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Abstract
The logic MMSNP is a restricted fragment of existential second-
order logic which allows to express many interesting queries in
graph theory and finite model theory. The logic was introduced by
Feder and Vardi who showed that every MMSNP sentence is com-
putationally equivalent to a finite-domain constraint satisfaction
problem (CSP); the involved probabilistic reductions were deran-
domized by Kun using explicit constructions of expander structures.
We present a new proof of the reduction to finite-domain CSPs that
does not rely on the results of Kun. This new proof allows us to
obtain a stronger statement and to verify the Bodirsky-Pinsker
dichotomy conjecture for CSPs in MMSNP. Our approach uses the
fact that every MMSNP sentence describes a finite union of CSPs for
countably infinite ω-categorical structures; moreover, by a recent
result of Hubička and Nešetřil, these structures can be expanded
to homogeneous structures with finite relational signature and the
Ramsey property. This allows us to use the universal-algebraic
approach to study the computational complexity of MMSNP.
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1 Introduction
Monotone Monadic SNP (MMSNP) is a fragment of monadic exis-
tential second-order logic whose sentences describe problems of the
form “given a structure A, is there a colouring of the elements of A
that avoids some fixed family of forbidden patterns?” Examples of
such problems are the classical k-colourability problem for graphs
(where the forbidden patterns are edges whose endpoints have the
same colour), or the problem of colouring the vertices of a graph
so as to avoid monochromatic triangles (Figure 1).
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MMSNP has been introduced by Feder and Vardi [20], whose mo-
tivation was to find fragments of existential second-order logic that
exhibit a complexity dichotomy between P and NP-complete. They
proved that every problem described by an MMSNP sentence is
equivalent under polynomial-time randomised reductions to a con-
straint satisfaction problem (CSP) over a finite domain, and conjec-
tured that every finite-domain CSP is in P or NP-complete. Kun [22]
later improved the result by derandomising the equivalence, thus
showing thatMMSNP exhibits a complexity dichotomy if and only if
the Feder-Vardi dichotomy conjecture holds. Recently, Bulatov [14]
and Zhuk [26] independently proved that the dichotomy conjec-
ture indeed holds. Both authors establish a stronger form of the
dichotomy, the so-called tractability conjecture, which gives a char-
acterisation of the finite-domain CSPs that are solvable in polyno-
mial time (assuming P is not NP). This characterisation is phrased
in the language of universal algebra and is moreover decidable.

The universal algebraic approach can also be used to study
CSPs over infinite domains, and there exists a generalisation of
the tractability conjecture about the so-called reducts of finitely
bounded homogeneous structures, see e.g. [1, 3, 4, 9]. Dalmau and
Bodirsky [8] showed that every problem in MMSNP is a finite union
of CSPs for ω-categorical structures. These structures can be ex-
panded to finitely bounded homogeneous structures so that they
fall into the scope of the mentioned infinite-domain tractability
conjecture. This poses the question whether the complexity of MM-
SNP can be studied directly using the universal-algebraic approach,
rather than via the detour to finite-domain CSPs which involves the
technically involved reduction of Kun using expander structures. In
particular, even though we now have a complexity dichotomy for
MMSNP, it was hitherto unknown whether the CSPs in MMSNP
satisfy the infinite-domain tractability conjecture.

The main result of this paper is the confirmation of the infinite-
domain tractability conjecture for CSPs inMMSNP. As a by-product,
we obtain a new proof of the complexity dichotomy for MMSNP
that does not rely on the results of Kun. To the best of our knowl-
edge, this is the first-time that the universal-algebraic approach for

Figure 1. The No-monochromatic-triangle problem: the input is a
finite graphG , and the question is whether there exists a colouring
of the vertices of G with two colours that avoids monochromatic
triangles.
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infinite-domain CSPs provides a classification for a class of compu-
tational problems that has been studied in the literature before1, and
which has been introduced without having the universal-algebraic
approach in mind. We also solve an open question by Lutz and
Wolter [23]. Informally, we prove that the existential second-order
predicates of an MMSNP sentence can be added to the original (first-
order) signature of the sentence without increasing the complexity
of the corresponding problem; we refer the reader to Section 4 for a
formal statement. Many proofs have been omitted because of space
restrictions and we refer the interested reader to the long version
of the present paper2.

2 MMSNP and CSPs
2.1 MMSNP
Let τ be a relational signature (we also refer to τ as the input
signature). SNP is a syntactically restricted fragment of existential
second order logic. A sentence in SNP is of the form ∃P1, . . . , Pn .ϕ
where P1, . . . , Pn are predicates (i.e., relation symbols) and ϕ is a
universal first-order-sentence over the signature τ ∪ {P1, . . . , Pn }.
Monotone Monadic SNP without inequality, MMSNP, is the popular
restriction thereof which consists of sentences Φ of the form

∃P1, . . . , Pn ∀x̄
∧
i
¬
(
αi ∧ βi

)
,

where P1, . . . , Pn are monadic (i.e., unary) relation symbols not in
τ , where x̄ is a tuple of first-order variables, and for every negated
conjunct:
• αi consists of a conjunction of atomic formulas involving
relation symbols from τ and variables from x̄ ; and
• βi consists of a conjunction of atomic formulas or negated
atomic formulas involving relation symbols from P1, . . . , Pn
and variables from x̄ .

Notice that the equality symbol is not allowed in MMSNP sentences.
In the following, τ will always denote the input signature of an
MMSNP sentence and σ the corresponding set of monadic relation
symbols.

Every MMSNP τ -sentence describes a computational problem:
the input consists of a finite τ -structure A, and the question is
whether A |= Φ, i.e., whether the sentence Φ is true in A. We
sometimes identify MMSNP with the class of all computational
problems described by MMSNP sentences.

We say that a conjunction of atomic literals is connected if its con-
juncts cannot be partitioned into two non-empty sets of conjuncts
with disjoint sets of variables, and disconnected otherwise. A con-
junction of atomic literals is called biconnected if its conjuncts can-
not be partitioned into two non-empty sets of conjuncts that share
at most one common variable. Note that formulas with only one
variable might not be biconnected, e.g., the formula R1 (x ) ∧ R2 (x )
is not biconnected. An MMSNP τ -sentence Φ is called connected
(or biconnected) if for each conjunct ¬(α ∧ β ) of Φ where α is a
conjunction of τ -formulas and β is a conjunction of unary formulas,
the formula α is connected (or biconnected, respectively).

2.2 Constraint Satisfaction Problems
Let A and B be two structures with the same relational signature τ .
A homomorphism from A to B is a map from A (the domain of A)

1https://complexityzoo.uwaterloo.ca/Complexity_Zoo:M#mmsnp.
2http://arxiv.org/abs/1802.03255

to B (the domain ofB) that preserves all relations. An embedding is
a homomorphism which is additionally injective and also preserves
the complements of all relations. An automorphism of the structure
B is a surjective embedding ofB into itself. WewriteAut(B) for the
group of automorphisms of the structure B. Given a τ ′-structure
B and τ ⊆ τ ′, we denote by Bτ the τ -reduct of B, that is, the
τ -structure obtained by forgetting the relation symbols from τ ′ \ τ .
For a relation symbol R ∈ τ and a τ -structure B, we denote by RB
the interpretation of R inB. For a relational τ -structureB we write

• Age(B) for the class of all finite τ -structures that embed into
B;
• CSP(B) for the class of all finite τ -structures that homomor-
phically map into B.

