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Abstract
Cubical type theory provides a constructive justification to certain

aspects of homotopy type theory such as Voevodsky’s univalence

axiom. This makesmany extensionality principles, like function and

propositional extensionality, directly provable in the theory. This

paper describes a constructive semantics, expressed in a presheaf

topos with suitable structure inspired by cubical sets, of some higher

inductive types. It also extends cubical type theory by a syntax for

the higher inductive types of spheres, torus, suspensions, trunca-

tions, and pushouts. All of these types are justified by the semantics

and have judgmental computation rules for all constructors, includ-

ing the higher dimensional ones, and the universes are closed under

these type formers.

Keywords Cubical Type Theory, Higher Inductive Types, Homo-

topy Type Theory, Univalent Foundations

1 Introduction
Homotopy type theory [26] provides a new and promising approach

to equality in type theory where types are thought of as abstract

spaces and equality as paths in these spaces [5]. Iterated equality

proofs then correspond to homotopies between paths. This intuition

is motivated by homotopy theoretic models, in particular by the Kan

simplicial set model [15] due to Voevodsky. This allows one to find

new principles in type theory inspired by homotopy theory. Prime

examples of this are Voevodsky’s univalence axiom [27], which gen-

eralizes the principle of propositional extensionality to dependent

type theory, and the stratification of types by the complexity of

their equality (i.e., by their homotopy level or “h-level” [28]).

In the homotopical interpretation of type theory inductive types

are represented as discrete spaces with only points in them. Higher

inductive types are a natural generalization where types may also

be generated by paths (potentially higher dimensional). This notion

of types, combined with universes and the univalence axiom, is an

important extension of dependent type theory, which allows for an

elegant and original synthetic development of algebraic topology,

using in a key way type-theoretic ideas (such as the encode-decode

method [26]). Impressive examples of this development are, among

others, the definition of the Hopf fibration, the Freudenthal sus-

pension theorem and the Blakers-Massey theorem [6, 13]. How-

ever, and somewhat surprisingly, despite several efforts (e.g., [19]),

the consistency of such an extension, which would justify these
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impressive developments, has not yet been established. The sim-

plicial set model [15] provides (in a classical framework) a model

for the univalence axiom, but it only provides a model for some

very particular higher inductive types (such as the spheres, and the

propositional truncation via an impredicative encoding [28]), and,

as explained in [19], it is not clear how to extend this model to a

model of parametrized higher inductive types like the suspension

or pushouts (expressed as operations on a given universe).

Contributions The first contribution of the present paper is to

provide such a semantics, starting in an essential way not from

the simplicial set model, but from a cubical set model [8, 20]. This

semantics is furthermore carried out in a constructive meta-theory.

Our second contribution is to extend cubical type theory with

a syntax for higher inductive types, exemplified by: spheres, the

torus, suspensions, truncations, and pushouts. These types illustrate

many of the difficulties in giving a computational justification for

a general class of higher inductive types, in particular: the spheres

and torus have higher dimensional constructors, furthermore one

version of the torus refers to “fibrancy” structure in its endpoints,

the suspension has a parameter type, the truncations are recursive,

and the pushouts have function applications in the endpoints of the

path constructor. We show how to overcome all of these difficulties

in a uniform way which suggests an approach to the problem of

defining a schema for higher inductive types in cubical type theory.

Furthermore, all of the higher inductive types we consider have

the following good properties justified by our semantics:

1. judgmental computation rules for all constructors,

2. strict stability under substitution, and

3. closure under universe levels (the higher inductive types live

in the same universe as their parameters).

We have also implemented a variation of the system presented

in this paper and performed multiple experiments with it.
1

Outline The paper begins by describing the semantics, expressed

in a presheaf topos with suitable structure, of the circle (Section 2.1),

suspension (Section 2.2), and pushouts (Section 2.3). The next sec-

tion starts with a short background on cubical type theory (Sec-

tion 3.1) followed by the extension to the theory with: circle and

spheres (Section 3.3.1), the torus (Section 3.3.2), suspensions (Sec-

tion 3.3.3), propositional truncation (Section 3.3.4), and pushouts

(Section 3.3.5). The paper ends with conclusions and discussions

on future and related work (Section 4).

2 Semantics of higher inductive types
As shown in [2, 18, 20], the presentation of the semantics of cubical

type theory can be both simplified and clarified by using the lan-

guage of extensional type theory (with universes). This language

can be given meaning in any presheaf topos, so long as we assume

1
See: https://github.com/mortberg/cubicaltt/tree/hcomptrans
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that the ambient set theory has a hierarchy of Grothendieck uni-

verses. In particular, we are going to show that the justification

of higher inductive types can be done internally, using the exis-

tence of suitable initial algebras as the only extra assumption. We

then justify the existence of these initial algebras for our presheaf

topos externally. The key idea will be a decomposition of the notion

of composition structure [18, 20] into a transport and a homoge-
neous composition operation.

2
This decomposition can be described

internally.

We will work here in the presheaf topos over the Lawvere the-

ory of De Morgan algebras [8, 18] (but, following [20], our re-

sults are valid in a more general setting). The presentation we use

in [8] of this category is the following: we fix a countable set of

names/symbols and the objects of the category I , J , . . . are finite
sets of symbols. A map J → I is then a set-theoretic map from I to
the free DeMorgan algebra dM(J ) on J . The corresponding presheaf
model has then a generic De Morgan algebra I, taking I(J ) to be

dM(J ). (To have such a structure on I is not strictly necessary [20],

but it simplifies the presentation.)

This type I is used as an abstract representation of the unit

interval, so that a path in a type A is represented by an element of

the exponential AI. The extra data needed to define a cubical set

model is a notion of cofibration, which specifies the shape of filling

problems that can be solved in a dependent type. We represent this

by a type of cofibrant propositions F (denoted by Cof in [20]). In

[8], this is represented by the face lattice (see Section 3.1), but other

choices are possible. (Classically, this type F is a subtype of the

subobject classifier of the presheaf topos, but, as stressed in [18],

we can avoid mentioning the impredicative type of propositions

altogether, and work in a predicative meta-theory.) We write [φ] for
the type associated to the propositionφ : F. So [φ] is a sub-singleton,
and any element of [φ] is equal to a fixed element tt.

A partial element of a typeT is given by an element φ in F and a
function [φ] → T . We say that a total element v of T extends such

a partial element φ,u if we have φ ⇒ u tt = v , where ⇒ denotes

implication between propositions.

In this extensional type theory, we can think of a dependent type

A over a given type Γ as a family of types Aρ indexed by elements

ρ of Γ.
We now recall the notions of composition and filling struc-

tures [8, 20]. Let A be a dependent type over a type Γ.

Definition 2.1. A composition structure cA on A is an operation

taking as inputs γ in ΓI, a proposition φ in F, a partial element u
in [φ] → Π(i : I)Aγ (i), and an element u0 in Aγ (0) such that φ ⇒

u tt 0 = u0. This operation produces an element u1 = cA γ φ u u0 in
Aγ (1) such that φ ⇒ u tt 1 = u1.

