Consistency Checking of Functional
Requirements

Simone Vuotto

! Universita degli Studi di Genova
simone.vuotto@edu.unige.it
2 Universita degli Studi di Sassari
svuotto@uniss.it

Abstract. Requirements are informal and semi-formal descriptions of
the expected behavior of a system. They are usually expressed in the
form of natural language sentences and checked for errors manually,
e.g., by peer reviews. However, manual checks are error-prone and time-
consuming. With the increasing complexity of cyber-physical systems
and the need of operating in safety- and security-critical environments,
it became essential to automatize the consistency check of requirements
and build artifacts to help system engineers in the design process.

1 Introduction

The assessment of requirements is an important yet costly and complex task, still
largely carried out manually. The Requirements Engineering (RE)[8] research
field aims at developing tools and techniques to analyze and handle require-
ments in a more efficient and automatic way. One of the main challenges is to
evaluate requirements consistency: informally, it means detecting errors, miss-
ing information and deficiencies that can compromise the interpretation and
implementation of the intended system behavior. At a syntactic level, this may
involve the check for compliance with standards and guidelines, such as the use
of a restricted grammar and vocabulary. We call this task Compliance Checking.

However, most of the inconsistencies reside at a semantic level, i.e. in their
intended meaning. This call for an interpretation and reasoning of requirements
semantics. An open and interesting research question is how to formalize and
translate requirements into a formal representation. A recurrent solution in the
literature is the use of Property Specification Patterns (PSPs), first introduced
by [3]. PSPs provide a direct mapping from English-like structured natural lan-
guages to one or more logics. A survey of all available patterns and their transla-
tion has been made by [2]. Other approaches, like [4], employ Natural Language
Processing techniques to extract the representation directly from fully natural
language requirements.

Given the set of requirements represented in a formal logic, another funda-
mental question is what kind of reasoning we can employ and how to do that. We
formally define this task Consistency Checking analysis [5]. Consistency Check-
ing can range from simple variables type and domain checks to more complex

Knowledge Base

@ - Compliance | |
.—» Requirements Checker NL2FL

Feedback

Consistency

Report
P Checker \
. Automatic Formal
Test Suit Test Generator Representation

Runtime /

Monitor Monitor Builder

TTT

Fig. 1. General framework of the requirement analysis tool

activities, like the evaluation of the intended system behavior over time. In par-
ticular, we are interested in checking if the set of requirements together “make
sense” | namely answering the question:

Given the set of requirements, does a system exist that can satisfy them all at
the same time?

The choice of which logic to use largely affects the reasoning power and
the kind of requirements that can be formalized: qualitative, real-time and/or
probabilistic. For example, in some logics it is only possible to specify that an
event e will eventually happen in the future, while others can also constraint the
time frame (e.g. e will happen within 5s) or its likelihood (e.g. e will happen with
probability p > 0.5). We started from Linear Temporal Logic (LTL)[9] because
it has a good balance between expressiveness and complexity, and it is widely
used in the literature. In particular, answering the aforementioned question can
be easily translated in a LTL satisfiability check, largely studied and with many
efficient tools available [10].

The satisfiability check in turn brings other two research questions:

— Vacuity Check [6]: if the formula is satisfiable, is it satisfiable in an inter-
esting way? For example, the LTL specification O(msg — Orcv) (“every
message is eventually received”) is satisfied in a model with no messages,
but it is possibly not the expected behavior. Being able to pinpoint these
situations can give the user interesting information to modify or expand the
requirements document.

— Inconsistent Requirements Explanation: if the requirements are inconsistent,
which is the minimum set of them that create the inconsistency? The number
of requirements may be really large, but only few of them making the system
unfeasible.

Finally, the formalization of requirements and the consistency checking are
enablers for other tasks we would like to tackle in this Ph.D. project, namely
the automatic generation of test suites and runtime monitors. The full overview
of the tool that we are designing is depicted in Figure 1. We are now focusing
on the NL2FL and Consistency Checker modules.

2 Consistency of Property Specification Patterns

Our first contribution [7], developed in the context of the H2020 CERBERO
European Project [1], presented a tool for the consistency checking of qualitative
requirements expressed in form of PSPs with constrained numerical signals. An
example of requirement that we can handle is:

Globally, it is always the case that if proximity_sensor < 20 holds, then
arm_idle eventually holds.