For example,CSP(K3) is the 3-colouring problem: the signature τ :=
{E} is the signature of graphs, and K3 := ({0, 1, 2};E) denotes the
clique with three vertices, i.e., EB := {0, 1, 2}3 \ {(0, 0), (1, 1), (2, 2)}.

Let F be a class of finite relational τ -structures. We write

• Forbind (F ) for the class of all finite τ -structures that do not
embed a structure from F ;
• Forbhom (F ) stands for the class of all finite τ -structures A
such that no structure in F homomorphically maps to A.

A relational structure B is called finitely bounded if it has a finite
signature τ and there exists a finite set of finite τ -structures F (the
bounds) such that Age(B) = Forbind (F ).

2.2.1 Logic perspective
We present the classical terminology to pass from structures to
formulas and vice versa. Let A be a τ -structure. Then the canonical
query of A is the formula whose variables are the elements of A,
and which is a conjunction that contains for every R ∈ τ a conjunct
R (a1, . . . ,an ) if and only if (a1, . . . ,an ) ∈ RA .

A primitive positive τ -formula (also known as conjunctive query
in database theory) is a formula that can be constructed from
atomic formulas using conjunction ∧ and existential quantification
∃. We write ϕ (z1, . . . , zn ) if the free variables of ϕ are contained in
{z1, . . . , zn }. A formula without free variables is called a sentence.

Let ϕ be a primitive positive τ -formula without conjuncts of the
form y = y′ and written in prenex normal form. Then the canonical
database of ϕ is the τ -structure A whose elements are the variables
of ϕ, and such that for every R ∈ τ we have (a1, . . . ,an ) ∈ RA

if and only if R (a1, . . . ,an ) is a conjunct of ϕ. We will apply the
notion of canonical database also to primitive positive formulas in
general, by first rewriting them into prenex form and then applying
the definition above. Since the rewriting might require that some
of the existentially quantified variables are renamed, the resulting
canonical database is not uniquely defined; but since we usually
consider structures up to isomorphism, this should not cause confu-
sions. Also note that the information which variable is existentially
quantified and which variable is free is lost in the passage from a
primitive positive formula to the canonical database. The following
is straightforward and well-known.

Proposition 1 ([17]). Let A and B be two structures. The following
are equivalent.

• A has a homomorphism to B.
• B |= ∃ā.ϕ where ϕ is the canonical query for A and ā lists all
the elements of A.

https://complexityzoo.uwaterloo.ca/Complexity_Zoo:M#mmsnp
http://arxiv.org/abs/1802.03255
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2.2.2 The finite-domain dichotomy theorem
We will use an important result from universal algebra, Theorem 2
below. A polymorphism of a structure B is a homomorphism from
Bk (a finite direct power of B) to B. For every i, j ∈ N, i ≤ k ,
the projection πki : Bk → B given by πki (x1, . . . ,xk ) := xi is a
polymorphism. The set of all polymorphisms of B is denoted by
Pol(B); this set forms a clone, i.e., it is a set of operations on the set
B that is closed under composition and contains the projections.

Let B and C be clones. A map ξ : B → C that preserves the
arities is called
• a clone homomorphism if it maps every projection on B to the
corresponding projection onC and it if satisfies ξ ( f (д1, . . . ,дn )) =
ξ ( f ) (ξ (д1), . . . , ξ (дn )) for all n-ary operations f ∈ B and
all k-ary operations д1, . . . ,дn ∈ B.
• a height 1 homomorphism if it satisfies and ξ ( f (д1, . . . ,дn )) =
ξ ( f ) (д1, . . . ,дn ) for all n-ary operations f ∈ B and allm-
ary projections д1, . . . ,дn .

We write P for the set of projections on the set {0, 1}.

Theorem2 ([2, 3, 16]). LetB be a finite structure. Then the following
are equivalent.

1. B has no polymorphism f of arity 6 which is Siggers, i.e.,
satisfies

∀x ,y, z. f (x ,y,x , z,y, z)) = f (y,x , z,x , z,y) .

2. B has no polymorphism f of arity k ≥ 2 which is cyclic, i.e.,
satisfies

∀x1, . . . ,xk . f (x1, . . . ,xk ) = f (x2, . . . ,xk ,x1) .

3. There exists a height 1 homomorphism from Pol(B) to P .

It is known that if a finite structure B satisfies the equivalent
items from Theorem 2, then CSP(B) is NP-hard [16]. Otherwise,
we have the following recent result.

Theorem 3 (Finite-domain tractability theorem [14, 26]). Let B
be a finite structure with finite relational signature which does not
satisfy the conditions from Theorem 2. Then CSP(B) is in P.

2.2.3 Countable categoricity
ConnectedMMSNP sentences describe CSPs of countable structures
that satisfy a strong property from model theory: ω-categoricity. A
countably infinite structureB is calledω-categorical if all countable
models of the first-order theory ofB are isomorphic. A structure B
is called homogeneous if every isomorphism between finite substruc-
tures ofB can be extended to an automorphism ofB. Homogeneous
structures with finite relational signature are ω-categorical.

A finite or countably infinite ω-categorical structure B is called
a core if all endomorphisms of B are embeddings, and it is called
model-complete if all embeddings ofB intoB preserve all first-order
formulas.

Theorem 4 ([5]). Every ω-categorical structure B is homomorphi-
cally equivalent to a model-complete core, which is up to isomorphism
unique, ω-categorical, and embeds into B.

If B is an ω-categorical model-complete core, then adding a
unary singleton relation to B does not change the computational
complexity of CSP(B).

If B is a countable set, there is a natural metric on the set of all
operations on B. For every k ≥ 1, fix an enumeration (b̄n )n∈N of

Bk . The distance between two functions f ,д : Bk → B is defined
to be 0 if f = д, and 1

2n where n is the smallest index such that
f (b̄n ) , д(b̄n ) otherwise. This metric gives rise to the so-called
pointwise convergence topology, and given a set B of functions on
B, we shall write B for the topological closure of B. With this
metric, a map ξ from a clone B on a set B to a clone C on a set
C is uniformly continuous if and only if for all n ≥ 1 and all finite
C ′ ⊆ C , there exists a finite B′ ⊆ B such that whenever two n-ary
functions f ,д ∈ B agree on B′, then ξ ( f ) and ξ (д) agree on C ′.

Theorem 5 ([3]). LetB be anω-categorical structure. If Pol(B) has
a uniformly continuous height 1 homomorphism to P , then CSP(B)
is NP-hard.

2.2.4 The infinite-domain dichotomy conjecture
There are ω-categorical model-complete cores B (even homoge-
neous digraphs) that do not satisfy the conditions from Theorem 5
but CSP(B) is even undecidable [11]. So to generalise the finite-
domain tractability theoremwe consider a subclass of the class of all
ω-categorical structures, namely structures that are homogeneous
and finitely bounded. More generally, we also consider first-order
reducts of such structures, i.e., structures B with the same domain
as a homogeneous finitely bounded structure C such that all re-
lations of B are first-order definable over C. For such structures,
Bodirsky and Pinsker conjectured a pendant to the finite-domain
tractability conjecture. We give here an equivalent statement to
their original conjecture, reformulated using the results from [1].

Conjecture 6 (Infinite-domain tractability conjecture; see e.g. [13]).
Let B be a reduct of a finitely bounded homogeneous structure with
finite relational signature. If the condition in Theorem 5 does not apply
then CSP(B) is in P.