The type of all such operations is written Comp(Γ,A) (see [20,
Definition 4.3] for an explicit internal definition).

Definition 2.2. A filling structure fA on A is an operation tak-

ing the same input as cA above, but producing an element v =
fA γ φ u u0 in Π(i : I)Aγ (i) such that v extends u, i.e., φ ⇒ u tt = v ,
and v 0 = u0.

We write Fill(Γ,A) for the type of filling structures on A.

2
As explained in [2] this decomposition was first introduced in an early version of [8],

precisely to address the problem of the semantics of propositional truncation and this

decomposition is also present in [3, 4, 7].

This notion of filling structure is an internal form of the homo-

topy extension property, which was recognized very early (see, e.g.,

[11]) as a key for an abstract development of algebraic topology.

As explained in [8, 20] we have that Comp(Γ,A) is a retract of
Fill(Γ,A).

In the particular case where Γ is the unit type, thenA is a “global”

type, and Comp(Γ,A) becomes the type Fibrant(A) expressing that

A is a fibrant object. Such a fibrancy structure on A consists of an

operation hA taking as arguments u0 in A and a partial element

φ,u of AI such that φ ⇒ u tt 0 = u0, and produces an element

u1 = hA φ u u0 such that φ ⇒ u tt 1 = u1.
In general, if A is a family of types over Γ, to give a composition

structure for each fiber, that is, an element in Π(ρ : Γ) Fibrant(Aρ),
is not enough to get a global composition structure, that is, an

element inComp(Γ,A) (see [20] for an explicit counterexample). An

element inΠ(ρ : Γ) Fibrant(Aρ) is called a homogeneous composition
structure.

We now describe the notion of transport operation, which allows

to define a composition structure from a homogeneous composi-

tion structure. This decomposition of the composition operation

into a transport and homogeneous composition operation plays a

crucial role for interpreting higher inductive types depending on

parameters (like suspension, pushouts, or propositional truncation).

Definition 2.3. A transport structure tA on A is an operation tak-

ing as arguments a path γ in ΓI, a proposition φ in F such that

φ ⇒ ∀(i : I)γ (0) = γ (i), and an element u0 in Aγ (0). This op-
eration produces an element u1 = tA γ φ u0 in Aγ (1) such that

φ ⇒ u0 = u1.

The condition φ ⇒ ∀(i : I)γ (0) = γ (i) expresses that the path γ
is constant on φ.

Clearly we obtain a homogeneous composition structure from

any composition structure. We also get:

Lemma 2.4. If a family of typesA over Γ has a composition structure
cA, then it has a transport structure tA.

Proof. We can take tA γ φ u0 = cA γ φ (λ(x : [φ])(i : I)u0)u0. □

Lemma 2.5. If a family of types A over Γ has a homogeneous com-
position structure hA and a transport structure tA, then it has a com-
position structure cA.

Proof. We can define cA γ φ u u0 as

hA γ (1)φ (λ(x : [φ])(i : I). tA γ
′(i) (i = 1) (u x i)) (tA γ 0F u0)

where γ ′(i) = λ(j : I)γ (i ∨ j). □

We are now going to develop some universal algebra internally

in the presheaf model. The operations will involve the interval

object I and the type F of cofibrant propositions, and can be seen

as a generalization of the usual notion of operations in universal

algebra.

2.1 Semantics of the circle
The circle is represented as a higher inductive type with a path

loop connecting a point base to itself.

If A (resp. B) has a fibrancy structure hA (resp. hB ), then a map

α : A → B is fibrancy preserving if it satisfies

α (hA φ u u0) = hB φ (λ(x : [φ])(i : I) α (u x i)) (α u0).

2
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An S1-algebra structure on a type A consists of a fibrancy struc-

ture hA together with a base point bA and a loop lA in AI con-
necting bA to itself (i.e., lA 0 = lA 1 = bA). Given two S1-algebras
A,hA,bA, lA and B,hB ,bB , lB a function α : A → B is a map of

S1-algebras if it is fibrancy preserving and satisfies α bA = bB and

α (lA i) = lB i .
We will show below using external reasoning:

Proposition 2.6. There exists an initial S1-algebra, which will be
denoted by S1, hcomp, base, loop.

So S1 has a structure of an S1-algebra and the fact that it is initial
means that, for any S1-algebra A,hA,bA, lA there exists a unique

S1-algebra map S1 → A.
By definition, the type S1 is fibrant since it has a fibrancy struc-

ture hcomp. Furthermore, we can prove that initiality implies the

dependent elimination rule.
3

Proposition 2.7. S1 satisfies the dependent elimination rule for the
circle: given a family of types P over S1 with a composition structure,
and a in P base and l i in P (loop i) such that l 0 = l 1 = a there
exists a map elim : Π(x : S1)P x such that elim base = a and
elim (loop i) = l i .

Proof. We know by [8, 20] that A = Σ(x : S1)P x has a composition

structure. It has then a natural S1-algebra structure, taking bA =
base,a and lA i = loop i, l i . This structure is such that the first

projection π1 : A → S1 is a map of S1-algebras. We have a unique

S1-algebra map α : S1 → A and π1 ◦ α is the identity on S1. We

can then define elim x = π2 (α x) in P x . □

2.2 Semantics of the suspension operation
The suspension SuspA of a type A has constructors N and S (two

poles) and a path between them for any element of A. This enables

us to give a direct definition of Sn+1 as SuspnS1. Compared to

the circle, this higher inductive type presents the extra complexity

of having parameters and the decomposition of the composition

operation will be the key for providing its semantics.

Given a type X , a SuspX -algebra structure on a type A con-

sists of a fibrancy structure hA together with two points nA, sA,
and a family of paths lA in X → AI connecting nA to sA (i.e.,

lA x 0 = nA and lA x 1 = sA for all x in X ). Given two SuspX -
algebras A,hA,nA, sA, lA and B,hB ,nB , sB , lB a function α : A → B
is a map of SuspX -algebras if it is fibrancy preserving and satisfies

α nA = nB , α sA = sB , and α (lA i) = lB i .
As for the circle we can show using external reasoning:

Proposition 2.8. There exists an initial SuspX -algebra, which will
be denoted by SuspX , hcomp,N, S,merid.

By definition, the type SuspX is fibrant since it has a fibrancy

structure hcomp. Using this filling structure, we prove as above:

Proposition 2.9. SuspX satisfies the dependent elimination rule for
the suspension: given a family of type P over SuspX with a composi-
tion structure, and n in P N and s in P S and l x i in P (merid x i) such
that l x 0 = n and l x 1 = s there exists a map elim : Π(x : SuspX )P x
such that elim N = n and elim S = s and elim (merid x i) = l x i .

3
This is a direct generalization of the usual argument that a natural number object

satisfies the dependent elimination rule.

The operation SuspX is functorial in X . Given a map u : X →

Y we get a SuspX -structure on SuspY by taking lSuspY x i =
meridY (u x) i and hence a map Susp(u) : SuspX → SuspY .

