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Abstract
The paper deals with finite-state Markov decision processes (MDPs)
with integer weights assigned to each state-action pair. New algo-
rithms are presented to classify end components according to their
limiting behavior with respect to the accumulated weights. These al-
gorithms are used to provide solutions for two types of fundamental
problems for integer-weighted MDPs. First, a polynomial-time algo-
rithm for the classical stochastic shortest path problem is presented,
generalizing known results for special classes of weighted MDPs.
Second, qualitative probability constraints for weight-bounded (re-
peated) reachability conditions are addressed. Among others, it is
shown that the problem to decide whether a disjunction of weight-
bounded reachability conditions holds almost surely under some
scheduler belongs to NP ∩ coNP, is solvable in pseudo-polynomial
time and is at least as hard as solving two-player mean-payoff
games, while the corresponding problem for universal quantifica-
tion over schedulers is solvable in polynomial time.
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1 Introduction
Markov decision processes (MDPs) are a prominent model used,
e.g., in operations research, artificial intelligence, robotics and the
formal analysis of probabilistic nondeterministic programs. Vari-
ous types of stochastic shortest (or longest) path problems can be
formalized as an optimization problem for MDPs with integer or ra-
tional weights for the transitions where the task is to determine an
optimal scheduling policy for the MDP until reaching a target. Here,
optimality is understood with respect to the expected accumulated
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weight or the probability of reaching the target under weight con-
straints. Such problems can be seen as a control-synthesis problem
that, e.g., asks to implement a decision-making routine for a robot
so that the robot eventually reaches a safe state almost surely, while
providing guarantees on the achieved utility.

Stochastic shortest (or longest) path problems are well under-
stood and supported by various tools for finite-state MDPs with
nonnegative weights only, for which the algorithms can rely on the
monotonicity of accumulated weights along the prefixes of paths.
In this case, schedulers that maximize or minimize the expected
accumulated weight until reaching the target can be determined in
polynomial time based on a preprocessing of end components (i.e.,
strongly connected sub-MDPs) and linear programs [5, 12]. One
can compute schedulers maximizing the probability for reaching
the target within a given cost in pseudo-polynomial time using an
iterative approach that successively increases the weight bound and
treats zero-weight loops by linear-programming techniques [3, 19].
The corresponding decision problem is PSPACE-hard, even for
acyclic MDPs [14].

For MDPs with arbitrary integer weights, the lack of mono-
tonicity of accumulated weights makes analogous questions much
harder. Even for finite-state Markov chains with integer weights,
the set of relevant configurations (i.e., states augmented with the
weight that has been accumulated so far) can be infinite and, in
MDPs with integer weights optimal or ε-optimal schedulers might
require an infinite amount of memory. The latter is known from
energy-MDPs [7, 9, 17] where one aims at finding a scheduler under
which the system never runs out of energy (i.e., the accumulated
weight plus some initial credit is always positive) and satisfies an
ω-regular property (e.g., a parity condition) with probability 1 or
maximizes the expected mean payoff. Another indication for the
additional difficulties that arise when switching from nonnegative
weights to integers is given by the work on one-counter MDPs [6],
which can be seen as MDPs where all weights are in {−1, 0,+1} and
that terminate as soon as the counter value is 0. Among others, [6]
establishes PSPACE-hardness and an EXPTIME upper bound for the
almost-sure termination problem under some scheduler, while the
corresponding weight-bounded (control-state) reachability problem
in nonnegative MDPs is in P [19].

This paper addresses several fundamental problems for MDPs
with integer weights. Our main contributions are as follows. First,
we show that the classical stochastic shortest path problem, where
the task is to minimize the expected weight until reaching a tar-
get, is solvable in polynomial time for arbitrary integer-weighted
MDPs. We hereby extend previous results for restricted classes of
MDPs [5, 12], while the general case was open. Second, we study
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disjunctions of weight-bounded reachability conditions with qual-
itative probability bounds and existential or universal scheduler
quantification. The problem to check the existence of a scheduler
satisfying a disjunction of weight-bounded reachability conditions
almost surely (referred to as decision problem DWR∃,=1) is shown
to be inNP∩coNP, solvable in pseudo-polynomial time, and as hard
as non-stochastic two-player mean-payoff games (and therefore
not known to be in P). The same complexity results are achieved for
checkingwhether a disjunction of weight-bounded reachability con-
ditions holds with positive probability under all schedulers (prob-
lem DWR∀,>0). In contrast, problem DWR∀,=1 that asks whether
a disjunctive weight-bounded reachability condition holds almost
surely under all schedulers is shown to be in P. We also present
algorithms for computing optimal weight-bounds with analogous
time complexities: pseudo-polynomial for the optimization variants
of DWR∃,=1 and DWR∀,>0 and polynomial for DWR∀,=1. These
results should be contrasted with the polynomial-time decidabil-
ity of DWR∃,=1 and DWR∀,>0 for MDPs where all weights are
nonnegative [19].

Although several other problems for integer-weighted MDPs are
known to be in NP∩ coNP and as hard as nonstochastic two-player
mean-payoff games (see, e.g., [8, 9, 17] and the discussion on related
work in Section 5.3), our techniques crucially depart from previous
work by heavily relying on new algorithms to classify end compo-
nents (ECs) of MDPs. We see these results on the classification of
ECs as a further main contribution as it provides a useful vehicle
for reasoning about different problems for integer-weighted MDPs.
An indication for the latter is that we use these classification algo-
rithms not only to establish the results listed above for DWR∃,=1
and DWR∀,=1, but also to prove the polynomial-time solvability
of the classical shortest path problem in general integer-weighted
MDPs and to deal with weight-bounded Büchi conditions.

Our classification of ECs is according to the existence of sched-
ulers that increase the weight to infinity (pumping ECs), or ensure
that the weight eventually exceeds any threshold possibly without
converging to +∞ (weight-divergent ECs), or have oscillating be-
havior (gambling ECs), or keep the accumulated weights within a
compact interval (bounded ECs). A sufficient and necessary criterion
for the pumping property is that the maximal expected mean payoff
is positive, which is decidable in polynomial time by computing
the maximal expected mean payoff using linear-programming tech-
niques [15, 18]. While this observation has been made by several
other authors, we are not aware of earlier algorithms for check-
ing the gambling or boundedness property. For checking weight-
divergence, the results of [6] for one-counter MDPs without bound-
ary yield a polynomial time bound for the special case of MDPs
where all weights are in {+1, 0,−1} and a pseudo-polynomial time
bound in the general case. We improve this result by presenting
a polynomial-time algorithm for deciding weight-divergence for
MDPs with arbitrary integer weights. Moreover, in case that the
given MDP M is not weight-divergent, the algorithm generates
a new MDP N with the same state space that has no 0-ECs (i.e.,
end components where the accumulated weight of all cycles is 0)
and that is equivalent to M for all properties that are invariant
with respect to behaviors inside 0-ECs. The generation of such an
MDP N relies on an iterative technique to flatten 0-ECs. This new
technique, called spider construction, can be seen as a generalization

of the method proposed in [11, 12] to eliminate 0-ECs in nonneg-
ative MDPs. There, all states that belong to some maximal end
component of the sub-MDP built by state-action pairs with weight
0 are collapsed. This technique obviously fails for integer-weighted
MDPs as 0-ECs can contain state-action pairs with negative and
positive weights. The spider construction maintains the state space,
but turns the graph structure of maximal 0-ECs into an acyclic
graph with a single sink state that captures the original behav-
ior of all other states in the same maximal 0-EC. Besides deciding
weight-divergence, the spider construction will be the key to solve
the classical shortest path problem for arbitrary integer-weighted
MDPs.