2.3 Statement of the main result
The main result of this article is the proof of the infinite-domain
tractability conjecture (Conjecture 6) for CSPs in MMSNP. We ac-
tually show a stronger formulation than the conjecture since we
also provide a characterisation of the polynomial-time tractable
cases using pseudo-Siggers polymorphisms. Given a setU of unary
operations on B, a function f : B6 → B is called pseudo-Siggers
modulo U if there are e1, e2 ∈ U such that for all x ,y, z ∈ B, the
equation

e1 f (x ,y,x , z,y, z) = e2 f (y,x , z,x , z,y)

is satisfied.

Theorem 7. LetΦ be a connected MMSNP sentence. Then there exists
an ω-categorical structure B such that Φ describes CSP(B) and such
that exactly one of the following holds:

1. Pol(B) has a uniformly continuous height 1 homomorphism
to P , and CSP(B) is NP-complete.

2. Pol(B) contains a pseudo-Siggers polymorphismmoduloAut(B),
and CSP(B) is in P.

In particular, Conjecture 6 holds for all CSPs in MMSNP.

Moreover, it is well-known that the complexity classification
for MMSNP can be reduced to the complexity classification for
connected MMSNP [20]. Together with our main result, we obtain
the following corollary.

Corollary 8. Every problem in MMSNP is in P or NP-complete.
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3 Normal Forms
We recall and adapt a normal form for MMSNP sentences that was
initially proposed by Feder and Vardi in [19, 20] and later extended
in [25]. The normal form has been invented by Feder and Vardi
to show that for every connected MMSNP sentence Φ there is a
polynomial-time equivalent finite-domain CSP. In their proof, the
reduction from an MMSNP sentence to the corresponding finite-
domain CSP is straightforward, but the reduction from the finite-
domain CSP to Φ is tricky: it uses the fact that hard finite-domain
CSPs are already hard when restricted to high-girth instances. The
fact that MMSNP sentences in normal form are biconnected is then
the key to reduce high-girth instances to the problem described by
Φ.

In our work, the purpose of the normal form is the reduction of
the classification problem to MMSNP sentences that are precoloured
in a sense that will be made precise in Section 4, which is later
important to apply the universal-algebraic approach. Moreover, we
describe a new strong normal form that is based on recolourings
introduced by Madelaine [24]. Recolourings have been applied
by Madelaine to study the computational problem whether one
MMSNP sentence implies another. In our context, the importance
of strong normal forms is that the templates that we construct
for MMSNP sentences in strong normal form, expanded with the
inequality relation ,, are model-complete cores (Theorem 22). Let
us mention that in order to get this result, the biconnectivity of
the MMSNP sentences in normal form is essential (e.g, the proof of
Theorem 22 uses Lemma 18, which crucially uses biconnectivity of
Φ).

3.1 The normal form for MMSNP
Every connected MMSNP sentence can be rewritten to a connected
MMSNP sentence of a very particular shape, and this shape will be
crucial for the results that we prove in the following sections.

Definition 9 (originates from [20]; also see [25]). Let Φ be an
MMSNP sentence whereM1, . . . ,Mn , forn ≥ 1, are the existentially
quantified predicates (also called the colours in the following). Then
Φ is said to be in normal form if it is connected and

1. (Every vertex has a colour) the first conjunct of Φ is

¬
(
¬M1 (x ) ∧ · · · ∧ ¬Mn (x )

)
;

2. (Every vertex has at most one colour)Φ contains the conjunct

¬
(
Mi (x ) ∧Mj (x )

)
for all distinct i, j ∈ {1, . . . ,n};

3. (Clauses are fully coloured) for each conjunct ¬ϕ of Φ except
the first, and for each variable x that appears in ϕ, there is
an i ≤ n such that ϕ has a literal of the formMi (x );

4. (Clauses are biconnected) if a conjunct ¬ϕ of Φ is not of the
form as described in item 1 and 2, the formula ϕ is bicon-
nected;

5. (Small clauses are explicit) any (τ ∪ {M1, . . . ,Mn })-structure
A with at most k elements satisfies the first-order part of Φ
if A satisfies all conjuncts of Φ with at most k variables.

Note that when Φ is in normal form, then in all conjuncts ¬ϕ
of Φ except for the first we can drop conjuncts where predicates
appear negatively in ϕ; hence, we assume henceforth that ϕ is a
conjunction of atomic formulas.

Lemma 10. Every connected MMSNP sentence Φ is equivalent to an
MMSNP sentence Ψ in normal form, and Ψ can be computed from Φ.

The following lemma states a key property that we have achieved
with our normal form (in particular, we use the biconnectivity
assumption).

Lemma 11. Let ϕ be the first-order part of an MMSNP τ -sentence
in normal form with colour set σ and letψ1 (x , ȳ) andψ2 (x , z̄) be two
conjunctions of atomic (τ ∪ σ )-formulas such that
• ȳ and z̄ are vectors of disjoint sets of variables;
• the canonical databases ofψ1 and ofψ2 satisfy ϕ;
• for every M ∈ σ , ψ1 contains the literal M (x ) if, and only if,
ψ2 does.

Then the canonical database A ofψ1 (x , ȳ) ∧ψ2 (x , z̄) satisfies ϕ.

3.2 Templates for sentences in normal form
Let Φ be an MMSNP τ -sentence in normal form. Let σ be the set
of colours of Φ. We will now construct an ω-categorical (τ ∪ σ )-
structure CΦ for Φ; this structure will have several important prop-
erties:

1. a structure A satisfies Φ if and only if A homomorphically
maps to CτΦ, the τ -reduct of CΦ;

2. for every colourM of Φ,MCΦ is an orbit of elements under
Aut(CΦ); moreover, every orbit is of this form.

3. (CΦ,,) is a model-complete core;
4. if Φ is furthermore in strong normal form (to be introduced

in Section 3.3) then even (CτΦ,,) is a model-complete core.
In order to do this, we follow a strategy similar to the one used

in [8]: we associate with Φ a set of finite connected structures F ,
and use a theorem by Cherlin, Shelah, and Shi [18] to obtain an
ω-categorical structure Bind

F
whose age is equal to Forbhom (F ).

The structure CΦ is then obtained by considering a substructure of
Bind
F

.

Theorem 12 (Theorem 4 in [18]). Let F be a finite set of finite
connected τ -structures. Then there exists a countable model-complete
τ -structure Bind

F
such that Age(Bind

F
) = Forbhom (F ). The structure

Bind
F

is up to isomorphism unique and ω-categorical.

Let Bhom
F

be so that (Bhom
F
,,) is the model-complete core of

(Bind
F
,,). By Theorem 4, we can see Bhom

F
as a substructure of

Bind
F

.

Theorem 13. Let F be a finite set of finite connected τ -structures.
Then for every finite τ -structure A, A homomorphically and injec-
tively maps to Bhom

F
if and only if A ∈ Forbhom (F ).

We apply the previous theorem to the following set of finite
structures.

Definition 14. Let Φ be an MMSNP τ -sentence in normal form
with colours σ . The coloured obstruction set for Φ is the set F of all
canonical databases (in the signature τ ∪ σ ) for formulas ϕ such
that ¬ϕ is a conjunct of Φ, except for the first conjunct.

The structure Bhom
F

might contain some elements that do not
belong to the interpretation of any symbol M ∈ σ . Since we are
interested in a template forΦ, this naturally motivates the following
definition.
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Definition 15. Let Φ be an MMSNP τ -sentence in normal form
and let F be the coloured obstruction set of Φ. Then CΦ denotes the
substructure of Bhom

F
induced by the coloured elements of Bhom

F
.

The τ -reduct CτΦ of the structure CΦ that we constructed for an
MMSNP sentence Φ in normal form is indeed a template for the
CSP described by Φ.