Let now A be a dependent family of types over a given type Γ,
so that Aρ is a type for any ρ in Γ. We define a new family of types

SuspA over Γ by taking (SuspA)ρ = Susp(Aρ). By construction,

this new family always has a homogeneous composition structure

(without any hypothesis on A).

Proposition 2.10. If A has a transport structure tA, then SuspA
has a transport structure, and hence (since it has a homogeneous
composition structure) also a composition structure by Lemma 2.5.

Proof. Given γ in ΓI and φ such that γ is constant on φ (i.e., φ ⇒

∀(i : I) γ (0) = γ (i)), we have a map tA γ φ : Aγ (0) → Aγ (1) which
is the identity on φ and hence the map Susp (tA γ φ) is a transport
map Susp (Aγ (0)) → Susp (Aγ (1)) which is the identity on φ. □

This example motivates the decomposition of the composition

operation into a transport and homogeneous composition opera-

tions. In a context, we could only build an initial algebra for the

homogeneous composition operation (by doing it pointwise) and

it does not seem possible to do it for the composition operation

directly. The problem does not appear for a type like the circle

which has no parameters, for which homogeneous and general

compositions coincide. For the suspension however, we have to

argue further that we also get a transport operation. (This problem

seems connected to the problem of size blow-up for parametrized

higher inductive types due to fibrant replacement in the simplicial

set model discussed in [19].)

The same argument applies to the propositional truncation ∥X ∥

of a typeX . We would then instead consider the following notion of

algebra: a type A with a fibrancy structure, a map iA : X → A and

a map sqA : A → A → AI such that sq a0 a1 is a path connecting

a0 to a1.

2.3 Pushouts
Many examples of higher inductive types can be encoded as (ho-

motopy) pushouts of spans of other types. In particular (homotopy)

coequalizers, which together with coproducts (which are encoded

using Σ-types), can be used to compute general colimits of diagrams

of types. This has been used to encode many known higher induc-

tive types, including recursive ones like propositional [9, 16] and

higher truncations [22].

The semantics of pushouts involves the same problem with pa-

rameters as in the previous example, but the definition of the trans-

port function is more complex and we will need to introduce some

auxiliary operations definable from transport.

A span D = (C,A,B,u,v) consists of two maps u : C → A and

v : C → B. Given such a span, we define a D-algebra to be a type X
with a fibrancy structure hX and maps iX : A → X and jX : B → X
and pX : C → X I such that pX z 0 = iX (u z) and pX z 1 = jX (v z).
As above, there is a canonical notion of D-algebra maps, and (in

suitable presheaf models) we have an initial D-algebra, which we

write po(D) = A ⊔C B, hcomp, inl, inr, push.
We can relativize this situation over a type Γ. If A,B,C are fami-

lies of types over Γ andu (resp.v) is a family of mapsuρ : Cρ → Aρ
(resp. vρ : Cρ → Bρ), we consider D = (C,A,B,u,v) to be a span

over Γ, with Dρ = (Cρ,Aρ,Bρ,uρ,vρ). If the span D is given over

3
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Γ, we define po(D) in a pointwise way as for the suspensions, taking
po(D)ρ to be po(Dρ).

We want to prove that if C,A,B have transport structures, then

so does po(D). In order to do that, we first show how to define

further operations from a given transport structure.

Lemma 2.11. Given a family of types A over Γ with a transport
structure tA we can define a new operation fA such that fA φ γ a0 is
a path in Π(i : I)Aγ (i) constant on φ and connecting a0 to tA γ φ a0
for any γ in ΓI constant on φ and a0 in Aγ (0). Furthermore given any
a in Π(i : I)Aγ (i) we can define an operation sqA φ γ a which is a
path in (Aγ (1))I connecting tA γ φ a(0) to a(1), and which is constant
on φ.

Proof. We define

fA φ γ a0 = λ(i : I) tA (λ(j : I)γ (i ∧ j)) (φ ∨ (i = 0)) a0

which connects a0 to tA γ φ a0 and is constant on φ, and

sqA φ γ a = λ(i : I) tA (λ(j : I)γ (i ∨ j)) (φ ∨ (i = 1)) a(i)

which connects tA γ φ a(0) to a(1) and is constant on φ. □

The relationship between these operations can be displayed as:

γ (0) γ (1)

a(1)

a(0) tA γ φ a(0)

a sqA φ γ a

fA φ γ a(0)

γ

so that sqA can be though of as an operation which “squeezes” the

path a into the fiber over γ (1).

Corollary 2.12. Given two families of types C and A over Γ with
transport structures tC and tA respectively, and a map u : C → A
over Γ, there exists an operation l φ γ c0 which is a path in (Aγ (1))I

constant overφ and connecting tA γ φ (uγ (0) c0) anduγ (1) (tC γ φ c0),
given γ in ΓI constant over φ and c0 in Cγ (0).

Proof. We apply the sqA operation and the fC operation from

Lemma 2.11 to the path λ(i : I)uγ (i) (fC φ γ c0 i). □

Proposition 2.13. Given a family of spansD = (C,A,B,u,v) over a
type Γ such thatA, B, andC have transport structures then the family
po(D) also has a transport structure, and hence also a composition
structure by Lemma 2.5.

Proof. We use the previous corollary to provide a structure ofDγ (0)-
algebra on po(D)γ (1), structure which coincides with the one of

po(D)γ (0) on φ. By initiality we get a map po(D)γ (0) → po(D)γ (1)
which is the identity on φ, and is the desired transport function.

(For a more detailed explanation see the syntactic presentation in

Section 3.3.5.) □

2.4 Existence of initial algebras
We now explain the proof of Proposition 2.6 asserting the existence

of a suitable initial algebra. We cannot prove this in an abstract

way, but we need to use the fact that we are working with presheaf

models over a small base category C, in our case the Lawvere theory

of the theory of De Morgan algebras. We write I , J ,K , . . . for the
objects of C. We only describe the case of S1-algebra here, but all

other cases follow the same pattern.
4
The argument we give can

be seen as a constructive version of the small object argument [25],

and it crucially uses the fact that both F(I ) and I(I ) have decidable
equality. Classically we could use Garner’s small object argument

[12] as is for instance done in [19].

We first define inductively a family of sets S1
pre

(I ) which is an

“upper approximation” of the circle, together with maps S1
pre

(I ) →

S1
pre

(J ), u 7→ u f for f : J → I . An element of S1
pre

(I ) is of the form:

• base, or
• loop r with r , 0, 1 in I(I ), or
• hcomp [φ 7→ u] u0 with φ , 1 in F(I ) and u0 in S

1

pre
(I ) and u

a family of elements uf ,r in S
1

pre
(J ) for f : J → I such that

φ f = 1 and r in I(J ) .