Checking the gambling property is NP-complete in the general
case, but can be decided in polynomial time using the spider con-
struction, provided that the maximal expected mean payoff is 0.
The latter is the relevant case for solving problems DWR∃,=1 and
DWR∀,=1 as well as corresponding problems for weight-bounded
Büchi conditions. We establish an analogous result for the bound-
edness property, shown to be equivalent to the existence of 0-ECs
in cases where the given end component has maximal expected
mean payoff 0.

Outline. Section 3 presents the classification of end compo-
nents and corresponding algorithms. Our results on the stochastic
shortest path problem and weight-bounded (repeated) reachability
properties will be presented in Sections 4 and 5, respectively. For
full proofs we refer to the extended version of this paper [2].

2 Preliminaries
We briefly define our notations. For more details see, e.g., [4, 18].
Definition 2.1 (Markov decision processes (MDPs).). An MDP
is a tuple M = (S,Act, P ,wgt) where S is a finite set of states,
Act is a finite set of actions, P : S × Act × S → [0, 1] ∩ Q is a
probabilistic transition function satisfying

∑
t ∈S P(s,α , t) ∈ {0, 1}

for all (s,α) ∈ S × Act, and wgt : S × Act → Z is a weight function.
Action α is enabled in s if

∑
t ∈S P(s,α , t) = 1, in which case (s,α)

is called a state-action pair ofM. Act(s) denotes the set of actions
enabled in s . State s is called a trap if Act(s) = ∅.

Let ∥M∥ denote the number of state-action pairs inM. The size
of MDPM is ∥M∥ plus the sum of the logarithmic lengths of the
probabilities and weights inM.

A path in an MDP M = (S,Act, P ,wgt) is an alternating se-
quence of states and actions, that can be finiteπ = s0 α0 s1 α1 s2 . . . sn
or infinite ς = s0 α0 s1 α1 s2 α2 . . ., such that for every index i ,
αi ∈ Act(si ) and P(si ,αi , si+1) > 0. A path is called maximal if
it is infinite or ends in a trap. FPaths, IPaths andMPaths denote the
set of finite, infinite andmaximal paths, respectively. Theweight of a
finite path π = s0 α0 s1 α1 . . . αn−1 sn iswgt(π ) =

∑n−1
i=0 wgt(si ,αi ).

For any path π = s0 α0 s1 α1 s2 α2 . . ., we write pref (π , i) for its pre-
fix up to state si . The first (resp. last) state of a finite path π is
denoted first(π ) (resp. last(π )). If ς is infinite, lim(ς) is the set of
state-action pairs occurring infinitely often in ς .

A scheduler resolves nondeterminism inMDPs. Formally, a sched-
uler for M is a partial functionS : FPaths → Distr(Act) that maps
every finite path π where t = last(π ) is not a trap to a distribu-
tion over Act(t). Given a schedulerS and a state s , the behavior of
M underS with starting state s can be formalized by a (possibly
infinite-state) Markov chain. PrS

M,s denotes the induced probability
measure. We use standard notions for deterministic, memoryless,
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finite- and infinite-memory schedulers. Thus, memoryless deter-
ministic (MD) schedulers can be viewed as functions assigning
actions to non-trap states and the induced Markov chain is finite.

The analysis of the behaviors in MDPs often relies on their end
components. An end component ofM is a pair E = (T ,A) consisting
of a set of states T ⊆ S and a function A : T → 2Act such that (1)
∅ , A(s) ⊆ Act(s) for each s ∈ T , (2) {t ∈ S : P(s,α , t) > 0} ⊆ T for
each s ∈ T and α ∈ A(s), and (3) the sub-MDP induced by (T ,A) is
strongly connected. We often identify end components with their
sets of state-action pairs. That is, if E = (T ,A) is as above, we
identify E with the set {(t ,α) : t ∈ T ,α ∈ A(t)} and rely on the
fact that for each scheduler the limit lim(ς) of almost all infinite
S-paths ς constitutes an end component [11]. E is a maximal end
component (MEC) if there is no end component F such that E
is strictly contained in F . MECs of an MDP are computable in
polynomial time [10, 11]. All notations introduced for MDPs can be
used for end components, which are themselves strongly connected
MDPs.

Specifying properties. We use the term properties to denote mea-
surable subsets of (S × Z)ω ∪ (S × Z)∗ × S with respect to the
standard cylindrical sigma-algebra. To reason about probabilities
of properties concerning the measure PrS

M,s whereS is a sched-
uler and s is a starting state, every path (state-action sequence)
in M is naturally mapped to a state-integer sequence. Temporal
properties with weight constraints will be described by LTL-like
formulas. The atoms of such formulas are (sets of) states or weight
expressions of the form wgt ▷◁ w where ▷◁ ∈ {⩽, <,⩾, >,=} is
a comparison operator and w ∈ Z is a threshold. Such formulas
are interpreted over path-position pairs. More precisely, given a
path ς = s0 α0 s1 α1 s2 α2 . . . in M and i ∈ N (ς , i) |= wgt ▷◁
w iff wgt(pref (ς , i)) ▷◁ w , and as usual, ς |= φ is a shortcut for
(ς , 0) |= φ. Towards an example, let goal be a state in M. Then
ς |= ^(goal ∧ (wgt ⩾ w)) iff ς has a finite prefix π such that
last(π ) = goal and wgt(π ) ⩾ w .