Lemma 16. Let Φ be an MMSNP τ -sentence in normal form and let
A be a τ -structure. Then the following are equivalent.

1. A |= Φ;
2. A homomorphically and injectively maps to CτΦ;
3. A homomorphically maps to CτΦ.

Proof. Let σ be the colour set and let F be the coloured obstruction
set of Φ.

(1) ⇒ (2). If A satisfies Φ it has a (τ ∪σ )-expansion A′ such that
no structure in F homomorphically maps to A′. So A′ homomor-
phically and injectively maps to Bhom

F
by Theorem 13. Moreover,

every element of A′ is contained in one predicate from σ (because
of the first conjunct of Φ) and hence the image of the embedding
must lie in CΦ.

(2) ⇒ (3) is trivial.
(3) ⇒ (1). Let h be the homomorphism from A to CτΦ. Expand

A to a (τ ∪ σ )-structure A′ by colouring each element a ∈ A by
the colour of h(a) in CΦ; then there is no homomorphism from
a structure F ∈ F to A′, since the composition of such a homo-
morphism with h would give a homomorphism from F to Bind

F
, a

contradiction. The expansion A′ also satisfies the first conjunct of
Φ, and hence A |= Φ′. □

Example 17. Consider the set F of obstructions given in Figure 1.
The structure Bind

F
is an infinite graph whose vertices are par-

titioned into three parts: uncoloured vertices, magenta (round)
vertices, and blue (square) vertices. The graph induced by the un-
coloured vertices is isomorphic to the random graph with random
loops, while the parts induced by the magenta and blue vertices
are isomorphic to the countable homogeneous triangle-free graph.
The edges with endpoints in two different parts form a graph that
is isomorphic to the countable homogeneous tripartite graph. The
corresponding structure CΦ does not contain the uncoloured ver-
tices; moreover, the graph formed by the edges with endpoints in
two different parts form a complete bipartite graph.

We now describe some effects that the normal form has on our
template. The orbit of a tuple (a1, . . . ,ak ) ∈ (CΦ)

k under Aut(CΦ)
is the set of tuples (α (a1), . . . ,α (ak )), where α ∈ Aut(CΦ).

Lemma 18. Let Φ be an MMSNP τ -sentence in normal form with
colours σ . Then the orbits of elements of CΦ under Aut(CΦ) are
precisely the setsMCΦ forM ∈ σ .

Lemma 19. Let Φ be an MMSNP τ -sentence in normal form. Then
(CΦ,,) is a model-complete core.

3.3 The strong normal form
Let Φ1 and Φ2 be two MMSNP τ -sentences in normal form with
colour sets σ1 and σ2, respectively. For r : σ1 → σ2 and a (τ ∪ σ1)-
structure A we write r (A) for the structure obtained from A by
renaming each predicate P ∈ σ1 to r (P ) ∈ σ2.

Definition 20. A recolouring (from Φ1 to Φ2) is given by a func-
tion r : σ1 → σ2 such that for every (τ ∪ σ1)-structure A, if a
coloured obstruction of Φ2 homomorphically maps to r (A), then
a coloured obstruction of Φ1 homomorphically maps to A. A re-
colouring r : σ1 → σ2 is said to be proper if r is non-injective.

An MMSNP sentence Φ is defined to be in strong normal form
if it is in normal form and there is no proper recolouring from
Φ to Φ. In other words, a formula is in strong normal form if it
cannot be simplified by removing colours without changing the set
of structures described by the formula.

Theorem 21. For every connected MMSNP sentence Φ there exists
an equivalent connected MMSNP Ψ in strong normal form, and Ψ can
be effectively computed from Φ.

The first consequence of the strong normal form for our template
is that already the τ -reduct CτΦ of CΦ, when expanded with the
inequality relation, is a model-complete core.

Theorem 22. Let Φ be an MMSNP sentence in strong normal form
and with input signature τ . Then (CτΦ,,) is a model-complete core.

The second consequence of the strong normal form is described
in the next section.

4 Precoloured MMSNP
An MMSNP τ -sentence Φ in normal form is called precoloured if,
informally, for each colour of Φ there is a corresponding unary
relation symbol in τ that forces elements to have this colour. In
this section we show that every MMSNP sentence is polynomial-
time equivalent to a precoloured MMSNP sentence; this answers
a question posed in [23]. We first formally introduce precoloured
MMSNP and state some basic properties in Section 4.1. We then
prove a stronger result than the complexity statement above: we
show that the Bodirsky-Pinsker tractability conjecture is true for
CSPs in MMSNP if and only if it is true for CSPs in precoloured
MMSNP (Corollary 28). The main results are stated in Section 4.3.
In Section 4.4 we complete the proofs of the results in this section.

4.1 Basic properties of precoloured MMSNP
Formally, an MMSNP τ -sentence Φ is precoloured if it is in normal
form and for every colour M of Φ there exists a unary symbol
PM ∈ τ such that for every colourM ′ of Φ which is distinct from
M the formula Φ contains the conjunct ¬(PM (x ) ∧M ′(x )).

Lemma 23. Every precoloured MMSNP sentence is in strong normal
form.

Proof. Let Φ be a precoloured MMSNP sentence with colour set
σ . We will show that every recolouring r : σ → σ of Φ must be
the identity. Let M ∈ σ , and let A be the canonical database of
PM (x ) ∧ M (x ). Note that A does not contain any obstruction of
Φ as homomorphic image. But if M ′ := r (M ) , M , then r (A)
contains the canonical database of PM (x ) ∧M ′(x ), in contradiction
to the assumption that r is a recolouring. Hence, r (M ) = M for all
M ∈ σ . □

Lemma 24. Let Φ be a precoloured MMSNP sentence. Then for each
colourM , the symbol PM andM have the same interpretation in CΦ.

Proof. By Lemma 19 the structure (CΦ;,) is a model-complete core.
Note that the ω-categorical structures (CΦ;,,M ) and (CΦ;,, PM )
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have the same CSP, and hence are homomorphically equivalent, i.e.,
there are homomorphisms between the two structures in both direc-
tions. Thus, the statement follows from the fact that ω-categorical
model-complete cores are up to isomorphism unique [5]. □

4.2 Adding inequality
We first show that adding the inequality relation to CτΦ does not in-
crease the complexity of its CSP. Since (CτΦ,,) is a model-complete
core, this then allows us to add constants to the language of the
structure, also without increasing the complexity of the CSP.

Proposition 25. CSP(CτΦ) and CSP(CτΦ,,) are polynomial-time
equivalent.

Proof. If a given instance of CSP(CτΦ,,), viewed as a primitive pos-
itive sentence, contains conjuncts of the form x , x , then the in-
stance is unsatisfiable. Otherwise, we only consider the constraints
using relations from τ , and let A be the canonical database of those
constraints. If A has no homomorphism to CτΦ then the instance
is unsatisfiable. Otherwise, by Lemma 16 there is an injective ho-
momorphism from A to CτΦ. The injectivity implies that the homo-
morphism also satisfies all the inequality constraints, so we have a
polynomial-time reduction from CSP(CτΦ,,) to CSP(Cτ ). □

Together with the previous proposition, the following lemma
shows that CτΦ satisfies the Bodirsky-Pinsker conjecture if, and only
if, (CτΦ,,) does.

Lemma 26. There is a uniformly continuous height 1 homomor-
phism Pol(CτΦ) →P if, and only if, there is a uniformly continuous
height 1 homomorphism Pol(CτΦ,,) →P .

