2-operad.) The 2-morphism J KF : T → O should
satisfy the property that every 2-arrow ρ : t ⇒ t′ of T is sent to the identity of JtKF = Jt′KF ,
since turning program reduction into an invariant of the model is the key idea of denotational
semantics. (At very least JρKF should be an automorphism in O.)

The blueprint semantics suggest that for a given type a of T , its interpretation JaKF must
have something to do with the representable presheaves F (a)(−, α) : F (a)op → Set and similar
notions [9].. Intuitively, such a functor tells us if and in how many ways any refinement type β in
F (a) is a subtype of α.

Perspectives

Achieving the definition of the 2-morphism J KF : T → O in the most general setting presented
here would be a breakthrough. It could allow to extend to other term rewriting systems/idealized
programming languages a type-theoretical approach to semantics so far only confined to the un-
typed λ-calculus, to our knowledge.

We would be satisfied to solve the problem even just for specific case where T is the 2-operad
representing the untyped λ-calculus. That could possibly help us in finding new denotational
models of the λ-calculus, by exploiting the fact of having a category, rather then just a preorder,
of types and subtypings. Moreover, such a solution would allow us to explore the connection
with Hyland’s recent algebraic take on the untyped λ-calculus [7], where the language (and more
generally every λ-theory) is seen as a Lawvere theory, equivalently as an operad T , whereas its
models are defined as algebras over that Lawvere theory, i.e. exactly as functors J K : T → Set.
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