To reason about optimal probabilities of a property φ, let

Prsup
M,s (φ) = supS PrS

M,s (φ) and Prinf
M,s (φ) = infS PrS

M,s (φ)

where S ranges over all schedulers for M. We write Prmax
M,s (φ)

rather than Prsup
M,s (φ) if the supremum is indeed a maximum. This

is the case, e.g., if φ is an ordinary LTL formula (without weight
constraints). Note that the maximum/minimum might not exist for
weight-bounded properties.
In any case, Prmax

M,s (φ) = 1 (resp. Prmax
M,s (φ) > 0) indicates the exis-

tence of a schedulerS with PrS
M,s (φ) = 1 (resp. PrS

M,s (φ) > 0).
Given a random variable f ,

E
sup
M,s (f ) = supS ESM,s (f ) and E

inf
M,s (f ) = infS ESM,s (f )

denote the extremal expectations of f , where sup and inf take
values in R ∪ {−∞,+∞}, while, for instance, Emax

M,s (f ) will be used
when the maximum exists. In particular, we will use the random
variable associated with the mean payoff, defined on infinite paths
by MP(ς) = lim supn→∞

wgt(pref (ς,n))
n . Recall that the maximal

expected mean payoff in strongly connected MDPs does not depend
on the starting state and that there exist MD-schedulers with a
single bottom strongly connected component (BSCC) maximizing the
expected mean payoff. When M is strongly connected, we omit
the starting state and write Emax

M
(MP).

3 Classification of End Components
As basic building blocks of our algorithms, we define four types
of schedulers and end components of MDPs. The pumping end
components have a scheduler that let the accumulated weight al-
most surely diverge to infinity; positively (resp. negatively) weight-
divergent ones have a scheduler where almost surely the limsup
(resp. liminf) of the accumulated sum is infinity (resp. minus infin-
ity); the gambling ones have schedulers with expected mean payoff
0 and where the accumulated weight approaches both plus and
minus infinity with probability 1; while the zero end components
only have 0 cycles, so the weight stays bounded with probability 1.

Definition 3.1. An infinite path ς in an MDPM is called
• pumping if lim inf

n→∞
wgt(pref (ς ,n)) = +∞,

• positively weight-divergent, or briefly weight-divergent,
if lim sup

n→∞
wgt(pref (ς ,n)) = +∞,

• negatively weight-divergent if lim inf
n→∞

wgt(pref (ς ,n)) = −∞,
• gambling if ς is positively and negatively weight-divergent,
• bounded from below if lim inf

n→∞
wgt(pref (ς ,n)) ∈ Z.

A scheduler S for M is called pumping from state s if
PrS

M,s {ς ∈ IPaths : ς is pumping} = 1, i.e., almost all S-paths
from s are pumping. S is called pumping if it is pumping from
all states s . The MDP M itself is said to be pumping if it has at
least one pumping scheduler.M is called universally pumping if all
schedulers of M are pumping.

The notions of weight-divergent (or negatively weight-divergent
or bounded from below) schedulers and MDPs are defined analo-
gously. Gambling schedulers are those where almost all paths are
gambling and where the expected mean payoff is 0. A strongly
connected MDP M is called gambling if Emax

M
(MP) = 0 and M has

a gambling scheduler (see Fig. 1).
Obviously, a strongly connected MDP M is pumping (universal

pumping or weight-divergent or gambling, respectively) from some
state iff M is pumping (universal pumping or weight-divergent or
gambling, respectively).

s

tu

goal
α /0 τ /+1τ /–1

β/0

Figure 1. EC E = {(s,α), (u,τ ), (t ,τ )} is gambling in case all dis-
tributions are uniform. The MD scheduler that always takes (s,α)
is gambling. Moreover, goal can be reached almost surely for
any weight threshold, using the infinite-memory scheduler that
takes (s,α) if below the threshold, and (s, β) otherwise. One can
show that this cannot be achieved with a finite-memory scheduler.

A zero end component (0-EC) is an end component E where
wgt(ξ ) = 0 for each cycle ξ in E and use the term 0-BSCC when E

contains at most one state-action pair (s,α) for each state s in E.
Thus, each 0-BSCC is a bottom strongly connected component of an
MD-scheduler. A cycle ξ in M is called positive if wgt(ξ ) > 0, and
negative if wgt(ξ ) < 0. Recall characterizations of these notions for
Markov chains:

Lemma 3.2 (Folklore – see, e.g., [16]). Let C be a strongly connected
finite Markov chain.
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M :

E

s t w

r

u v

α /+1

α /0

β /+2

β /-2α /-1

γ /+4

β /-3

M1 :

F

s t w

r

u v

τ /+1

τ /0

β /+2

β /-2

γ /+4

β /-3

s t w

r

u v

τ /+1

τ /0

γ /+4
τ /-2

τ /-2

M2 :

Figure 2. Illustration of the spider construction:M1 = SpiderE,t (M) andM2 = SpiderF,t (M1).

(a) C is pumping iff E
C
(MP) > 0.

(b) E
C
(MP) = 0 iff C is a 0-BSCC or C is gambling.

(c) If E
C
(MP) = 0 then the following statements are equivalent:

(1) C is gambling, (2) C is positively weight-divergent, (3) C is
negatively weight-divergent, (4) C has a positive cycle, (5) C
has a negative cycle.

(d) If E
C
(MP) = 0 then the following are equivalent: (1) C is

a 0-BSCC, (2) C is bounded from below, (3) the set of paths
bounded from below has positive measure.

The goal of this section is to provide an analogous character-
ization for strongly connected MDPs and efficient algorithms to
decide whether an MDP is of a given type.

This is simple for the existential and universal pumping property,
checkable in polynomial time :

Lemma 3.3. LetM be a strongly connected MDP. Then,M is pump-
ing iff M has a pumping MD-scheduler iff Emax

M
(MP) > 0. Likewise,

M is universally pumping iff all MD-schedulers are pumping iff
Emin
M

(MP) > 0.

The remainder of this section addresses the tasks to checkweight-
divergence, the gambling property and the computation of all states
belonging to a 0-EC.1 We start with an observation on weight-
divergence:

Lemma 3.4. LetM be a strongly connected MDP. IfM is positively
weight-divergent then Emax

M
(MP) ⩾ 0. Conversely, if Emax

M
(MP) > 0,

then M is positively weight-divergent.

3.1 Spider Construction for Flattening 0-ECs
In this section, we present a method to eliminate a given 0-EC
from an MDP by “flattening” it, crucial for our algorithms. This
so-called spider construction preserves the state space and all prop-
erties of interest, in particular, those that are invariant by adding or
removing path segments of weight 0. It will be used for checking
weight-divergence (Section 3.2) and for the stochastic shortest path
algorithm (Section 4).

Let M be an MDP and E a 0-BSCC of M, i.e., for each state
s in E there is a unique action αs ∈ Act(s) such that (s,αs ) ∈ E.
The spider construction for M and E works as follows. As E is
a 0-EC, all paths in E from s to some state t in E have the same
weight, sayw(s, t). Note that then each path from t to s has weight
w(t , s) = −w(s, t).

Definition 3.5. LetM be an MDP, E a 0-BSCC ofM, and s0 a ref-
erence state in E. The spider MDP N = SpiderE,s0 (M) (or shortly
SpiderE (M)) results from M by
(i) removing the state-action pairs (s,αs ) for all states s in E;
1We focus here on results for (positive) weight-divergence. The negative case can be
obtained analogously by multiplying all weights with −1.