4.3 The standard precolouration
Let Φ be an MMSNP sentence in strong normal form with colour
set σ , and let Ψ be the following precoloured MMSNP sentence: we
obtain Ψ from Φ by adding for eachM ∈ σ a new input predicate
PM and adding the conjunct ¬(PM (x ) ∧ M ′(x )) for each colour
M ′ ∈ σ \ {M }. We call this sentence the standard precolouration of
Φ. The main result of this section is the following.

Theorem 27. Let Φ be an MMSNP sentence in strong normal form
with input signature τ . Let Ψ be the standard precolouration of Φ, and
let ρ be the input signature of Ψ. Then CSP(CτΦ) and CSP(CρΨ ) are
equivalent under polynomial-time reductions. Moreover, there exists a
uniformly continuous height 1 homomorphism Pol(CτΦ) →P if, and
only if, there exists a uniformly continuous height 1 homomorphism
Pol(CρΨ ) →P .

The proof of this theorem will be given in Section 4.4. We first
point out an immediate consequence.

Corollary 28. Conjecture 6 holds for CSPs in MMSNP if, and only
if, it holds for CSPs described by a precoloured MMSNP sentence.

4.4 Proof of the precolouring theorem
Let A be a properly coloured (τ ∪ σ )-structure, i.e., every element
appears in the interpretation of precisely one symbol from σ . For
an element a ∈ A, denote by A[a 7→ ∗] the structure obtained by
uncolouring a. For M ∈ σ and a tuple ā of elements A, denote by
A[ā 7→ M] the structure obtained by uncolouring the elements of
ā, and giving them the colour M . Let C (A,a) be the subset of CΦ

containing all elements c such that there exists a homomorphism

h : A[a 7→ ∗]→ CΦ
that satisfies h(a) = c . Note thatC (A,a) is, by Lemma 18, a union of
colours. So we can also see C (A,a) as the union ofMCΦ forM ∈ σ
such that A[a 7→ M] is F -free.

Lemma 29. Suppose that Φ is in strong normal form, and letM be
a colour of Φ. ThenMCΦ =

⋂
C (F,a) where the intersection ranges

over all F ∈ F and a ∈ F such thatMCΦ ⊆ C (F,a).

Proof. The left-to-right inclusion is clear. We prove the other inclu-
sion. To do this, it suffices to show that for every M ′ ∈ σ \ {M },
there exists G ∈ F and b ∈ G such that MCΦ ⊆ C (G,b) but
(M ′)CΦ ⊈ C (G,b). Let r : σ → σ be defined by r (M ) = M ′ and
r (N ) = N for all N ∈ σ \ {M }. Since Φ is in strong normal form and
r is not surjective, it cannot be a recolouring of Φ. This means that
there exists a F -free structure A and F ∈ F such that there exists
a homomorphism h : F → r (A). Let a1, . . . ,ak be the elements of F
that are mapped toMA by h. In r (A), these elements are inM ′, so
since h is a homomorphism and F is completely coloured, we have
that a1, . . . ,ak ∈ (M ′)F . Moreover, since A is F -free, the structure
F[a1, . . . ,ak 7→ M] is F -free. Let 0 ≤ j ≤ k be minimal such that
F[a1, . . . ,aj 7→ M] is F -free. Since F ∈ F , we have j ≥ 1. Let
nowG ∈ F be such that there exists д : G→ F[a1, . . . ,aj−1 7→ M],
which exists by minimality of j . Note that aj is in the image ofд, oth-
erwise д would be a homomorphism д : G → F[a1, . . . ,aj 7→ M],
in contradiction to the choice of j. Thus, let b ∈ G be such that
д(b) = aj , and note that b ∈ (M ′)G, so that (M ′)CΦ ⊈ C (G,b).
Since д is a homomorphismG[b 7→ M]→ F [a1, . . . ,aj 7→ M], the
structureG[b 7→ M] is F -free. This implies that MCΦ ⊆ C (G,b).
We therefore found aG ∈ F and b ∈ G such that MCΦ ⊆ C (G,b)
but (M ′)CΦ ⊈ C (G,b). □

If the sets of the formC (F,a) were pp-definable (i.e., definable by
a primitive positive formula) in an expansion of (CΦ,,) by finitely
many constants, we would be done for the proof of Theorem 27
since the intersection in Lemma 29 is finite. We show how to ap-
proximate these sets by pp-definable subsets.

For M ∈ σ , let P (M ) be the set of pairs (F,a) such that MCΦ ⊆
C (F,a). Let (F,a) ∈ P (M ). Let a1, . . . ,ak be the elements ofF that
are distinct from a. Let ϕF (a,a1, . . . ,ak ) be the canonical query
of Fτ . Let M1, . . . ,Mk be the colours of these elements in F. Fix
ψF,a (x ,U1, . . . ,Uk ) to be the formula

∃y1, . . . ,yk
*.
,
ϕF (x ,y1, . . . ,yk ) ∧

∧
i ∈{1, ...,k }

Ui (yi )
+/
-
,

in the language τ ∪ {U1, . . . ,Uk }. Let χ
(0)
M beM (x ). We define χ (n)M

inductively. For n ≥ 0, let

χ
(n+1)
M (x ) :=

∧
(F,a)∈P (M )

ψF,a (x , χ
(n)
M1
, . . . , χ

(n)
Mk

).

Lemma 30. For any n ∈ N andM ∈ σ the formula χ (n)M (x ) defines
MCΦ over CΦ.

Proof. We prove the result by induction, the case n = 0 being trivial.
Suppose that the result is proved for some n ≥ 0. From Lemma 29
and the induction hypothesis follows that χ (n+1)

M (x ) defines a subset
ofMCΦ , so we just have to prove that the formula is satisfiable (then
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x

y1 y2

z0 z1 z2 z3

Figure 2. Illustration of the formula χ (2)M (x ), for the MMSNP sen-
tence of Example 31. All the variables except for x are existentially
quantified.

by Lemma 18, we get that χ (n+1)
M defines MCΦ ). By Lemma 11, if

χ
(n+1)
M is not satisfiable then there must exist (F,a) ∈ P (M ) such

thatψF,a (x , χ
(n)
M1
, . . . , χ

(n)
Mk

) is not satisfiable, i.e.,

ϕF (x ,y1, . . . ,yk ) ∧
∧

i ∈{1, ...,k }
χ
(n)
Mi

(yi )

is not satisfiable, whereM1, . . . ,Mk are the colours in F of the ele-
ments other than a. By Lemma 11 again, and sinceϕF (x ,y1, . . . ,yk )
is clearly satisfiable, there must exist i ∈ {1, . . . ,k } such that
χ
(n)
Mi

(yi ) is not satisfiable, in contradiction to our induction hy-

pothesis. Therefore, χ (n+1)
M is satisfiable. □

Example 31. We show in Figure 2 the construction of the formula
χ
(2)
M in the case of theMMSNP sentence given by the obstructions in

Figure 1, whereM is represented in magenta (filled round vertices).
Note that if F is the triangle made of blue (square) vertices and a
is a vertex of this triangle then C (F,a) = MCΦ . Note that each yi
must be coloured blue (otherwise the triangle in magenta would
appear), so that x necessarily belongs to MCΦ . This shows that
χ
(2)
M (x ) defines a subset ofMCΦ .