In this way an element of S1
pre

(I ) can be seen as a well-founded

tree. Note that we do not yet require that the sides in hcompmatch

up with the base. In order to express this we first define u f in

S1
pre

(J ) for f : J → I by induction on u:

basef = base

(loop r )f =

{
loop (r f ) if r f , 0 and r f , 1

base otherwise

(hcomp [φ 7→ u] u0)f =

{
uf ,1 if φ f = 1

hcomp [φ f 7→ u f +] (u0 f ) otherwise

where u f + is the family (u f +)д,r = uf д,r for д : K → J .
Note that we may not have in general (v f )д = v(f д) for v in

S1
pre

(I ) and f : J → I and д : K → J . We then inductively define

the subsets S1(I ) ⊆ S1
pre

(I ) by taking the elements base, loop r , and
hcomp [φ 7→ u] u0 such that u0 ∈ S1(I ), uf ,r ∈ S1(J ), for f : J → I
satisfyingu0д = uд,0 forд : J → I anduf ,rд = uf д,rд for f : J → I

and r in I(J ) and д : K → J . This defines a cubical set S1, such that

S1(I ) is a subset of S1
pre

(I ) for each I .

As defined S1 has a structure of an S1-algebra. Let us sketch that

S1 is also the initial S1-algebra in this presheaf model. Note that ini-

tiality stated internally is a statement quantifying over all possible

types in a universe, which for simplicity we did not make explicit.

Unfolding this internal quantification amounts to constructing (suit-

ably unique) natural transformations elim : S1 → A where A is a

presheaf over the category of elements of y(I ) equipped with a

homogeneous composition structure and sections b in A and l in
AI connecting b to itself; moreover, these natural transformations

elim should be stable under substitutions y(f ) : y(J ) → y(I ). This
works more generally for A being a presheaf over any cubical set

Γ, not only representables: elim ρ u in X (I , ρ) for ρ in Γ(I ) and u in

S1(I ) is defined by induction on the height of the well-founded tree

u simultaneously with verifying (elim ρ u)f = elim (ρ f ) (u f ) for
f : J → I . Note that the height of u f does not increase. Each case

in the definition is guided by the uniqueness condition.

2.5 Universes
As shown externally in [8, 20] (and internally in [18]) we can define

in the presheaf model a cumulative hierarchy of (univalent and

fibrant) universes Un which classify families of types of a given

size with a composition structure. Since the way we build initial

4
The interested reader may consult the Appendix of https://arxiv.org/abs/1802.01170
for the proofs for the other higher inductive types.

4
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algebras preserves the universe level, our definition, e.g., of the

suspension can be seen as an operation Susp : Un → Un .
Let us expand this point. Let Un be a cumulative sequence of

Grothendieck universes (or constructive analog of them [1]) in the

underlying set theory. If Γ is a presheaf on C and A a Un-valued

presheaf on the category of elements of Γ with a composition struc-

ture cA, the suspension operation builds a Un-valued presheaf

SuspA with composition structure Susp cA such that if σ : ∆ → Γ
we have (SuspA)σ = Susp (Aσ ) and (Susp cA)σ = Susp (cAσ ).
An element of Un (I ) is then a pair A, cA where A is a Un-valued

presheaf on the category of elements of y(I ) and cA a composition

structure on A, and Susp can then be seen as a natural transforma-

tionUn → Un .
Thus, we have presented a semantics of a large class of higher

inductive types with univalent universes. (As shown in [26], the

univalence axiom is essential for any non trivial use of the higher-

dimensional structure of higher inductive types.)

3 Higher inductive types in cubical type theory
In this section we discuss the extensions to cubical type theory by

higher inductive types. We begin by recalling the basic notions of

cubical type theory [8].

3.1 Background: cubical type theory
Cubical type theory extends a dependent type theory with a uni-

verse U closed under Π- and Σ-types with Path-types, composition

operations and Glue-types.
The Path-types internalize the idea from homotopy type theory

that equalities correspond to paths. We write PathAab for the

type of paths in A with endpoints a and b. These types behave like
function types and have both abstraction (written ⟨i⟩ t for t with i
abstracted) and application (written using juxtaposition). The path

abstraction binds “dimension variables” ranging over an abstract

interval I specified by the grammar:

r , s ::= 0 | 1 | i | 1 − r | r ∧ s | r ∨ s

The set I is a De Morgan algebra with the 1 − r operation as

DeMorgan involution. A type in a context with dimension variables

i1, . . . , in : I should be thought of as an n-dimensional cube and the

substitutions (i/0) and (i/1) give the faces of this cube. A substitu-

tion (i/j) renames the dimension variable i in A into j and as there

are no injectivity constraints on these renaming substitutions one

can perform substitutions which give a “diagonal” of a cube (i.e., if

A is a square depending on i, j : I, then A(i/j) is a diagonal). The
∧ and ∨ operations are called connections and provide convenient

ways of building higher dimensional cubes from lower dimensional

ones. For instance, if A is a line depending on i , then A(i/i ∧ j) is
the interior of the square:

A(i/0)(j/1) A(i/1)(j/1)

A(i/0)(j/0) A(i/1)(j/0)

A(i/i ∧ j)

A(i/i)

A(i/0) A(i/j)

A(i/0)

j

i

The face lattice F is a distributive lattice generated by formal

symbols (i = 0) and (i = 1) with the relation (i = 0) ∧ (i = 1) = 0F.

The elements of the face lattice can be described by the grammar:

φ,ψ ::= 0F | 1F | (i = 0) | (i = 1) | φ ∧ψ | φ ∨ψ

There is a canonical lattice map I→ F sending i to (i = 1) and 1− i
to (i = 0). We write (r = 1) for the image of r : I in F and we write

(r = 0) for ((1 − r ) = 1).

The judgment Γ ⊢ φ : F says that φ is a face formula involving

only the dimension variables declared in Γ. Given a formula φ
we can restrict a context Γ and obtain a new context written Γ,φ
(assuming that φ only depends on the dimension variables in Γ).
We call terms and types in such a restricted context partial. These
restricted contexts are used for specifying the boundary of higher

dimensional cubes, for example, if A is a line depending on i , the
partial type i : I, (i = 0) ∨ (i = 1) ⊢ A is the two endpoints of

A. If Γ,φ ⊢ v : A, we write Γ ⊢ u : A[φ 7→ v] to denote the two

judgments:

Γ ⊢ u : A Γ,φ ⊢ u = v : A

Using this we can express the typing rule for the composition

operations:

Γ, i : I ⊢ A
Γ ⊢ φ : F Γ,φ, i : I ⊢ u : A Γ ⊢ u0 : A(i/0)[φ 7→ u(i/0)]

Γ ⊢ compi A [φ 7→ u] u0 : A(i/1)[φ 7→ u(i/1)]

This operation takes a line typeA, a formula φ, a partial line term u
and a term u0 of type A(i/0) (note that i may occur freely in A and

u). Furthermore we require that Γ,φ ⊢ u0 = u(i/0) : A(i/0). The
result is a term in A(i/1) such that compi A [φ 7→ u] u0 = u(i/1)
on Γ,φ. The computation rules for the composition operations are

given as judgmental equalities defined by cases on the type A.
The intuition is that u specifies the sides of an open box while

u0 specifies the bottom of the box and the fact that the sides have

to be connected to the bottom is expressed by the equation relating

u0 and u(i/0). The result of the composition operation is then the

lid of this open box. For example, given paths p, q, and r as in:

c d

a b

q i r i

p j

i

j

the composition compi A [(j = 0) 7→ q i, (j = 1) 7→ r i] (p j) is the
dashed line at the top of the square.

