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Abstract
Transitive closure logic is obtained by a modest addition to �rst-
order logic that a�ords enormous expressive power. Most impor-
tantly, it provides a uniform way of capturing �nitary inductive
de�nitions. �us, particular induction principles do not need to
be added to the logic; instead, all induction schemes are available
within a single, uni�ed language. We here present a non-well-
founded proof system for transitive closure logic which is complete
for the standard semantics. �is system captures implicit induction,
and its soundness is underpinned by the principle of in�nite descent.
In search for e�ectiveness, we also consider its subsystem of regular,
i.e. cyclic, proofs.

Transitive closure (TC) logic has been identi�ed as a promising
candidate for a minimal, ‘most general’ system for inductive rea-
soning, which is also very suitable for automation [1, 7, 8]. TC
adds to �rst order logic a single operator for forming binary re-
lations: speci�cally, the transitive closures of arbitrary formulas.
�is simple addition a�ords enormous expressive power: namely
it provides a uniform way of capturing inductive principles. If an
induction scheme is expressed by a formula φ, then the elements
of the inductive collection it de�nes are those ‘reachable’ from the
base elements x via the iteration of the induction scheme. �at
is, those y’s for which (x ,y) is in the transitive closure of φ. �us,
bespoke induction principles do not need to be added to, or embed-
ded within, the logic; instead, all induction schemes are available
within a single, uni�ed language.

Although the expressiveness of TC logic renders any e�ective
proof system for it incomplete for the standard semantics, a natural,
e�ective proof system which is sound for TC logic was shown to
be complete with respect to a generalized Henkin-semantics [9].
Here, following similar developments in other formalizations for
�xed point logics and inductive reasoning (e.g. [4, 5, 6, 12, 14]), we
present an in�nitary proof theory for TC logic which is cut-free
complete with respect to the standard semantics. �e soundness of
such in�nitary proof theories is underpinned by the principle of
in�nite descent: proofs are permi�ed to be in�nite (i.e. non-well-
founded) trees, but subject to the restriction that every in�nite path
in the proof admits some in�nite descent. In the context of formal-
ized induction, we can use formulas interpreted by the elements of
inductive collections for witnessing the descent. For this reason,
such theories are considered systems of implicit induction, as op-
posed to those which employ explicit rules for applying induction
principles. While a full in�nitary proof theory is clearly not e�ec-
tive, such a system can be obtained by restricting consideration to
only the regular in�nite proofs. �ese are precisely those proofs
that can be �nitely represented as (possibly cyclic) graphs.
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�ese in�nitary proof theories generally subsume systems of
explicit induction in expressive power, but also o�er a number
of advantages. Most notably, they can ameliorate the primary
challenge for inductive reasoning: �nding an induction invariant.
In explicit induction systems, this must be provided a priori, and
is o�en much stronger than the goal one is ultimately interested
in proving. However, in implicit systems the inductive arguments
and hypotheses are encoded in the cycles of a proof, so cyclic proof
systems seem be�er for automation. As pointed out in [3], “for
proof search, a cyclic proof system can �nd an induction formula
in a more e�cient way . . . since [it] does not have to choose �xed
induction formulas in advance.”

In the se�ing of TC logic, we observe some further bene�ts over
more traditional formal systems of inductive de�nitions and their
in�nitary proof theories (cf. LKID [6, 11]). As previously mentioned,
TC (together with a pairing function) has all inductive de�nitions
immediately ‘available’ within the language of the logic. As with
inductive hypotheses, one does not need to ‘know’ in advance
which induction schemes will be required. Moreover, the use of
a single transitive closure operator provides a uniform treatment
of all induction schemes. �at is, instead of having a proof system
parameterized by a set of inductive predicates and rules for them
(as is the case in LKID), TC o�ers a single proof systemwith a single
rule scheme for induction. �is has immediate bene�ts in devel-
oping the metatheory: the proofs of completeness w.r.t. standard
semantics and adequacy (e.g. subsumption of explicit induction)
for the in�nitary system are simpler and more straightforward.
Furthermore, it allows a simple syntactic criterion to de�ne a cyclic
subsystem that is complete for Henkin semantics. �is suggests
the possibility of more focussed proof-search strategies, further en-
hancing the potential for automation. TC logic is more expressive
in other ways too. �e transitive closure operator may be applied
to any formula, thus one is not restricted to induction principles
corresponding only to monotone generation schemes (as in, e.g.,
[4, 6]).

We show that the explicit and cyclic TC systems are equivalent
under arithmetic, as is the case for LKID [3, 13]. However, there are
cases in which the cyclic system for LKID is strictly more expressive
than the explicit induction system [2]. To obtain a similar result for
TC, the fact that all induction schemes are available ‘at once’ poses
a serious challenge. For one, the construction used in [2] does not
serve to show this result holds for TC. If this strong inequivalence
indeed holds also for TC, it must be witnessed by a more subtle and
complex counter-example. Conversely, it may be that the explicit
and cyclic systems do coincide for TC. In either case, this points
towards fundamental aspects that require further investigation.

For a full technical report of this extended abstract see [10].
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