Let n > |Φ|. It is a consequence of Lemma 30 that for eachM ∈ σ ,
the formula χ

(n)
M (x ) is satisfiable in CΦ. Let A be the canonical

query of χ (n)M (x ), where we additionally colour the elements of A
according to an arbitrary satisfying assignment for χ (n)M . Then A
homomorphically maps to CτΦ, so by Lemma 16 it also injectively
maps to CτΦ. We deduce from this that χ (n)M is satisfiable by an
injective assignment h. For every M ′ ∈ σ , replace in χ

(n)
M each

literal M ′(y) (the vertices at the bottom level, in Figure 2) by the
literal y = h(y). The resulting formula, χ̃M (x ), is then a primitive
positive formula in an expansion of CτΦ by finitely many constants
c̄ .

Lemma 32. The formula χ̃M (x ) defines a subset ofMCΦ in (CτΦ, c̄ ).

Proof. Immediate from Lemma 30 and the definition of χ̃M . □

We claim that the formulas χ̃ define a universal substructure of
CΦ, in the sense that any structure A that has a homomorphism
to CΦ has a homomorphism h to CΦ such that CΦ |= χ̃M (h(a)) for
every a ∈ MA .

Proposition 33. Let A be a finite structure that has a homomor-
phism to CΦ, and let ϕA (a1, . . . ,ak ) be the canonical query of A. Let

Mi be the colour of ai in A. Let n > |Φ|. Then the formula

ϕA (x1, . . . ,xk ) ∧
∧

1≤i≤k
χ̃Mi (xi )

is satisfiable in (CΦ, c̄ ).

Finally, we need the following concepts for the proof of Theo-
rem 27. A pp-power of B is a structure with domain Bd , for d ∈ N,
whose k-ary relations are primitive positive definable when viewed
as dk-ary relations over B. A structure C is said to have a pp-
construction over B if it is homomorphically equivalent to a pp-
power ofB. It is known [3] that the expansion of a model-complete
core C by finitely many constants is pp-constructible in C. More-
over, we have the following.

Lemma 34 ([3]). LetB and C be two relational structures with finite
signature. If C has a pp-construction in B, then:

• CSP(C) reduces to CSP(B) in polynomial time, and
• there is a uniformly continuous height 1 homomorphism from

Pol(B) to Pol(C).

Proof of Theorem 27. We first show that CρΨ is pp-constructible in
(CτΦ,,). By Lemma 34 and Proposition 25, this shows that CSP(CρΨ )
reduces in polynomial time to CSP(CτΦ). Let D be the expansion
with signature ρ of the structure CτΦ such that for every colour
M ∈ σ of Φ the symbol PM ∈ ρ denotes the relation defined by
the formula χ̃M from Lemma 32. Since (CτΦ,,) is a model-complete
core and D is pp-definable in CτΦ after having added finitely many
constants, we obtain thatD is pp-constructible from (CτΦ,,). Hence,
it suffices to show that D and CρΨ are homomorphically equivalent.
We first show that D satisfies Ψ. Consider the expansion of D
where M ∈ σ denotes MCΦ . This expansion satisfies for distinct
M,M ′ ∈ σ the clause∀x .¬(PM (x )∧M ′(x )) ofΨ as a consequence of
Lemma 32. The expansion clearly satisfies all other conjuncts of Ψ.
Therefore, D satisfies Ψ and we obtain a homomorphism D→ CρΨ .
Conversely, Proposition 33 gives that every finite substructure of
C
ρ
Ψ has a homomorphism to D. By the ω-categoricity of D, we get

a homomorphism from CρΨ to D.
Secondly, we prove that CτΦ is pp-constructible in CρΨ . For this

it suffices to note that the structures CτΦ and CτΨ are homomorphi-
cally equivalent, and that CτΨ is obtained from CρΨ by dropping the
relations from ρ \ τ , and is in particular a pp-power of CρΨ .

By Lemma 34, these pp-constructions give uniformly continuous
height 1 homomorphisms Pol(CρΨ ) → Pol(CτΦ) and Pol(CτΦ,,) →
Pol(CρΨ ). From the former homomomorphism we get that if there
is a uniformly continuous height 1 homomorphism Pol(CτΦ) →P ,
there is also one Pol(CρΨ ) →P . The latter homomorphism gives us
that if there exists a uniformly continuous height 1 homomorphism
Pol(CρΨ ) → P , there is one Pol(CτΦ,,) → P . We conclude by
Lemma 26. □

5 An Algebraic Dichotomy for MMSNP
We prove in this section that MMSNP exhibits a complexity di-
chotomy, that is, that every problem in MMSNP is in P or NP-
complete. Moreover, we show that the tractability border can be
described in terms of homomorphisms to P , thus confirming the
general conjecture of Bodirsky and Pinsker for the class of con-
straint satisfaction problems in MMSNP.
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Theorem 35. LetB be anω-categorical structure such that CSP(B)
is in MMSNP. Then exactly one of the following holds:

(i) there is a uniformly continuous height 1 homomorphism Pol(B) →
P and CSP(B) is NP-complete, or

(ii) CSP(B) is solvable in polynomial time.

We briefly describe the road to proving Theorem 35. In virtue
of Corollary 28, it suffices to focus on the case that CSP(B) is
described by a precoloured MMSNP sentence. For each precoloured
sentence Φ, we consider the structure CτΦ whose CSP is described
by Φ. We prove that the complexity of CSP(CτΦ) and the existence of
a homomorphism Pol(CτΦ) →P are determined by the existence
of a clone homomorphism C → P , where C is the subset of
Pol(CτΦ) that contains the functions that are canonical with respect
to (CΦ, <) (see Section 5.1 for the definition).

5.1 Canonical functions
Let B be a relational structure. A function f : Bk → B is said to be
canonical with respect toB if for allm ≥ 1 and all t̄1, . . . , t̄k ∈ Bm the
orbit of f (t̄1, . . . , t̄k ) ∈ Bm only depends on the orbits of t̄1, . . . , t̄k
with respect to the componentwise action of Aut(B) on Bm . The
following theorem states, informally, that every function behaves
like a function that is canonical with respect to B on some infinite
subset of B.

Theorem 36 ([12]). Let B be a countable ω-categorical Ramsey
structure. Then for any map h : Bk → B there exists a function in

{β ◦ h ◦ (α1, . . . ,αk ) | α1, . . . ,αk , β ∈ Aut(B)}

that is canonical with respect to B.

We write Aut(B) f Aut(B) for the set in the statement of Theo-
rem 36.

The assumption that B is a Ramsey structure is very strong;
however, it was proven recently that this property holds for our
templates of interest.

Theorem 37 (implied by Theorem 2.1 in [21]). For all finite sets of
finite connected τ -structures F there exists a linear order < on Bind

F

such that (Bind
F
, <) is Ramsey.

Moreover, it is known that the Ramsey property transfers to
model-complete cores [7], so we obtain the following:

Corollary 38 (implied by Corollary 3.8 in [21]). For every MMSNP
sentence Φ in normal form, there exists a linear order < on CΦ such
that (CΦ, <) is Ramsey.

Let C be a clone that consists of canonical functions with respect
to structure B. Every f ∈ C induces a natural operation on orbits
of elements under Aut(B), due to the fact that it is canonical with
respect to B. We denote this operation by ξ typ

1 ( f ) or simply f typ.
Moreover, we write C

typ
1 for the clone of functions of the form

ξ
typ
1 ( f ), with f ∈ C .
We finish this section by stating a consequence of assuming

that Φ is precoloured and in normal form on the clone C
typ
1 . An

operation f is called idempotent if it satisfies f (x , . . . ,x ) = x , for
all x in the domain of f .

Proposition 39. Let Φ be a precoloured MMSNP sentence in normal
form. Let C be the set of polymorphisms of CτΦ that are canonical

with respect to (CΦ, <). Then all functions in C
typ
1 are idempotent.