5
Here p j is a line in A(i/0)

while q i and r i are lines in A(j/0) and A(j/1), respectively. The
resulting composition is then a line in A(i/1).

The composition operations allows us to define transport from

a line type:

Γ, i : I ⊢ A Γ ⊢ u0 : A(i/0)

Γ ⊢ transporti Au0 = compi A [] u0 : A(i/1)

Combined with “contractibility of singletons” (which is directly

provable using a connection) we get the induction principle for

Path-types, which means that they behave like Martin-Löf’s iden-

tity types (modulo the computation rule for the induction principle

which only holds up to a Path).
TheGlue-types allow us to prove both the univalence axiom and

that the universe has a composition operation, however as they do

not play an important role in this paper we omit them from this

introduction to cubical type theory.

5
Note that we are using a notation for the "system" [(i = 0) 7→ q j, (i = 1) 7→ r j].
Formally this is given by the formula (i = 0) ∨ (i = 1) and a partial element with

endpoints q j and r j .

5
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3.2 A common pattern for higher inductive types
All of the examples of higher inductive types that we consider in

this paper follow a common pattern. In this section we sketch this

pattern which can be seen as a first step towards formulating a

syntactic schema for higher inductive types in cubical type theory,

however the precise formulation of this schema and its semantic

counterpart is left as future work.

Each higher inductive type D(®z : ®P) is specified by a telescope
6

of parameters ®z : ®P (over an ambient context Γ) and a list of con-
structors ®c. Each c in ®c is specified by the data:

c : (®x : ®A(®z)) [®i]D(®z)[φ(®i) 7→ e(®z, ®x , ®i)]

Here the telescope ®x : ®A specifies the types of the arguments to

c, and in the case of recursive higher inductive types, as in, e.g.,

propositional truncation, D might itself appear in ®A. The length of

the list of names ®i specifies the dimension of the cube c introduces:
we say that c is a point, path, or square constructor according to

whether the length of ®i is 0, 1, or 2, respectively. The data φ 7→ e
specifies the endpoints of the constructor c, with φ an element of

the face lattice F whose free variables are among ®i , and e is a partial
element

®z : ®P , ®x : ®A(®z), ®i : I,φ(®i) ⊢ e(®z, ®x , ®i) : D(®z)

mentioning only previous constructors in the list ®c and possibly

hcomp’s (see below).
For each instance ®u : ®P of the telescope ®z : ®P we say that D(®u)

is a type and we will have an introduction rule for a constructor c
specified as above

®v : ®A(®u) ®r : I

c ®v ®r : D(®u)

and a judgmental equality c ®v ®r = e(®u, ®v, ®r ) : D(®u) in case we addi-

tionally have φ(®r ) = 1 : F (all in an ambient context). Note that this

judgmental equality for c requires us to make sure that whenever

we define a function f : Π(x : D(®u)) P(x) that its semantics preserve

this equality, so that

φ(®r ) ⊢ f(c ®v ®r ) = f(e(®u, ®v, ®r )) : P(c ®v ®r ).

In particular, this requirement has to be taken care of in the typing

rules for the eliminator for D(®u). The general formulation of this

is left as future work as it would require us to extend cubical type

theory with something similar to the "extension types" of [21].

Recall from Section 2 that we decomposed the composition struc-

ture for higher inductive types into a homogeneous composition

structure and a transport structure. The homogeneous composition

structure was introduced as constructors and the same is reflected

in the syntax by adding a rule

Γ ⊢ ®u : ®P Γ ⊢ φ : F
Γ, i : I,φ ⊢ v : D(®u) Γ ⊢ v0 : D(®u)[φ 7→ v(i/0)]

Γ ⊢ hcompiD( ®u) [φ 7→ v]v0 : D(®u)[φ 7→ v(i/1)]

where the key point is that i may be free in v , but not in D(®u), as
opposed to the composition operations where i may be free in both

v and D(®u). In the examples we will not repeat these homogeneous

6
A telescope x1 : A1, . . . , xn : An (written as ®x : ®A) over a context Γ is a (possibly

empty) list of object variable declarations such that Γ, ®x : ®A is a well-formed context,

so ®x : ®A neither contains context restrictions ∆, φ nor dimension variables i : I.

composition constructors for every higher inductive type we con-

sider and they are always assumed to be included as part of the

definition of the higher inductive type under consideration.

We could do the same for traditional inductive types like the

natural numbers and have a constructor hcompiN instead of ex-

plaining composition by recursion. We can prove that this “weaker”

form of natural numbers type is equivalent, and hence equal (by

univalence) to the regular one.

To reflect the transport structure in the syntax we specify a trans
operation for higher inductive types A := D(®u) given Γ, i : I ⊢ ®u : ®P
by the rule:

Γ ⊢ φ : F Γ, i : I,φ ⊢ A = A(i/0) Γ ⊢ u0 : A(i/0)

Γ ⊢ transi Aφu0 : A(i/1)[φ 7→ u0]

Note that since Γ, i : I,φ ⊢ A = A(i/0) also Γ,φ ⊢ A(i/0) = A(i/1)
(and hence this equation also holds in context Γ, i : I,φ).

Similar to how the transport structure is explained in the seman-

tics by recursion on the argument we will add a judgmental equality

for each of the possible shapes of u0: one for each constructor c
and one for the hcomp constructor:

transiAφ (hcompjA(i/0) [ψ 7→ u]u0) =

hcompjA(i/1) [ψ 7→ transiAφu] (transiAφu0)

(Note that we can assume that i , j as we can always rename one

of them as they are both bound.) As the hcomp case is the same for

all examples we omit it from the definition of trans for the higher
inductive types considered in Section 3.3.

We can define a derived “squeeze” operation analogous to sqA
in the proof of Lemma 2.11:

Γ ⊢ φ : F Γ, i : I,φ ⊢ A = A(i/0) Γ, i : I ⊢ a : A

Γ, i : I ⊢ squeezei Aφ a := transj A(i/i ∨ j) (φ ∨ (i = 1))a : A(i/1)

This operation satisfies

(squeezei Aφ a)(i/0) = transj A(i/j)φ a(i/0)

(squeezei Aφ a)(i/1) = a(i/1)

and the induced path is constantly a on φ.
Assuming that we have defined trans for a higher inductive type

Γ, i : I ⊢ A we can define the composition operation:

Γ ⊢ φ : F Γ, i : I,φ ⊢ u : A Γ ⊢ u0 : A(i/0)[φ 7→ u(i/0)]

Γ ⊢ compi A [φ 7→ u]u0 :=

hcompiA(i/1) [φ 7→ squeezei A 0F u] (trans
i A 0F u0) : A(i/1)

This satisfies the required judgmental computation rule for comp
because of the computation rules for hcomp and squeeze. This
means that in order to define the composition operation for a higher

inductive type we only need to define the trans operation when

applied to constructors.

