
Inner Models of Univalence
Thierry Coquand
Computer Science

Gothenburg University
Sweden

Thierry.Coquand@cse.gu.se

Abstract
We present a simple inner model construction for dependent type
theory, which preserves univalence.
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Introduction
A part of my talk will be about the meta-theory of dependent type
theory extended with the univalence axiom [6] and, in particular,
some independence or consistency results about this formal system.
Two examples of such results are the following. First, countable
choice cannot be proved in type theory with univalence. (Countable
choice can be stated in the form (Π(n : N ) ∥A∥) → ∥Π(n : N )A∥,
where ∥T ∥ is the propositional truncation [5] ofT .) Second, the fact
that univalence is consistent with Brouwer’s fan theorem.

The goal of this note is to present one step in building such
models, which can be expressed purely syntactically and can be
seen as a simple case of the translation described in [3]. This also can
be seen as a type theoretic version of the inner model construction
in set theory.

1 Type theoretic inner model
We consider a model of type theory with a cumulative sequence of
universeUn .

We assume given an operation G (A) on types together with
elements of types

(Π(x : A)G (B)) → G (Π(x : A)B)
G (A) → (Π(x : A)G (B)) → G (Σ(x : A)B)
G (A) → Π(x y : A)G (Id A x y)

as well as elements of G (Σ(X : Un )G (X )) for all n.
Besides these closure conditions, we also assume that eachG (A)

is a h-proposition [5, 6].
We can now define an internal translation which provides a new

model of type theory. This is a purely syntactical process. We define,
where p f denotes the proof that the first component satisfiesG (for
a type A, [[A]] will be the first component [A].1 of [A] and [A].2
will be a proof of G ([[A]])).
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[x] = x
[M N ] = [M] [N ]
[λ(x : A) M] = λ(x : [[A]])[M]
[M .1] = [M].1
[M .2] = [M].2
[M,N ] = [M], [N ]

[Π(x : A) B] = (Π(x : [[A]])[[B]],p f )
[Σ(x : A) B] = (Σ(x : [[A]])[[B]],p f )
[Id A M N ] = (Id [[A]] [M] [N ],p f )
[Un] = (Σ(X : Un )G (X ),p f )

[[A]] = [A].1

We then have that if x1 : A1, . . . ,xn : An ⊢ M : A then x1 :
[[A1]], . . . ,xn : [[An]] ⊢ [M] : [[A]].

Theorem 1.1. The internal model of type theory described by the
translation above satisfies univalence if the underlying model satisfies
univalence.

Proof. Univalence for Un can be expressed by the type [2]

Π(A : Un )isProp(Σ(X : Un )Equiv A X )

where
isContr A = Σ(a : A)Π(x : A)Id A a x
isProp A = Π(x y : A)isContr (Id A x y)
isEquiv A X f = Π(x : X )isContr(Σ(a : A)Id X ( f a) x )
Equiv A X = Σ( f : A→ X )isEquiv A X f

The translation of the statement of univalence is then

Π(A : [[Un]])isProp(Σ(X : [[Un]])Equiv A.1 X .1)

and this is provable given that G (A) is a h-proposition. □

2 Examples
Assume that we are given a family La (a : A) of left exact modalities
[4]. If we defineG (X ) as Π(a : A)isEquiv ηXa where ηXa : X → La X
is the unit of La , then the operation G (X ) admits all the required
operations[4] listed in the previous section.

It is possible to build non trivial examples of such a family of
left exact modalities on suitable presheaf models of cubical type
theory, models that satisfy the univalence axiom [1]. The type A
represents the type of “coverings” while La X represents the type of
“descent data” for the covering a. The fact that ηXa is an equivalence
expresses then that any descent data can be glued together in a
unique way.
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