5.2 The tractable case
In this section, we prove that CSP(CτΦ) is polynomial-time tractable,
under the assumption that CτΦ has a polymorphism that is canonical
with respect to (CΦ, <) and whose behaviour on orbits of elements
is Siggers. For that we use the infinite-to-finite reduction from [9]
and the recent solutions to the Feder-Vardi conjecture [14, 26].

Proposition 40. Let C be the clone of functions in Pol(CτΦ) that are
canonical with respect to (CΦ, <). Suppose that C

typ
1 does not have

a homomorphism to P . Then Pol(CΦ) contains an operation that
is pseudo-Siggers modulo Aut(CΦ, <) and canonical with respect to
(CΦ, <).

Theorem 41 (Corollary 15 in [10]). Let A be a finite-signature
reduct of a finitely bounded homogeneous structure B. If A has a
pseudo-Siggers polymorphism modulo Aut(B) that is canonical with
respect to B, then CSP(A) is in P.

In order to use Theorem 41, it remains to prove that CτΦ is a
reduct of a finitely bounded homogeneous structure.

Proposition 42. The structure CΦ has a homogeneous expansion
by finitely many primitive positive definable relations. Moreover, the
expansion is finitely bounded.

Theorem 43. If there is no clone homomorphism C
typ
1 →P , then

CSP(CτΦ) is in P.

5.3 The hard case
Let Φ be a precoloured MMSNP sentence in normal form, and let C
be the clone of polymorphisms of CτΦ that are canonical with respect
to (CΦ, <). In this section, we deal with the case that there exists a
clone homomorphism ξ : C

typ
1 →P , and prove that there exists a

uniformly continuous height 1 homomorphism Pol(CτΦ) →P .
There is a natural candidate for a height 1 homomorphism

Pol(CτΦ) → P , which we describe now. By Theorem 36, for ev-
ery f ∈ Pol(CΦ), the set Aut(CΦ, <) f Aut(CΦ, <) has a non-empty
intersection with C . Thus, a natural definition of a uniformly con-
tinuous height 1 homomorphism ϕ : Pol(CΦ) →P is given by

ϕ ( f ) := ξ (дtyp) where д ∈ C ∩ Aut(CΦ, <) f Aut(CΦ, <).

This map is well-defined only if for every choice of д,h in C ∩

Aut(CΦ, <) f Aut(CΦ, <) we have ξ (дtyp) = ξ (htyp). We focus on
proving that this map (potentially after replacing ξ with another
clone homomorphism from C

typ
1 → P) is well-defined in the

following series of propositions. The proof that the then-defined
map is a uniformly continuous height 1 homomorphism is due to
Bodirsky and Mottet [9, Theorem 17].

Let ρ be a subset of σ such that ρ is preserved by C
typ
1 . Let Θ

be an equivalence relation on ρ that is preserved by C
typ
1 and with

two equivalence classes S,T ⊆ ρ. We call {S,T } a subfactor of C
typ
1 .

The clone C
typ
1 naturally induces a clone on the two-element set

{S,T }. If this clone is (isomorphic to) the projection clone P , then
we call {S,T } a trivial subfactor. The theory of finite idempotent
algebras implies that C

typ
1 has a homomorphism to P if, and only

if, C typ
1 has a trivial subfactor {S,T } (see [15, Proposition 4.14], for

example).
LetX be a pp-definable subset ofCΦ. A binary symmetric relation

N ⊆ X 2 defines an undirected graph on σ : there is an edge between
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M and M ′ if, and only if, there exist x ∈ MCΦ and y ∈ M ′CΦ such
that (x ,y) ∈ N . If N is pp-definable in CΦ, we call the resulting
graph on σ a definable colour graph over X . The following propo-
sition ties the existence of a trivial subfactor to the existence of a
particular definable colour graph.

Proposition 44. Let Φ be a precoloured MMSNP sentence in strong
normal form and let C be the clone of polymorphisms of CΦ that
are canonical with respect to (CΦ, <). Let {S,T } be a trivial subfactor
of C

typ
1 . Then there exists a pp-definable subset X of CΦ and a pp-

definable binary symmetric relation N ⊆ X 2 that defines a colour
graph with an edge from S toT and whose every connected component
is either included in S , included in T , or is a bipartite graph whose
bipartition is induced by S and T .

Theorem 45. Let Φ be a precoloured MMSNP sentence in strong
normal form. Let C be the clone of polymorphisms of CΦ that are
canonical with respect to (CΦ, <). If there is a clone homomorphism
C

typ
1 →P , then there exists a uniformly continuous height 1 homo-

morphism from Pol(CΦ) toP that is invariant under left-composition
by Aut(CΦ), and CSP(CτΦ) is NP-hard.

Proof. As we have mentioned before, if the finite idempotent al-
gebra C

typ
1 has a homomorphism to P , then C

typ
1 has a trivial

subfactor {S,T } (see [15, Proposition 4.14]).
Let ξ : C

typ
1 → P be the clone homomorphism defined as fol-

lows. Let R ∈ S and B ∈ T be arbitrary. For a k-ary f ∈ C
typ
1 , let i ∈

{1, . . . ,k } be the unique index such that f (B, ...,B,R,B, ...,B) ∈ S ,
where the argument R is in the ith position. Such an i exists because
of the assumption that {S,T } is a trivial subfactor of C

typ
1 . Define

ξ ( f ) to be the ith projection. Note that the definition of ξ does not
depend on the choice of R and B, by the fact that the equivalence
relation on S ∪T whose equivalence classes are S andT is assumed
to be preserved by the operations in C

typ
1 . It is straightforward to

check that the map ξ thus defined is a clone homomorphism.
Let X ⊆ CΦ and N ⊆ X 2 be the pp-definable relations given

by Proposition 44. Fix f ∈ Pol(CΦ) a k-ary operation and д,h two
operations in C ∩ Aut(CΦ, <) f Aut(CΦ, <).

As explained in the beginning of this section, it suffices to prove
that ξ (дtyp) = ξ (htyp). For ease of notation, assume that ξ (дtyp) is
the first projection, the general case being treated in the same way.
Since ξ is the clone homomorphism induced by {S,T }, this means
that for all R ∈ S and B ∈ T , we have дtyp (R,B, . . . ,B) ∈ S . In order
to prove that ξ (htyp) is also the first projection, it suffices to prove
that there exist R ∈ S and B ∈ T such that htyp (R,B, . . . ,B) ∈ S . Let
R ∈ S and B ∈ T be adjacent colours in the colour graph defined by
N . Let (a1, . . . ,ak ) be any tuple in RCΦ × BCΦ × · · · × BCΦ . Since f
interpolates д and h modulo Aut(CΦ, <), there are automorphisms
α , β1, . . . , βk such that

д(a1, . . . ,ak ) = α f (β1a1, . . . , βkak )

and automorphisms γ ,δ1, . . . ,δk such that

h(a1, . . . ,ak ) = γ f (δ1a1, . . . ,δkak ).