(ii) adding state-action pairs (s,τ ) for each state s in E with s , s0
where PN(s,τ , s0) = 1 and wgtN(s,τ ) = w(s, s0); and
(iii) for each state s , s0 in E and action β ∈ ActM (s)\{αs }, replac-
ing (s, β) with (s0, β) s.t. PN(s0, β ,u) = PM (s, β ,u) for all states u
inM and wgtN(s0, β) = w(s0, s) + wgtM (s, β).

Example 3.6. We exemplify the spider construction in Figure 2:
Starting with an MDP M, we apply the spider construction twice,
each with reference state s0 = t .
First, we chose the 0-BSCC E = {(s,α), (t ,α), (u,α)} of M and
obtain M1 = SpiderE,t (M). Second, choosing the 0-BSCC F =

{(s,τ ), (t , β), (u,τ ), (v, β), (w, β)} of M1 yields to an MDP M2 =
SpiderF,t (M1) that does not contain any non-trivial 0-EC anymore.
In each step, the chosen 0-EC turns into a sub-MDP where the
reference state is the only sink. ■

To formally state the equivalence ofM and SpiderE (M), we de-
fine the notion of E-invariant properties. Given a path ς = t0 α0 t1 . . .,
let purgeE (ς) ∈ (S × Z)ω ∪ (S × Z)∗ × S be obtained from ς by (1)
replacing each fragment ti αi . . . α j tj+1 of ς such that (a) either
i = 0 or (ti−1,αi−1) < E, (b) (tj ,α j ) < E, and (c) (tℓ ,αℓ) ∈ E for
ℓ = i, i+1, . . . , j−1 with ti w tj+1 where w = w(ti , tj ) + wgt(tj ,α j )
and (2) replacing each action αi in the resulting sequence with
wgt(ti ,αi ). A property φ is called E-invariant if for all maximal
paths ς we have: (I1) if ς has an infinite suffix of state-action pairs
in E, then ς ̸ |= φ and (I2) if ς |= φ and ς ′ is a maximal path with
purgeE (ς) = purgeE (ς

′) then ς ′ |= φ. Weight-divergence and the
pumping property are E-invariant properties, and so are properties
of the form ^(t ∧ (wgt ▷◁ K)) where t is a trap, ▷◁ a comparison
operator (e.g., = or ⩾) and K ∈ Z.

Lemma 3.7. The spider construction generates an MDP
SpiderE (M) that satisfies the following properties:

(S1) M and SpiderE (M) have the same state space and we have
∥SpiderE (M)∥ = ∥M∥−1.

(S2) If E , M and M is strongly connected then SpiderE (M)

has a single MEC that is reachable from all states.
(S3) M and SpiderE (M) are equivalent for E-invariant properties

in the following sense:
(S3.1) For each scheduler T for SpiderE (M) there is a sched-
uler S for M with PrS

M,s (φ) = PrTSpiderE (M),s (φ) for all
states s and all E-invariant properties φ. If T is MD, then
S can be chosen MD.

(S3.2) For each schedulerS forM there exists a scheduler T
for SpiderE (M) such that

PrS
M,s (φ) ⩽ PrTSpiderE (M),s (φ) ⩽ PrS

M,s (φ) + p
S
s

for all states s and all E-invariant properties φ. Here, pSs =
PrS

M,s {ς ∈ IPaths : lim(ς) = E}.
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(S4) Suppose that E is contained in anMECG ofM withEmax
G

(MP) =
0. Then for each state s with s < E: s belongs to a 0-EC ofM
iff s belongs to a 0-EC of SpiderE (M). Likewise, for each
state-action pair (s,α) of M: (s,α) belongs to a 0-EC of M iff
(s,α) ∈ E or (s0,α) belongs to a 0-EC of SpiderE (M).

The main property of the spider construction is that it elimi-
nates the given 0-BSCC while maintaining all other 0-EC, as stated
in (S4). (S3) states an equivalence between M and SpiderE (M)

with respect to E-invariant properties. While any scheduler for
SpiderE (M) can be transformed to an equivalent scheduler for M
(case (S3.1)), the converse direction (case (S3.2)) is more involved
and requires restrictions, which are, however, sufficient for our
applications.

As a consequence of the equivalence stated in (S3) we obtain
that weight-divergent and pumping end components are preserved
by the spider construction:

Corollary 3.8. If M is strongly connected and E is a 0-BSCC of
M then M is weight-divergent (resp. pumping) iff SpiderE (M) is
weight-divergent (resp. pumping).

3.2 Checking Weight-Divergence
We present an algorithm to check the weight-divergence of an
end component (see Algorithm 1). Such end components will be
useful, e.g., when solving weight-bounded reachability problems
that require the accumulatedweight to be above a threshold. Given a

Algorithm 1:Wgtdiv(·)
input : strongly connected MDP M

output : “yes” if M is weight divergent and “no” otherwise

1 Compute e := Emax
M

(MP) andS with ES
M
(MP) = e

2 if e < 0 then return “no”
3 if e > 0 orS has a gambling BSCC then return “yes”
4 Pick a 0-BSCC E ofS
5 if M = E then return “no”
6 Compute the MEC F of SpiderE (M) that is reachable from all

states and returnWgtdiv(F)

strongly connectedMDPM wefirst computeEmax
M

(MP) and anMD-
schedulerS maximizing the expected mean payoff. If Emax

M
(MP) >

0 then M is pumping (Lemma 3.3) and therefore positively weight-
divergent. If Emax

M
(MP) < 0 then all schedulers forM are negatively

weight-divergent (Lemma 3.3 with weights multiplied by −1), and
hence, M is not positively weight-divergent. If Emax

M
(MP) = 0

and S has a gambling BSCC then M is gambling and therefore
positively weight-divergent. Otherwise, each BSCC of the Markov
chain induced byS is a 0-BSCC (Lemma 3.2) and we pick such a
0-BSCC E ofS. In caseM = E thenM is a 0-EC, hence not weight-
divergent, and the algorithm terminates. IfM , E, we apply the
spider construction to generate the MDP SpiderE (M) that contains
a unique maximal end component F ((S2) in Lemma 3.7). Repeating
the procedure recursively on F etc. thus generates a sequence of
MDPs M0 = M, M1, . . . ,Mℓ with Mi+1 = SpiderEi (Mi ) for
some 0-BSCC Ei of Mi . All Mi ’s have the same state space and
the number of state-action pairs is strictly decreasing, i.e., we have
∥M0∥ > ∥M1∥ > . . . > ∥Mℓ ∥ by property (S1) in Lemma 3.7.
Moreover,Mi is weight-divergent iffM is weight-divergent (see
Corollary 3.8).