We first translate every requirement r; € R in LTL(D¢), an extension of LTL
over a constraint system Do = (R,<,=), with atomic constraints of the form
x < c and x = ¢ (where ¢ € R is a constant real number and ‘<” and “=" have
the usual interpretation). We then show how the new problem can be reduced
to LTL satisfiability. Let X (¢) be the set of numerical variables and C(¢) be the
set of constants that occur in ¢. We compute:

— the LTL(D¢) formula ¢; for every requirement r; € R;

— the conjunctive formula ¢ = ¢1 A ... A ¢n;

— aset M, (¢) of boolean propositions representing possible values of z € X (¢);

— the formula Qs encoding the constraints over M, (¢) Vo € X(¢);

— the formula ¢’ that substitute all z € X(¢) in ¢ with a set of boolean
propositions from M, (¢);

Given the LTL(D¢) formula ¢ over the set of Boolean atoms Prop and the
terms C(¢) U X (¢) we have that ¢ is satisfiable if and only if the LTL formula
¢m — @' is satisfiable. This result is important because it shows that LTL(D¢)
is decidable and that we can exploit state-of-the-art LTL model checkers.

3 Future work

In order to reduce the number of errors in the specification, we have partially
implemented an algorithm to check the relationship among requirements. This
is a first step to prevent vacuous results, but more work is needed.

Connected Requirements Check Given a set of requirements R = {ry, ..., }, we
want to check if one or more of such are completely unrelated to the others,
meaning that they describe some behaviors that do not interact with the main
bulk of the system. This may happen in an underspecified requirements set or
for some spelling errors. To find these faulty requirements we first build the
undirected graph G = (V, E) representing the connections in R, such that:

—v, €V Vr;, €R;
- (,j) e Ef X(ri)NX(rj) #0Vry,rj e Rii#j

where X (r;) is set of variables, boolean or numerical, that appear in r;. We then
compute all the connected components in G. If the number of components in

greater than one, we find the smallest one (i.e. the component with the lowest
number of vertex) and report it to the user.

Currently we are also focusing our attention on the Inconsistent Require-
ments Explanation problem. We implemented a simple algorithm that iterate
over all r; € R and perform the consistency check on the set R\ r;. We keep
r; in R only if the new set is shown to be consistent, and we discard it oth-
erwise. The algorithm terminates when all the requirements in the original set
are checked. This algorithm effectively find a solution, but it is quite inefficient.
Therefore, we are seeking for a better algorithm which exploits the structure of
the problem.

Finally, for future works we would also like to both extend the natural lan-
guage interface with less restrictive constraints and adopt a more expressive
logic. In particular, we are interested in probabilistic logics such PCTL, but the
consistency checking problem is difficult to define in this case and more research
is needed.

Acknowledgments The research of Simone Vuotto is funded by the EU Commis-
sion H2020 Programme under grant agreement N.732105 (CERBERQO project).

References

1. H2020 Cerbero Project Website. http://www.cerbero-h2020.eu/

2. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualitative,
real-time, and probabilistic property specification patterns using a structured en-
glish grammar. IEEE Transactions on Software Engineering 41(7), 620-638 (2015)

3. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications
for finite-state verification. In: Proceedings of the 21st International conference on
Software engineering. pp. 411-420 (1999)

4. Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W.: Arsenal:
automatic requirements specification extraction from natural language. In: NASA
Formal Methods Symposium. pp. 41-46. Springer (2016)

5. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consistency checking
of requirements specifications. ACM Transactions on Software Engineering and
Methodology (TOSEM) 5(3), 231-261 (1996)

6. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Inter-
national Journal on Software Tools for Technology Transfer 4(2), 224-233 (2003)

7. Narizzano, M., Pulina, L., Tacchella, A., Vuotto, S.: Consistency of property speci-
fication patterns with boolean and constrained numerical signals. In: NASA Formal
Methods Symposium. pp. 383-398. Springer (2018)

8. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proceed-
ings of the Conference on the Future of Software Engineering. pp. 35-46. ACM
(2000)

9. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science,
1977., 18th Annual Symposium on. pp. 46-57. IEEE (1977)

10. Rozier, K.Y., Vardi, M.Y.: Ltl satisfiability checking. International journal on soft-
ware tools for technology transfer 12(2), 123—-137 (2010)