LetS be the substructure of CΦ induced by the elements of the
form βiai and δiai , for i ∈ {1, . . . ,k }. Since (CΦ,,) is a model-
complete core (Lemma 19), it follows from Theorem 3.6.11 in [6]
that the orbit of the tuple

(β1a1, . . . , βkak ,δ1a1, . . . ,δkak )

in CΦ is defined by a formula θ (x1, . . . ,xk ,y1, . . . ,yk ) that is prim-
itive positive in the language of (CΦ,,). Let θ∗ be θ where the
atomic formulas , have been removed. Let ϕN (x ,y) be a primitive
positive formula defining the relation N ⊆ (CΦ)

2 in CΦ. Fix an inte-
ger ℓ such that 2ℓ > |Φ|. For every i ∈ {1, . . . ,k }, let zi1, . . . , z

i
2ℓ−1

be fresh variables. In the following, we also write zi0 for xi and
zi2ℓ for yi . Let ψ (x1, . . . ,xk ,y1, . . . ,yk ) be the primitive positive
formula whose conjuncts are:
• θ∗ (x1, . . . ,xk ,y1, . . . ,yk ),
• ϕN (zij , z

i
j+1), for every i ∈ {1, . . . ,k } and j ∈ {0, . . . , 2ℓ − 1},

• R (z1
j ) for even j ∈ {1, . . . , 2ℓ − 1} and B (z1

j ) for odd j ∈

{1, . . . , 2ℓ − 1},
• for i ∈ {2, . . . ,k }, the conjunct B (zij ) for even j ∈ {1, . . . , 2ℓ−

1} and R (zij ) for odd j ∈ {1, . . . , 2ℓ − 1}.
We claim that ψ is satisfiable in CΦ. We first prove that it is

satisfiable in Bind
F

, where F is the coloured obstruction set of Φ.
LetS′ be the canonical database ofψ (see Figure 3). By Lemma 11,
ψ is satisfiable if and only if all the biconnected components of
S′ are F -free. Suppose that there exists an obstruction F ∈ F
of Φ and a homomorphism e : F → S′ to one of the biconnected
components of S′. By the choice of ℓ we have that |F | < 2ℓ. It
follows that either the image of e is included inS, or it is included
in the subset induced by the canonical database of some N (zij , z

i
j+1)

for some i ∈ {1, . . . ,k } and j ∈ {0, . . . , 2ℓ − 1}. But the assumption
on N is that there is (a,b) ∈ N such that a ∈ RCΦ and b ∈ BCΦ .
Therefore, the conjunct ϕN (zij , z

i
j+1) is satisfiable by an assignment

that maps zij and z
i
j+1 to the appropriate colours. We conclude that

there exists an embedding e ofS′ into Bind
F

.
Let d : Bind

F
→ Bhom

F
be an injective homomorphism (whose ex-

istence follows from Theorem 13). Note that the image of the restric-
tion of d to CΦ ⊆ Bind

F
is in CΦ since d must preserve the colours.

Since d ◦ e is injective, the tuple (d ◦ e ) (x1, . . . ,xk ,y1, . . . ,yk )
satisfies θ . This means that d ◦ e : S′ → CΦ is a satisfying as-
signment that maps (x1, . . . ,xk ,y1, . . . ,yk ) to a tuple that is in
the same orbit as (β1a1, . . . , βkak ,δ1a1, . . . ,δkak ). By composing
with an automorphism of CΦ, we can suppose that the image of
(x1, . . . ,xk ,y1, . . . ,yk ) is exactly this tuple.

It must therefore be the case that the elements f (β1a1, . . . , βkak )
and f (δ1a1, . . . ,δkak ) of CΦ are connected by an N -path of even
length, that is, there are b1, . . . ,b2ℓ−1 ∈ CΦ such that (bj ,bj+1) ∈
N for all j ∈ {1, . . . , 2ℓ} and ( f (β1a1, . . . , βkak ),b1) ∈ N and
(b2ℓ−1, f (δ1a1, . . . ,δkak )) ∈ N . Thismeans that f (β1a1, . . . , βkak )
and f (δ1a1, . . . ,δkak ) are in the same component in the colour
graph defined by N . If this connected component is included in S ,
then there isY ∈ S such that f (δ1a1, . . . ,δkak ) ∈ Y , i.e.,h(a1, . . . ,ak ) ∈
Y . Otherwise, the connected component of these elements is bipar-
tite, and since there is a path of even length between the two ele-
ments, it must be the case that there isY ∈ S such that f (δ1a1, . . . ,δkak )
belongs to Y . In both cases, we obtain that h(R,B, . . . ,B) ∈ S . □

5.4 The dichotomy: conclusion
Summing up the results of the previous two sections, we obtain the
following dichotomy for precoloured MMSNP sentences.

Theorem 46. Let Φ be a precoloured MMSNP sentence in normal
form. Then exactly one of the following statements hold:
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Figure 3. Depiction of the structureS′, in the case that k = 2.

1. there is a uniformly continuous height 1 homomorphism Pol(CτΦ) →
P that is invariant under left-composition by Aut(CΦ), and
CSP(CτΦ) is NP-complete,

2. Pol(CτΦ) contains a pseudo-Siggers operation modulo Aut(CΦ),
and CSP(CτΦ) is in P.

Proof. It is clear that at most one of the two statements hold. Let
C be the clone of polymorphisms of CτΦ that are canonical with
respect to (CΦ, <). If the first item does not hold then by Theorem 45
there is no clone homomorphism C

typ
1 → P . By Theorem 43,

the CSP of CτΦ is in P and by Proposition 40, CτΦ has a pseudo-
Siggers polymorphism modulo Aut(CΦ, <), and in particular this
polymorphism is pseudo-Siggers modulo Aut(CΦ). □

We can finally prove Theorem 7 from Section 2.3.

Proof. Let Φ be a connected MMSNP sentence with input signa-
ture τ . By Theorem 21, we can assume that Φ is in strong normal
form. Let B := CτΦ. Let Ψ be the standard precolouration of Φ with
input signature ρ. Assume that there is no uniformly continuous
height 1 homomorphism Pol(B) → P . By Theorem 27, there is
no uniformly continuous height 1 homomorphism Pol(CρΨ ) →P .
By Theorem 46, this means that CρΨ has a pseudo-Siggers polymor-
phism and CSP(CρΨ ) is in P. Since B is isomorphic to the τ -reduct
of CρΨ and the two structures have the same automorphism group,
this means that B has a pseudo-Siggers polymorphism. Moreover,
again by Theorem 27, we have that CSP(B) is in P.

It remains to prove that the two cases are mutually exclusive.
Assume that there is a uniformly continuous height 1 homomor-
phism Pol(B) → P . Then by Lemma 26, there is a uniformly
continuous height 1 homomorphism Pol(B,,) →P . Since (B,,)
is a model-complete core, Corollary I.8 in [1] implies the existence
of finitely many constants c1, . . . , cn and a clone homomorphism
Pol(B,,, c1, . . . , cn ) →P . In particular, Pol(B,,, c1, . . . , cn ) can-
not contain a pseudo-Siggers operation. A standard argument using
the fact that (B,,) is a model-complete core shows that Pol(B,,)
cannot contain a pseudo-Siggers operation. Finally, showing that
Pol(B) cannot contain a pseudo-Siggers operation can be done
similarly as in Lemma 26.

Finally, we show that Conjecture 6 holds for all CSPs in MMSNP.
Let C be an ω-categorical structure such that CSP(C) is described
by an MMSNP connected sentence Φ, and suppose that there is
no uniformly continuous clonoid homomorphism from Pol(C) to
P . Let B be the structure in the statement of Theorem 7. Since
CSP(C) and CSP(B) are equal and both C and B are ω-categorical,

we obtain that C and B are homomorphically equivalent. It follows
that there is a uniformly continuous clonoid homomorphism from
Pol(C) to Pol(B). Hence, there cannot be any uniformly continuous
clonoid homomorphism from Pol(B) to P , so that by Theorem 7,
CSP(B) is tractable in polynomial time. Thus, CSP(C) is in P. □
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