As each iteration takes polynomial time and the size of eachMi
is polynomially bounded by the size ofM , the algorithm runs in
polynomial time. Using an inductive argument and Lemma 3.7, we
obtain:

Theorem 3.9. The algorithm for checking weight-divergence of a
strongly connected MDP M runs in polynomial time. If M is weight-
divergent then it either finds a pumping or a gambling MD-scheduler.
If M is not weight-divergent, then it generates an MDP N without
0-ECs on the same state space as M, and is equivalent to M w.r.t. all
properties that are E-invariant for all 0-ECs E ofM in the sense of
(S3) in Lemma 3.7.

Observe the following consequence of this theorem:

Corollary 3.10. LetM be a strongly connectedMDPwithEmax
M

(MP) =
0. Then, M is weight-divergent iffM is gambling iffM has a gam-
bling MD-scheduler.

However, an MDP can have gambling schedulers even when
it has no gambling MD-scheduler: Consider the MDP over a sin-
gle state s with state-action pairs (s,α), (s, β), where P(s,α , s) =
1, P(s, β, s) = 1, wgt(s,α) = −wgt(s, β) = 1. Then, Emax

M
(MP) = +∞

and there is no gambling MD-scheduler, while the randomized
memoryless schedulerS withS(s)(α) =S(s)(β) = 1

2 is gambling.
Given a strongly connected MDPM with Emax

M
(MP) = 0,M is

gambling iffM is weight-divergent. Thus, the gambling property
for strongly connected MDPs with maximal expected mean payoff
0 can be checked in polynomial time using Theorem 3.9, which
yields part (a) of the next theorem.

Theorem 3.11. Given a strongly connected MDPM, the existence
of a gambling MD-scheduler is (a) decidable in polynomial time if
Emax
M

(MP) = 0, and (b) NP-complete in general.

One can compute an MD-scheduler in polynomial time that max-
imizes the probability of weight-divergence. In fact, one can com-
pute weight-divergent MECs (and corresponding weight-divergent
MD-schedulers) and maximize the probability of reaching one of
these components. Likewise, the minimal probability of weight-
divergence equals the maximal probability to reach the set V of
states of all trap states and all states belonging to an MEC E where
either Emin

E
(MP) < 0 or Emin

E
(MP) = 0 and E has a 0-EC. The-

orem 3.12 below shows that set V is computable in polynomial
time. This yields a polynomial-time algorithm for finding an MD-
scheduler minimizing the weight-divergence probability.

Previous work established the polynomial-time computability of
maximal weight-divergence probabilities in special cases. In fact, [6,
Theorem 3.1] presents an algorithm to compute an MD-scheduler
maximizing the probability for weight-divergent paths in a given
MDP where the weights belong to {−1, 0, 1}. Thus, [6] yields a
pseudo-polynomial time bound for deciding weight-divergence or
computing the maximal weight-divergence probabilities in MDPs
with integer weights. Theorem 3.9 and the previous paragraph
improve this result by establishing a polynomial time bound. More-
over, our algorithm is different; while [6] uses transformations to
incorporate accumulated weights in the state space (up to some
threshold), our algorithm uses the spider construction and main-
tains the state space.
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3.3 Reasoning about 0-ECs
We are now interested in checking the existence of 0-ECs and
computing all state-action pairs inside some 0-EC, useful, e.g., to
deal with weight-bounded constraints (see Section 5).

In MDPs without weight-divergent end components, the weight-
divergence algorithm can be used to determine all state-action pairs
belonging to a 0-EC in polynomial time. However, this does not
work in general as the algorithm stops as soon as aweight-divergent
end component is found.

To check whether a given strongly connected MDP M with
Emax
M

(MP) = 0 contains a 0-EC, we use an iterative approach: we
apply standard algorithms to compute an MD-schedulerS with a
single BSCC B maximizing the expected mean payoff (in particular,
E
B
(MP) = 0) and checks whether B is a 0-BSCC. If yes, B is a

0-EC ofM. Otherwise, B is gambling (see Lemma 3.2). In this case,
we give a transformation that modifies the transition probabilities
in B to obtain an MDP M ′ with the same structure as M (in
particular, with the same 0-ECs) such that M ′ has fewer gambling
MD-schedulers than M. Thus, if Emax

M′ (MP) < 0 then M has no
0-EC. Otherwise, we repeat the procedure onM ′.

This transformation is crucial in several results that follow.

Theorem 3.12. Given a strongly connected MDPM, the existence
of 0-ECs is (a) decidable in polynomial time if Emax

M
(MP) = 0, and

(b) NP-complete in the general case.

Combining the above decision algorithm and the iterative elimi-
nation of 0-ECs, we can also compute the set of all 0-ECs in polyno-
mial time. An important notion in our algorithms is the recurrence
value defined as follows. For a state s of a 0-EC in a strongly con-
nected MDPM with Emax

M
(MP) = 0, rec(s) is the maximal integer

K s.t. PrS
M,s

(
□(wgt ⩾ K) ∧ □^s

)
= 1 for some S that only uses

actions belonging to some 0-EC. In fact, to ensure that the accumu-
lated weight stays above 0, it does not suffice to enter a 0-EC with
nonnegative weight, as 0-ECs can contain state-action pairs with
negative weight.

Lemma 3.13. If M is strongly connected and Emax
M

(MP) = 0 then
the set ZeroEC consisting of all states s that belong to some 0-EC,
as well as the recurrence values rec(s) for the states s ∈ ZeroEC are
computable in polynomial time.

3.4 Universal Negative Weight-Divergence and
Boundedness

We now show how to determine end components that are bounded
from below and those that are universally negativelyweight-divergent.
Part (a) of the following theorem is the MDP-analogue of part (d)
of Lemma 3.2.

Theorem3.14. LetM be a strongly connectedMDPwithEmax
M

(MP) =
0. Then, (a)M contains a 0-EC iffM has a scheduler where the mea-
sure of infinite paths that are bounded from below is positive iffM

has a scheduler that is bounded from below; (b) M has no 0-EC iff
each scheduler forM is negatively weight-divergent.

Given a strongly connected MDPM, universal (positive) weight-
divergence of M can be checked in polynomial time. In fact, if
Emin
E

(MP) > 0, then M is universally weight-divergent, and if
Emin
E

(MP) < 0, it is not. If Emax
M

(MP) = 0, we use Theorem 3.14
(by multiplying the weights by −1) and check the nonexistence of
0-ECs by Theorem 3.12. We get:

Corollary 3.15. Universal (positive) weight-divergence of an MDP
can be checked in polynomial time.