Note, that we can always define a trans operation for any type

Γ, i : I ⊢ A that already has a composition operation by:

Γ ⊢ φ : F Γ, i : I,φ ⊢ A = A(i/0) Γ ⊢ u0 : A(i/0)

Γ ⊢ ctransi Aφu0 := compi A [φ 7→ u0]u0 : A(i/1)[φ 7→ u0]

6
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In line with Lemma 2.11 a corresponding “filling” operation

which connects the input of trans to its output can also be derived:

Γ ⊢ φ : F Γ, i : I,φ ⊢ A = A(i/0) Γ ⊢ u0 : A(i/0)

Γ, i : I ⊢ transFilli Aφu0 := transj A(i/i ∧ j) (φ ∨ (i = 0))u0 : A

Note that Γ, i : I,φ ⊢ A = A(i/0) entails

Γ, i : I, j : I,φ ∨ (i = 0) ⊢ A(i/i ∧ j) = A(i/i ∧ j)(j/0).

This operation satisfies

(transFilli Aφu0)(i/0) = u0

(transFilli Aφu0)(i/1) = transj A(i/j)φu0

and the induced path is constantly u0 on φ. We write ctransFill for
the corresponding operation defined using ctrans.

3.3 Examples of higher inductive types
In this section we describe how to extend cubical type theory with

the circle and spheres, torus, suspensions, propositional truncation,

and pushouts. As with all the other type formers we have to explain

their formation, introduction, elimination, and computation rules,

as well as how composition computes. All of these examples follow

the common pattern presented in the previous section.

3.3.1 The circle and spheres
The extension of cubical type theory with the circle and spheres

was sketched in [8, Section 9.2] and we elaborate on this here.

Formation In order to extend the theory with the circle we first

add it as a type by:

⊢ S1 S1 : U

Introduction The circle is generated by a point and a path con-

structor:

base : S1
r : I

loop r : S1

with the judgmental equalities loop 0 = loop 1 = base so that loop
connects the point to itself.

Elimination Given a dependent type x : S1 ⊢ P(x), a term b :

P(base) and a path i : I ⊢ l : P(loop i)[(i = 0) ∨ (i = 1) 7→ b] we
can define f : Π(x : S1) P(x) by cases:

f base = b f (loop r ) = l r

and for the hcomp constructor:

f (hcompi
S1

[φ 7→ u]u0) = compi P(v) [φ 7→ f u] (f u0)

where w.l.o.g. i is fresh and:

v := hfilli S1 [φ 7→ u]u0

= hcompj
S1
[φ 7→ u(i/i ∧ j), (i = 0) 7→ u0]u0

As the equation for the eliminator applied to an hcomp is anal-

ogous for all the other higher inductive considered here we will

omit it in the sequel.

Using this we can directly define the eliminator:

x : S1 ⊢ P(x) b : P(base) l : Pathi P(loop i)b b u : S1

S1-elimx .P b l u : P(u)

where Pathi denotes a dependent path type (see [8, Section 9.2]).

The judgmental computation rules then follow from the definition

above. Note that as we have dependent Path-types (which behave

like heterogeneous equalities) the loop case of f can be expressed

directly by an equation without “apd” and l does not involve any
transport as opposed to [26, Section 6.4].

Composition As S1 has no parameters we let transi S1 φu0 = u0.
This means that the composition compi S1 [φ 7→ u]u0 computes

directly to the constructor hcompi
S1

[φ 7→ u]u0.

The higher dimensional spheres, Sn , can directly be defined by

generalizing the definition S1 so that loop takes r1, . . . , rn : I. It is
trivial to define transi Sn φu0 in analogy with S1. The elimination

is also analogous to that of S1 using an n-dimensional cube in

P(loop i1 . . . in ) for the loop case.

3.3.2 The torus; two equivalent formulations
We define the torus in two ways, the first one (written T) is analo-
gous to S2 and the second (written TF) is the cubical analogue of
the torus as defined in [26, Section 6.6]. The TF torus involves the
fibrancy structure of the 1-dimensional cells in the 2-dimensional

cell. Higher inductive types of this kind are not supported by [19]

and we make crucial use of the fact that we have homogeneous

composition as a constructor in order to represent them.

Formation The formation rules for the torus types are given by:

⊢ T T : U ⊢ TF TF : U

Introduction The point, lines and square constructors for T are
given by:

b : T

r : I

tp r : T

r : I

tq r : T

r : I s : I

surf r s : T

satisfying tp 0 = tp 1 = tq 0 = tq 1 = b. The constructors for TF
are defined by the same rules as for T and we write them with

F as subscript. The square constructor for T satisfies surf 0 s =
surf 1 s = tp s and surf r 0 = surf r 1 = tq r so that we get the

square representing the traditional gluing diagram used in the

topological definition of the torus:

b b

b b

surf i j

tq i

tp j tp j

tq i

j

i

Given s : I we define the composition of tpF and tqF by:

tpF ·s tqF := hcompiTF [(s = 0) 7→ bF, (s = 1) 7→ tqF i] (tpF s)

The composition tqF ·s tpF is defined analogously.

The square constructor for TF satisfies surfF 0 s = tpF ·s tqF,
surfF 1 s = tqF ·s tpF and surfF r 0 = surfF r 1 = bF. This way the

2-cell ⟨i j⟩ surfF i j corresponds to a cubical version of the globe

(which can be turned into a square with reflexivity at bF as sides):

bF bF

tpF ·j tqF

tqF ·j tpF

7
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Elimination We write (i = 0/1) for (i = 0) ∨ (i = 1). Given a

dependent type x : T ⊢ P(x), a term b : P(b), paths i : I ⊢ lp :

P(tp i)[(i = 0/1) 7→ b] and i : I ⊢ lq : P(tq i)[(i = 0/1) 7→ b] and a

square i, j : I ⊢ spq : P(surf i j) [(i = 0/1) 7→ lp j, (j = 0/1) 7→ lq i]
we can define f : Π(x : T) P(x) by cases:

f b = b f (tp r ) = lp r f (tq r ) = lq r f (surf r s) = spq r s

Similarly for a dependent type x : TF ⊢ P(x), a term b : P(bF),
paths i : I ⊢ lp : P(tpF i)[(i = 0/1) 7→ b] and i : I ⊢ lq : P(tqF i)[(i =
0/1) 7→ b] we define:

lp ·j lq := compi P(v) [(j = 0) 7→ b, (j = 1) 7→ lq i] (lp j)

where v := hfilliTF [(j = 0) 7→ bF, (j = 1) 7→ tqF i] (tpF j). We define

lq ·j lp analogously and we can then require a square i, j : I ⊢ spq :

P(surfF i j) [(i = 0) 7→ lp ·j lq , (i = 1) 7→ lq ·j lp , (j = 0/1) 7→ b].
Using this we can define f : Π(x : TF) P(x) by cases like for T.

