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Deep inference, as a proof system, has remarkable properties: quasi-polynomial normalization for propo-
sitional classical logic; non-elementary proof compression for first-order classical logic; the ability to
express logics for which no sequent calculus can exist. It is a natural question if these and other striking
features can be put to computational use.

In this extended abstract we will discuss our recent progress in developing a natural treatment of in-
tersection types in deep-inference proof theory, using the variant open deduction [3]. Our motivation is
two-fold. More broadly, open deduction is a semantically oriented formalism, whose syntax is intimately
related to category theory, and we are interested in viewing intersection types from this perspective. More
specifically, we are interested in developing intersection types for the atomic lambda-calculus [4], a fully
lazy lambda-calculus derived as a Curry-Howard interpretation of an open-deduction proof system.

The defining characteristic of open deduction is that proofs are con-
structed in two dimensions, as illustrated on the right. Left, a type vari-
able a constitutes an atomic derivation from premise a to conclusion a.
Middle, derivations from A to B and from C to D are composed horizon-
tally with a logical connective ⋆, forming a derivation from A⋆C to B⋆D.
On the right, the same derivations are composed vertically to one from A
to D using a (given) inference rule from B to C. Proofs do not branch out,
and as a consequence offer interesting opportunities for the sharing of
subproofs, or in a computational interpretation, the sharing of subterms.

a
A C
⇓ ⋆ ⇓
B D

A
⇓
B r
C
⇓
D

Our main contribution is as simple as it is elegant: we extend the treatment of connectives in open de-
duction, as operating at the level of proofs as well as that of formulas, to a (non-idempotent) intersection
type constructor.

Intersection types are an important typing system for a calculus, that allows a more comprehensive typing
of strongly normalizing terms than a simply typed calculus, as it allows for typing of terms such as λx.xx.
This is due to allowing variables to have multiple types, hence in this example x can have two different
types a and a→ a. At the point of abstraction λx. it has both; but in the application xx the type of the
function is specialized to a→ a, and that of the argument to a.

As our term calculus, we will use a linear lambda-calculus with explicit sharing, named the basic cal-
culus because it fulfills that role in the development of the atomic lambda-calculus [4]. The calculus
is defined by the following grammar, where variables are linear, i.e. they may occur only once, and a
bound variable must occur.

t,u,v ∶∶= x ∣ λx.t ∣ tu ∣ u[x,y← t] ∣ u[← t]
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We call these constructors variable, abstraction, application, sharing and weakening respectively. We
abbreviate a sharing or weakening with [φ], and a sequence of these by [Φ] = [φ1] . . .[φn]. Substitution
in the calculus is always linear; we write it as {u/x}.

Reduction for the basic calculus is similar that of the Linear Substitution Calculus of Accattoli and
Kesner [1]. We have (linear) β -reduction, where we incorporate sharings and weakenings into the pat-
tern so that they cannot obstruct a redex, and a duplication and deletion step that evaluate sharings and
weakenings, maintaining the linearity of variables. Below, t′ and t′′ are t with every (free and bound)
variable z renamed to a fresh variable z′ respectively z′′, and the free variables of t are z1, . . . ,zn.

(λx.t)[Φ]u ↝β λx.t{u/x}
u[x,y← t] ↝s u{t′/x}{t′′/y}[z′1,z′′1 ← z1] . . .[z′n,z′′n ← zn]

u[← t] ↝w u[← z1] . . .[← zn]

Our starting point are non-idempotent intersection types for the lambda calculus, conveniently formu-
lated by Bucciarelli, Kesner and Ventura [2] as multiset types. A multiset type can be of the form [a,b,a],
which means that the term has either type a, or b, or a again. Non-idempotent intersections are advan-
tageous over idempotent intersection types as they simplify strong normalization proofs, due to the fact
that reductions strictly reduce the size of the type derivation. We define the following types.

A,B,C ∶∶= a ∣ M→ A M,N ∶∶= [A1, . . . ,An] Γ,∆ ∶∶= M1∧⋅ ⋅ ⋅∧Mn

Here a is a type variable, A is a strict type, M a multiset type (a finite multiset of strict types), and
Γ a context type (a finite conjunction of multiset types). We admit the empty context type, a 0-ary
conjunction written ⊺, and consider conjunction modulo symmetry, associativity, and unit laws.

Our open-deduction calculus for idempotent intersection types is then built as follows. A
typing judgement is of the form Γ ⊢ t ∶ A, and is derived by an open-deduction derivation from
Γ to A, as on the right. Here we assume an implicit correspondence between Γ =M1∧ ⋅ ⋅ ⋅∧Mn

and the free variables x1, . . . ,xn of t, which we may express by xi ∶Mi or by Mxi
i .

Γ
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Derivations are built following the structure of a term in the basic calculus, within a larger space of
constructions for horizontal composition and rules for vertical composition. In isolation, these do not
necessarily follow the definition of types and the type pattern of derivations (though they do use the
given constructors), but when built from terms, they will.

We employ the following rules, which from left to right are axiom, abstraction, application, sharing,
and weakening, and medial or interchange, where M+N is multiset union.

[A]
ax

A
Γ
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M→ (Γ∧M)
(M→ A)∧M
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△

M∧N
M w⊺

(M+N) ∧ (Γ+∆)
x(M∧Γ) + (N ∧∆)

Vertical composition of derivations is as described previously, where the connecting rule between the
two derivations can be any of the above. Horizontal composition is with the connectives ∧ and →, and
as finite multisets of derivations, as follows. The conclusion of the latter is the multiset M = [A1, . . . ,An],
and the premise is the multiset over the ∆i.
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Within this larger space of derivations we can find those that type the terms of the basic calculus. We
distinguish the strict derivations (⇓) with a strict type as conclusion, and the multiset derivations ( ⇚) with
multiset type conclusion. Multiset derivations for a term t are generated from the empty and singleton
multiset as follows, where the double rule indicates any number of interchange inferences, and x ∶ Mi if
and only if x ∶Ni for each free variable x of t.

(M1+N1) ∧ . . . ∧ (Mn+Nn)
M1∧⋅ ⋅ ⋅∧Mn N1∧⋅ ⋅ ⋅∧Nn

⇚ t + ⇚ t
M N

Then strict derivations are constructed as follows.
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The proposed calculus enjoys subject reduction. It gives a purely structural treatment of intersection
types, where all necessary logical components are immediately visible. We expect that the principle of
lifting an intersection type constructor to the level of derivations will apply straightforwardly to idempo-
tent types, and more broadly when the medial rule is available. This is the topic of future investigations.
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