Remark 3.16. The set of states s of an arbitrary MDP M that be-
longs to an end component bounded from below can be computed in
polynomial time as follows. We first determine the MECs ofM and
their maximal expected mean payoff. MECs E with Emax

E
(MP) > 0

are pumping and therefore bounded from below. MECs E with
either Emax

E
(MP) < 0 or Emax

E
(MP) = 0 and E has no 0-EC are uni-

versally negatively weight-divergent (Theorem 3.14). Hence, none
of their states belongs to an end component that is bounded from
below. Otherwise, i.e., if Emax

E
(MP) = 0 and E has 0-ECs, we com-

pute the maximal 0-ECs using the techniques presented in Section
3.3 (see Lemma 3.13).

4 Stochastic Shortest Paths
We present an algorithm to solve the stochastic shortest path prob-
lem that relies on the classification of end components presented
above. The classical shortest path problem for MDPs is to com-
pute the minimal expected accumulated weight until reaching a
goal state goal. Here, the infimum is taken over all proper sched-
ulers. These are schedulers S that reach goal almost surely, i.e.,
PrS

M,s (^goal) = 1 for all states s ∈ S .
We assume, w.l.o.g., that goal is a trap, and that all states s

are reachable from an initial state sinit and can reach goal. We
write goal for the random variable that represents the accumu-
lated weight until reaching goal: it assigns to each path reaching
goal its accumulated weight, and is undefined otherwise. Formally,
( goal)(ς) = wgt(ς) if ς |= ^goal and undefined if ς ̸ |= ^goal. The
stochastic shortest path problem aims at computing the minimal
expected accumulated weight until reaching goal:

Einf
M,sinit

( goal) = infS proper E
S
M,sinit

( goal) .

Although for each proper scheduler this quantity is finite, the in-
fimum may be −∞. We describe a polynomial-time algorithm to
check whether Einf

M,sinit
( goal) is finite and to compute it, both

using our classification of end components.
It is well known (see, e.g., [15]) that if M is contracting, i.e., if

all schedulers are proper, then Einf
M,sinit

( goal) > −∞ and one can
compute Einf

M,sinit
( goal) using linear-programming techniques.

To relax the assumption of M being contracting, Bertsekas and
Tsitsiklis [5] identified conditions that guarantee the finiteness
of the values Einf

M,sinit
( goal), the existence of a minimizing MD-

scheduler, and the computability of the vector (Einf
M,s ( goal))s ∈S

as the unique solution of a linear program (or using value and policy
iteration). The assumptions of [5], written (BT) in the sequel, are:
(i) existence of a proper scheduler, and (ii) under each non-proper
scheduler the expected accumulated weight is +∞ from at least one
state. While these assumptions are sound, they are incomplete in
the sense that there are MDPs where Einf

M,s ( goal) is finite for all
states s , but (BT) does not hold.

Orthogonally, De Alfaro [12] showed that in MDPs where the
weights are either all nonnegative or all nonpositive, one can de-
cide in polynomial time whether Einf

M,sinit
( goal) is finite. More-

over, when this is the case, M can be transformed into another
MDP that has proper schedulers, satisfies (BT) and preserves the
minimal expected accumulated weight. Using the classification of
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end components, we generalize De Alfaro’s result and provide a
characterization of finiteness of the minimal expected accumulated
weight.

Lemma 4.1. LetM be an MDP with a distinguished initial state sinit
and a trap state goal such that all states are reachable from sinit and
can reach goal. Then,Einf

M,sinit
( goal) is finite iffM has no negatively

weight-divergent end component. If so, thenM satisfies (BT) iffM

has no 0-EC.

The above lemma allows us to derive our algorithm by first de-
termining if Einf

M,sinit
( goal) is finite, and then using the iterative

spider construction to transformM into an equivalent new MDP
satisfying BT. More precisely, one can check in polynomial time
whether Einf

M,sinit
( goal) > −∞ by applying Theorem 3.9 to the

maximal end components of M (in fact, checking negative weight-
divergence reduces to checking positive weight-divergence after
multiplication of all weights by −1). If so, by the iterative spider
construction to flatten 0-ECs (see Section 3.1), we obtain in poly-
nomial time an MDP N such that N satisfies condition (BT) and
Einf
N,s ( goal) = Einf

M,s ( goal) for each state s . To establish this re-
sult, we rely on the equivalence of M and N w.r.t. properties that
are E-invariant for each 0-EC E ((S3) in Lemma 3.7). This yields:

Theorem 4.2. Given an arbitrary MDPM, one can compute in poly-
nomial time Einf

M,sinit
( goal) as well as an MD scheduler achieving

the minimum when this value is finite.

Analogous results are obtained for Esup
M,sinit

( goal) by multiply-
ing all weights inM with −1.

5 Qualitative Weight-Bounded Properties
5.1 Disjunctive Weight-Bounded Reachability
We consider properties that combine reachability objectives with
quantitative constraints on the accumulated weight when reaching
the targets.

Definition 5.1. A disjunctive weight-bounded reachability prop-
erty, DWR-property for short, is defined by a set T ⊆ S of target
states, and for each t ∈ T a weight threshold Kt ∈ Z ∪ {−∞} as
φ =

∨
t ∈T ^

(
t ∧ (wgt ⩾ Kt )

)
.

Our objective is to study the following decision problems: Given
an MDP M, a state s inM and a DWR-property φ

DWR∃,=1: ∃S s.t. PrS
M,s (φ) = 1?

DWR∃,>0: ∃S s.t. PrS
M,s (φ) > 0?

as well as their variants DWR∀,=1 and DWR∀,>0 with universal
quantification over schedulers. LetT ∗ = {t ∈ T : Kt = −∞} denote
the set of states for which no accumulated weight constraint is
specified. For corresponding optimization problems, we assume
T \T ∗ = {goal} to be a singleton, write φK for φ with K = Kgoal ,
and ask to compute

K∃,=1
M,s = sup {K ∈ Z | ∃S s.t. PrS

M,s (φK ) = 1 },
K∃,>0
M,s = sup {K ∈ Z | ∃S s.t. PrS

M,s (φK ) > 0 },

and the analogous values K∀,=1
M,s and K∀,>0

M,s where the supremum
belongs to Z ∪ {±∞}.

Deciding DWR∃,>0 and computing K∃,>0
M,s can be done using

standard shortest-path algorithms inweighted graphs. Thus,DWR∃,>0
belongs to P and the valueK∃,>0

M,s is computable in polynomial time.
In contrast, we do not know if DWR∀,>0 is in P, but show that

it is as hard as mean-payoff games, and is polynomially reducible
to mean-payoff Büchi games.

Theorem 5.2. The decision problem DWR∀,>0 is in NP∩ coNP, and
at least as hard as (non-stochastic) mean-payoff games. The value
K∀,>0
M,s is computable in pseudo-polynomial time.