Working with T is easier than TF and the proof that T ≃ S1 × S1

has been formalized in cubicaltt by Dan Licata.
7
The proof of

this is very direct and a lot shorter than the existing proofs in the

literature [17, 24]. One first defines maps f1 : T → S1 × S1 and
f2 : S

1 × S1 → T by:

f1 b = (base, base) f2 (base, base) = b

f1 (tp r ) = (loop r , base) f2 (loop r , base) = tp r

f1 (tq r ) = (base, loop r ) f2 (base, loop r ) = tq r

f1 (surf r s) = (loop r , loop s) f2 (loop r , loop s) = surf r s

These are obviously inverses and the equivalence can be estab-

lished. The formal proof in cubicaltt is slightly more complicated

as it is not possible to directly do the double recursion in f2, but the
basic idea is the same. This example shows how having a system

where higher inductive types compute also for higher constructors

makes it possible to simplify formal proofs in synthetic homotopy

theory.

Composition As neither T or TF have any parameters the trans-

port operation is trivial just like for Sn , so the composition opera-

tions reduces to the hcomp constructors.

3.3.3 Suspension
The suspension of a type A, written SuspA, is more involved than

the higher inductive types considered so far as it has a parame-

ter and just as in the semantics we have to explain the transport

operation.

Formation In order to extend the theory with suspensions we

add the rules:

⊢ A

⊢ SuspA

A : U

SuspA : U

Note that we allow SuspA to be in the same universe as A, this
is justified by the semantics as explained in Section 2.5.

Introduction The suspensions are generated by:

N : SuspA S : SuspA

a : A r : I

merida r : SuspA

satisfying merida 0 = N and merida 1 = S.

7
See: https://github.com/mortberg/cubicaltt/blob/hcomptrans/examples/torus.ctt

Elimination Given a dependent type x : SuspA ⊢ P(x), terms

n : P(N) and s : P(S) and a family of paths x : A, i : I ⊢ m(x , i) :
P(meridx i)[(i = 0) 7→ n, (i = 1) 7→ s] we can define a function

f : Π(x : SuspA) P(x) by cases:

f N = n f S = s f (merida r ) =m(a, r )

Composition The transi (SuspA)φu0 operation is defined as

transi (SuspA)φ N = N transi (SuspA)φ S = S

transi (SuspA)φ (merida r ) = merid (ctransi Aφ a) r

3.3.4 Propositional truncations
Another class of interesting higher inductive types are the trunca-

tions; these introduce some new complications as they are recursive

in the sense that the higher constructors quantify over elements of

the type. The propositional truncation takes a typeA and “squashes”

it to a 0-type ∥A∥ (in the sense that the equality type of ∥A∥ has no
interesting structure).

Formation In order to extend the theory with propositional trun-

cation we add the rules:

⊢ A

⊢ ∥A∥

A : U

∥A∥ : U

Introduction The propositional truncation of A is generated by:

a : A

inca : ∥A∥

v : ∥A∥ w : ∥A∥ r : I

sqv w r : ∥A∥

satisfying sqv w 0 = v and sqv w 1 = w .

Elimination Given a dependent type x : ∥A∥ ⊢ P(x), a family

of terms x : A ⊢ t(x) : P(inc x) and family of paths v,w : ∥A∥,x :

P(v),y : P(w), i : I ⊢ p(v,w,x ,y, i) : P(sqv w i)[(i = 0) 7→ x , (i =
1) 7→ y] we can define f : Π(x : ∥A∥) P(x) by cases:

f (inca) = t(a) f (sqv w r ) = p(v,w, fv, fw, r )

This is directly structurally recursive and the only difference com-

pared to SuspA is that we have to make a recursive call for each

recursive argument.

Composition We define transi ∥A∥ φu0 by cases on u0:

transi ∥A∥ φ (inc a) = inc (ctransi Aφ a)

transi ∥A∥ φ (sqv w r ) = sq (transi ∥A∥ φv) (transi ∥A∥ φw) r

The explanation of propositional truncation in [8, Section 9.2]

used a similar decomposition, but the introduction of the trans
operation allows a much simpler formulation of composition.

3.3.5 Pushouts
The definition of pushouts in cubical type theory is similar to the

other parametrized higher inductive types, but special care has to be

taken when defining trans as the endpoints of the path constructors
involve the parameters to the pushout.

Formation We extend the theory with:

⊢ A ⊢ B ⊢ C u : C → A v : C → B

⊢ A ⊔C B

A : U B : U C : U u : C → A v : C → B

A ⊔C B : U
8
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Introduction Given u : C → A and v : C → B the pushout is

generated by:

a : A

inla : A ⊔C B

b : B

inrb : A ⊔C B

c : C r : I

push c r : A ⊔C B

satisfying push c 0 = inl(u c) and push c 1 = inr(v c). Note that

⟨i⟩ push c i gives a path between inl(u c) and inr(v c) for all c : C as

desired.

Elimination Given a dependent type x : A ⊔C B ⊢ P(x), families

of terms x : A ⊢ l(x) : P(inl x) and x : B ⊢ r (x) : P(inr x) and
a family of paths x : C, i : I ⊢ p(x , i) : P(pushx i)[(i = 0) 7→

l(u x), (i = 1) 7→ r (v x)] we can define f : Π(x : A ⊔C B) P(x) by
cases:

f (inla) = l(a) f (inrb) = r (b) f (push c r ) = p(c, r )

Composition We write P for A ⊔C B and the judgmental compu-

tation rules for trans are defined by cases:

transi P φ (inla) = inl (ctransi Aφ a)

transi P φ (inrb) = inr (ctransi B φ b)

transi P φ (push c r ) = hcompiP (i/1) S (push (ctrans
i C φ c) r )

where S is the system:

[(r = 0) 7→ squeezei P φ (inl(u (ctransFilli C φ c))) (i/1 − i),

(r = 1) 7→ squeezei P φ (inr(v (ctransFilli C φ c))) (i/1 − i),

(φ = 1) 7→ push c r ]

Note that the recursive call to squeeze is justified as it is applied to

a point constructor which has already been defined.

Furthermore, note that the endpoint correction for push c r is
necessary as, for example, in the case where r is a dimension vari-

able j the path constructor push (ctransi C φ c) j connects

inl(u(i/1) (ctransi C φ c)) to inr(v(i/1) (ctransi C φ c))

in direction j, but we require something that connects

inl(ctransi Aφ (u(i/0) c)) to inr(ctransi B φ (v(i/0) c))

since the definition of trans should be stable under the substitutions
(j/0) and (j/1). To see that the correction is correct at (r = 0) note

that squeezei P φ (inl(u (ctransFilli C φ c))) (i/1 − i) connects

inl(u(i/1) (ctransi C φ c)) to inl(ctransi Aφ (u(i/0) c))

as required.

3.4 A variation on cubical type theory
In the previous section we have seen that the equations to define

transi A for a higher inductive type A applied to a constructor

involves transi A for the recursive arguments to the constructor

(see the equation for sqv w r for propositional truncation in Sec-

tion 3.3.4), and involves the derived operations ctrans for non-

recursive arguments (e.g., in the equation for merida r in Sec-

tion 3.3.3). In general, trans and ctrans which are available for

A do not coincide definitionally, making it impossible to treat the

recursive and non-recursive arguments to a constructor uniformly.