We now give a polynomial-time algorithm for DWR∀,=1. In the
case where all states of T are traps, we show that PrS

M,s (φ) = 1
for all schedulers S iff (i) Prmin

M,s (^T ) = 1 and (ii) wgt(π ) ⩾ Kt
for each path π from s to some state t ∈ T \T ∗. (In particular, (ii)
implies that the paths from s to some state in T \T ∗ do not contain
negative cycles.) Thus, this case can be solved with standard MDP
and shortest-path algorithms in graphs. The general case requires
an analysis of end components. If each end component containing
t ∈ T \T ∗ is weight-divergent, then the weight-constraint is useless
and we may set Kt = +∞. Otherwise we show that t can be treated
as a trap. To check whether all end components containing t are
weight-divergent we consider the MECs E containing t and distin-
guish cases where Emin

M,E
(MP) > 0 or Emin

M,E
(MP) = 0 and E does

not have a 0-EC containing t .

Theorem 5.3. The decision problem DWR∀,=1 belongs to P and the
value K∀,=1

M,s is computable in polynomial time.

The remaining case DWR∃,=1 is perhaps the most interesting
case; it is also our main and most technical result. First, we observe
that infinite memory can be necessary.

Example 5.4. LetM be the MDP depicted left in Figure 3.

M :

E

F

s

t

goal

u v
w

β /+1
α /0

γ /-1

α /-1

α /+1

β /0
γ /-1

N :

Ein Eout

t

goal

Fin Fout
w

τ /+6 α /0

γ /-1

τ /+6 β /0
γ /-1

Figure 3. Resolution of DWR∃,=1 on an example.

Consider the weight-bounded reachability property φK = ^(goal∧
(wgt ⩾ K)). Given K ∈ Z, a schedulerSK ensuring PrSK

M,s (φK ) = 1
acts as follows: for a finite path π ending in state s with accumulated
weight k ,SK schedules K−k times action β , followed by α . Thus,
allSK -paths from s ending in state t or goal have weight at least
K and K∃,=1

M,s = +∞. However, for every finite-memory scheduler
S, there is no K ∈ Z with PrS

M,s (φK ) = 1. ■

Theorem 5.5. The decision problem DWR∃,=1 is in NP∩ coNP, and
at least as hard as (non-stochastic) mean-payoff games. The value
K∃,=1
M,s is computable in pseudo-polynomial time.
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Proof sketch. We sketch the proof for the upper bound. The general
case easily reduces to the same problem for T \T ∗ = {goal} is a
singleton; so we make this assumption.

First, in the case whereM has no positively weight-divergent
end components, we give a polynomial-time reduction to mean
payoff games which can be solved in NP ∩ coNP.

For the general case, let us write E1, . . . ,Ek for the maximal
positively weight-divergent end components of M. They can be
computed by first determining the MECs and checking weight-
divergence for each of them by Theorem 3.9. We then show that
there exists Ki ∈ {+∞,−∞} such that for all states s in Ei we
have K∃,=1

M,s = Ki . This observation follows from the fact that any
scheduler can be modified to have a first phase where the weight
is increased by a desired constant inside a weight-divergent end
component.

We compute the set GoodEC = {Ei : Ki = +∞} using the
greatest fixed point of a monotonic operator Ω : 2E → 2E where
E = {E1, . . . ,Ek } using the techniques for MDPs without posi-
tively weight-divergent end components. To define this operator Ω,
we switch fromM to a new MDPN obtained fromM by replacing
each E ∈ E with two fresh states Ein and Eout . The actions enabled
in Eout serve to mimic M’s state-action pairs (s,α) where s is a
state of E and PM (s,α , s ′) > 0 for at least one state s ′ outside E.
A single action τ is enabled in Ein with PN(Ein,τ , Eout) = 1 whose
weight is chosen large enough to ensure that Ein and Eout do not
belong to a negative simple cycle. The construction is illustrated
in Fig. 3. N has no positively weight-divergent end components
by construction. However, the values in N can be used as lower
bounds of those inM. In particular, we may have K∃,=1

N,r = −∞ and

K∃,=1
M,r ′ = +∞ where r and r ′ are corresponding states inM andN

(e.g., state s in Fig. 3 has value +∞ inM but Eout has value −∞ in
N ). Despite this, we can identify end components in GoodEC, i.e.,
with value +∞, usingN via a fixed-point computation. Namely, we
define the operator Ω that assigns to eachX ⊆ E the set of end com-
ponents E ∈ E for which there is K ∈ Z with Prmax

N,Eout

(
φK [X ]

)
= 1

where

φK [X ] = ^
(
T ∗ ∪ {Ein : E ∈ X }

)
∨ ^

(
goal ∧ (wgt ⩾ K)

)
.

Intuitively, these are states from which almost surely we either
satisfy φ, or reach another weight-divergent end component that
allows to increase the weight and start again. This fixed-point com-
putation applied to N in Fig. 3 yields, e.g., X0 = {E,F },Ω(X0) =
{E},Ω(Ω(X0)) = {E}. In fact, from E one can either immediately
reach goal or go back to E; while from F there is no bound on the
accumulated weight towards reaching goal.

The above computation yields the values of the states of weight-
divergent end components; in fact, we show that K∃,=1

M,s = +∞

iff Prmax
M,s (^(T

∗ ∪ GoodEC)) = 1. For other states, we show that
the maximal K such that Prmax

N,s (ϕK [GoodEC]) = 1 corresponds to

K∃,=1
M,s ′ where s and s

′ are corresponding states. Here, ϕK [GoodEC]
is an instance of DWR∃,=1and N has no weight-divergent end
components, so we can use the NP ∩ coNP algorithm described at
the beginning. □

5.2 Weight-Bounded Repeated Reachability
Beyond weight-bounded reachability, we address a Büchi weight
condition in conjunction with a standard Büchi condition. Given

an MDPM without traps, a set F ∪ {s} of states inM and K ∈ Z,
we consider the problems

WB∃,=1: ∃S s.t. PrS
M,s (□^(wgt ⩾ K) ∧ □^F ) = 1?

WB∃,>0: ∃S s.t. PrS
M,s (□^(wgt ⩾ K) ∧ □^F ) > 0?

and the corresponding problemsWB∀,=1 andWB∀,>0 with univer-
sal quantification over schedulers. The two existential problems are
polynomially reducible to the respective existential DWR problems,
maintaining the same complexity classes. The universal problems
can be solved using techniques to treat existential problems for
coBüchi weight constraints, which again are polynomially reducible
to DWR∃,>0 and DWR∃,=1, respectively.

Theorem 5.6. WB∃,>0 and WB∀,=1 are decidable in polynomial
time. WB∃,=1 and WB∀,>0 are in NP ∩ coNP, decidable in pseudo-
polynomial time, and at least as hard as mean-payoff games.

The proof of Theorem 5.6 heavily uses the concepts of Section
3. Let us briefly describe the reduction ofWB∃,=1 andWB∃,>0 to
DWR∃,=1 and DWR∃,>0 for some DWR formula φ =

∨
t ∈T ^

(
t ∧

(wgt ⩾ Kt )
)
. We define T ∗ as the set of all states in maximal

weight-divergent end components containing at least one state in
F and T \T ∗ as the set of states belonging to a maximal 0-ECZ of
a maximal end component E with Emax

E
(MP) = 0 and Z∩F , ∅.

Note that both T ∗ and T \T ∗ are computable in polynomial time
(due to Theorem 3.9 and Lemma 3.13). For the states in T \T ∗, we
let Kt=K , where K is taken from the input ofWB∃,=1 orWB∃,>0.

To solve problemWB∀,=1 we rely on the observation thatWB∀,=1
holds iff (i) Prmin

M,s (□^F ) = 1 and (ii) there is no schedulerS with
PrS

M−,s
(
^□(wgt ⩾ L)

)
> 0 whereM− results fromM bymultiply-

ing all weights with −1 and L = −(K−1). While (i) can be checked in
polynomial time, (ii) is equivalent to the complement of DWR∃,>0
for M− and

∨
t ∈T ^

(
t ∧ (wgt ⩾ Kt )

)
where T ∗ denotes the set of

states belonging to a pumping end component of M− and T \T ∗

is the set of states belonging to the set ZeroEC and Kt = L−rec(t).
Here ZeroEC is the set of states that belong to a maximal 0-ECZ

of a maximal end component E ofM orM− with Emax
E

(MP) = 0
and moreover, rec(t) refers to this maximal end component E.

For problemWB∀,=1 we transformM− into a new MDPN such
thatWB∀,=1 holds forM iff there is no scheduler forN where the
coBüchi weight constraint ^□(wgt ⩾ L) holds almost surely, which
can be checked applying the algorithm for DWR∃,=1 for N and
the same DWR property as for DWR∀,>0. Here L is as above and
N arises fromM− by identifying all states that belong to an end
component not containing an F -state and replacing their enabled
actions with a self-loop of weight 0.

The optimization problems of WB∃,=1 and WB∀,>0 are com-
putable in pseudo-polynomial time, and optimal weight bounds for
WB∃,>0 andWB∀,=1in polynomial time.

5.3 Discussion on Related Work
To the best of our knowledge, problems DWR∃,=1, DWR∀,>0 and
DWR∀,=1 or the variants for Büchi weight constraints have not
been studied before for general integer-weighted MDPs. Qualita-
tive weight-bounded reachability properties in MDPs with only
nonnegative weights are decidable in polynomial time [19]. This
result relies on the monotonicity of accumulated weights along
all paths. The lack of monotonicity in the general case rules out
analogous algorithms.
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For Markov chains, qualitative weight-bounded reachability
properties can be treated in polynomial time [16]. This result uses
expected mean payoff in BSCCs, variants of shortest-path algo-
rithms and the continued-fraction method. In MDPs, however, op-
timal schedulers might need infinite memory (see Example 5.4) so
these algorithms cannot be adapted. In fact, our algorithms crucially
rely on the classification of end components.

Let us point out the similarities and differences between the
problems we considered and the ones for energy MDPs [9, 17].
Rephrased for our notations, the energy-MDP problem is to check
whether Prmax

M,s
(
□(wgt ⩾ K) ∧ϕ

)
= 1 where φ is a parity condition

and K ∈ Z. This problem is in NP ∩ coNP and at least as hard as
two-player mean-payoff games, even if ϕ = true. The complement
of the energy-MDP problem asks whether Prmin

M,s
(
^(wgt < K) ∨

¬ϕ
)
> 0, which corresponds to Prmin

M,s
(
^(wgt ⩾ K) ∨ ¬ϕ

)
> 0

when switching from wgt to −wgt and fromK to −(K−1). However,
although in the spirit of this problem, DWR∀,>0 asks whether
Prmin

M,s
(
^(goal ∧ (wgt ⩾ K))

)
> 0, in the caseT ∗ = ∅ andT \T ∗ =

{goal}. Given the similarities of these questions, and our decision
procedure that reduces DWR∀,>0 to mean-payoff Büchi games,
it is no surprise that the problem DWR∀,>0 is at least as hard as
mean-payoff games.

Nevertheless, the instances DWR∃,=1 and DWR∀,=1 are of dif-
ferent nature than energy-MDPs. These can rather be seen as vari-
ants of the termination problem for one-counter MDPs [6, 13]. One-
counter MDPs have their weights in {−1, 0,+1}, while we allow
arbitrary weights. Moreover, a one-counter MDPs halts whenever
the counter reaches 0, but there is no lower bound on the accumu-
lated weight in our setting. Following [6], we refer to these one-
counter MDPs as one-counter MDP with boundary and to MDPs in
our setting with weights in {−1, 0,+1} as boundaryless one-counter
MDPs.

We commented on [6] in the paragraph following Theorem 3.11.
For one-counter MDPs M with boundary, [6] also provides an
exponential-time algorithm for checking Prmax

M,s
( ∨

t ∈T ^(t∧(wgt =

0))
)
= 1 and shows PSPACE-hardness. This contrasts with our NP∩

coNP upper bound for DWR∃,=1 with arbitrary integer weights
(Theorem 5.5). Besides the differences “boundary vs boundary-
less” and “integer vs unit weights”, we consider objectives im-
posing lower bounds on the accumulated weights. Considering
^(t ∧(wgt = Kt ))would raise the complexity in our setting at least
to EXPTIME-hardness, by [14] which shows that for MDPsM with
non-negative integer weights and Prmin

M,s (^goal) = 1, checking
whether Prmax

M,s (^(goal ∧ (wgt = K))) = 1 for some given K ∈ N is
EXPTIME-complete.

Nondeterministic and probabilistic models for vector addition
systems (VASS-MDPs) can be seen as boundary MDPs with multi-
ple weight functions. Decidable results on VASS-MDPs include the
existence of a scheduler that almost surely ensures some property
expressible in µ-calculus (with no constraint on the accumulated
weights) [1]. The decision algorithms rely on the termination of
fixed-point computations thanks to well-quasi orderings, thus yield-
ing much higher complexity than our techniques.

6 Conclusion
We provided a classification of end components according to their
behaviors with respect to the accumulated weight. This allowed us

to solve the general stochastic shortest path problem and to derive
algorithms for weight-bounded properties. We believe our classi-
fication helps better understanding the accumulated weights in
MDPs, and can be helpful for other problems and perhaps simplify
existing results.

An interesting future work is to address analogous questions for
quantitative probability thresholds. This appears to be challenging
as the probabilities for weight-bounded properties can be irrational,
even in Markov chains [6, 13].
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