This mismatch suggests a variant of cubical type theory where

the operations trans and hcomp are taken as primitives and comp
is instead a derived operation as we did here for higher inductive

types. We can then explain trans and hcomp by cases on the shape

of the type. In this variation of cubical type theory the algorithm

for trans in a higher inductive type applied to a constructor can be

uniformly described as follows.

Given a higher inductive type D(®z : ®P) specified as in Section 3.2

and a constructor c specified by:

c : (®x : ®A(®z)) [®i]D(®z)[φ(®i) 7→ e(®z, ®x , ®i)] (1)

Further, assume parameters Γ, i : I ⊢ ®u : ®P of the higher inductive

type D(®z : ®P) such that Γ, i : I,ψ ⊢ ®u = ®u(i/0) : ®P for Γ ⊢ ψ : F. We

now explain the judgmental equalities of

w1 := transi D(®u)ψ (c ®v ®r )

for Γ ⊢ ®v : ®A(®u(i/0)) and Γ ⊢ ®r : I. This c ®v ®r restricts to φ(®r ) 7→
e(®u(i/0), ®v, ®r ). We want to define Γ ⊢ w1 : D(®u(i/1))[ψ 7→ c ®v ®r ]
such thatw1 restricts to

φ(®r ) 7→ transi D(®u)ψ e(®u(i/0), ®v, ®r ). (2)

We get a line in ®x : ®A(®u) in the context Γ, i : I

®v transi (®x : ®A(®u))ψ ®v
®θ := transFilli (®x : ®A(®u))ψ ®v

along i , where transFilli (®x : ®A)ψ ®v is the extension of transFill to
telescopes, mapping the empty telescope to itself, and

transFilli (x : A, ®x : ®A(x))ψ (v, ®v) = ṽ, transFilli (®x : ®A(ṽ))ψ ®v

with ṽ = transFilli Aψ v . The extension of trans to telescopes is

the (i/1) face of the corresponding transFill.
We start with Γ ⊢ w ′

1
: D(®u(i/1)) given by

w ′
1
:= c (transi (®x : ®A)ψ ®v) ®r

which restricts to φ(®r ) 7→ e(®u(i/1), transi (®x : ®A)ψ ®v, ®r ) and which

we have to correct to match (2). To make this correction, consider

the line Γ,φ(®r ), i : I ⊢ α(i) : D(®u(i/1)) given by

α(i) := squeezei D(®u)ψ e(®u, ®θ , ®r )

connecting the element in (2) to e(®u(i/1), transi (®x : ®A)ψ ®v, ®r ). Note
that α(i) coincides with e(®u(i/0), ®v, ®r ) (and hence with c ®v ®r ) onψ .

We now add the judgmental equality

w1 = hcompiD( ®u(i/1)) [φ(®r ) 7→ α(1 − i),ψ 7→ c ®v rs]w ′
1
.

Note that in the definition α we recursively call trans for D
on e . To ensure that this call is well-founded it is crucial to have

restrictions on how e may look like.

Also note that this algorithm might not be optimal: For a higher

inductive type without any parameters (e.g., S1) we could have sim-

ply defined trans to be the identity as we did in the previous section.
For a type where the endpoints of constructors are suitably simple,

like suspensions and propositional truncation, but not pushouts,

we could have directly takenw ′
1
above. This has the consequence

that the result might have some unnecessary hcomp’s and would

equal, up to a Path, to a simpler term without these hcomp’s.
Our general pattern of constructors (1) suggests to formulate a

schema. Such a schema would have to ensure that D(®z) only ap-

pears strictly positive in ®A and would have to restrict what possible

endpoints e are allowed. We leave the detailed formulation of the

semantics of such a schema as future work.
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4 Conclusions and related work
In this paper we constructed the semantics of some important

higher inductive types in cubical sets. A crucial ingredient was the

decomposition of the composition structure into a homogeneous

composition structure and a transport structure. Using this decom-

position we define higher inductive type formers such that they

preserve the universe level and are strictly stable under substitution.

We also extended cubical type theory with some higher inductive

types. While [14] only proves canonicity for cubical type theory

extended with the circle and propositional truncation, it should be

straightforward to extend this result to the higher inductive types

presented in this paper using the obvious operational semantics

obtained by orienting the judgmental equalities given here. It also

remains to prove normalization and decidability of type-checking

for cubical type theory and in particular also for our extension with

higher inductive types.

As mentioned in Section 3.4, it is more natural for a general treat-

ment of higher inductive types to formulate a variation of cubical

type theory based homogeneous compositions and transport as

primitive instead of heterogeneous compositions. It seems that our

description of transport for higher inductive types also works for a

more general schema, but its details and semantics still have to be

worked out.

Using the experimental implementation of the system presented

in this paper we have formalized the “Brunerie number”
8
, i.e.,n such

that π4(S
3) ≃ Z/nZ. The formalization closely follows [6, Appendix

B] and the definition involves multiple higher inductive types (the

spheres, truncations, and join construction) together with many

uses of the univalence axiom. By the classical definition of this

homotopy group we know that the expected value for n is ±2 and

this also is proved to be the case in [6]. But as we have a constructive

justification for all of the notions involved in the definition we can

in principle directly obtain this numeral by computation. However,

this computation so far has been unfeasible.

Further future work is to relate our semantics to other models

of homotopy type theory. In particular, clarify the connection of

the model structure on cubical sets [23] and the usual model struc-

ture on simplicial sets. It is also of interest to investigate to what

extent the techniques developed in this paper can be adapted to the

simplicial set model.
9

Relatedwork The papers [2–4, 7] present cubical type theories in-

spired by an alternative cubical set category with different fibrancy

structure, but with the same decomposition of the composition op-

eration in a homogeneous composition and a transport operation.

This decomposition was introduced in an early version of [8] pre-

cisely to solve the problem of the interpretation of higher inductive

types with parameters. The suspensions are covered in [2], and [7]

defines a schema for higher inductive types formulated in this set-

ting. The papers [3, 4, 7] describe computational type theories in

the style of Nuprl with a semantics where types are interpreted as

partial equivalence relations which gives canonicity for booleans.

The schema presented in [7] covers all of the examples of higher

inductive types considered in this paper.

8
The complete self-contained formalization can be found at: https://github.com/
mortberg/cubicaltt/blob/hcomptrans/examples/brunerie.ctt
9
See the following discussion for more details: https://groups.google.com/d/msg/
homotopytypetheory/bNHRnGiF5R4/3RYz1YFmBQAJ

The paper [19] presents a semantics of higher inductive types in

a general framework of “sufficiently nice” Quillen model categories.

However as it is now, it models a type theorywhich does not contain

any universes (see [19, pp. 5–6] for a discussion of this point).

A schema with point, path, and square constructors expressed

in the style of [26] is presented in [10]. This paper also contains a

semantics for these higher inductive types in the groupoid model.
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