
Work Analysis with Resource-Aware Session Types
Ankush Das

Carnegie Mellon University
Jan Hoffmann

Carnegie Mellon University
Frank Pfenning

Carnegie Mellon University

Abstract
While there exist several successful techniques for supporting pro-
grammers in deriving static resource bounds for sequential code,
analyzing the resource usage of message-passing concurrent pro-
cesses poses additional challenges. To meet these challenges, this ar-
ticle presents an analysis for statically deriving worst-case bounds
on the total work performed by message-passing processes. To
decompose interacting processes into components that can be an-
alyzed in isolation, the analysis is based on novel resource-aware
session types, which describe protocols and resource contracts
for inter-process communication. A key innovation is that both
messages and processes carry potential to share and amortize cost
while communicating. To symbolically express resource usage in a
setting without static data structures and intrinsic sizes, resource
contracts describe bounds that are functions of interactions be-
tween processes. Resource-aware session types combine standard
binary session types and type-based amortized resource analysis
in a linear type system. This type system is formulated for a core
session-type calculus of the language SILL and proved sound with
respect to a multiset-based operational cost semantics that tracks
the total number of messages that are exchanged in a system. The
effectiveness of the analysis is demonstrated by analyzing standard
examples from amortized analysis and the literature on session
types and by a comparative performance analysis of different con-
current programs implementing the same interface.

CCSConcepts •Theory of computation→ Linear logic;Pro-
gram analysis; Operational semantics;

Keywords Session types, Resource analysis, Type systems
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1 Introduction
In the past years, there has been increasing interest in supporting
developers to statically reason about the resource usage of their
code. This research has numerous applications such as prevention
of side channels leaking secret information [4, 25, 28], identification
of complexity bugs [29], support of scheduling decisions [1], and
help in profiling [18]. While there has been great progress in ana-
lyzing sequential code, relatively little research has been done on
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analyzing the resource consumption of concurrent and distributed
programs [2, 3, 15]. The lack of analysis tools is in sharp contrast
to the need for programming language support in this area: con-
current and distributed programs are increasingly pervasive and
particularly difficult to analyze. For shared memory concurrency,
we need to precisely predict scheduling to account for synchro-
nization cost. Similarly, the interactive nature of message-passing
systems makes it difficult to decompose the system into compo-
nents that can be analyzed in isolation. After all, the resource usage
of each component crucially depends on its interactions.

In this paper, we study the foundations of worst-case resource
analysis for message-passing processes. A key idea of our approach
is to rely on resource-aware session types to describe the structure,
protocols and resource bounds for inter-process communication
and to perform a compositional and precise amortized analysis.
Session types [24] prescribe bidirectional communication protocols
for message-passing processes. Binary session types govern the
interaction of two processes along a single channel, prescribing
complementary send and receive actions for the processes at the
two endpoints of a channel. Recently, message-passing concur-
rency has been put onto a firm logical foundation by exhibiting a
Curry-Howard isomorphism between intuitionistic linear logic and
session-typed communication [8]. We use such protocols as the
basis for resource usage contracts that not only specify the type,
but also the potential of a message that is sent along a channel.
The potential (in the sense of classical amortized analysis [33])
may be spent by sending other messages as part of the network of
interacting processes, or maintained locally for future interactions.
Resource analysis is static, using the type system, and the runtime
behavior of programs is not affected.

We focus on bounds on the total work performed by a system,
counting the number of messages that are exchanged. While this
alone does not yet account for the concurrent nature of message-
passing programs, it constitutes a necessary first step. The bounds
we derive are also useful in their own right. For example, the infor-
mation can be used in scheduling decisions, to derive the number
of messages that are sent along a specific channel, or to statically
decide whether we should spawn a new thread of control or execute
sequentially when possible. Additionally, bounds on the work of a
process also serve as input to a Brent-style theorem [7] that relates
the complexity of the execution of a program on a k-processor ma-
chine to the program’s work (focus of this paper) and span (resource
usage with an unlimited number of processors).

Our analysis is based on a linear type system that combines stan-
dard binary session types as available in the SILL language [30, 35],
and type-based amortized resource analysis [19, 21]. Both tech-
niques are based on linear or affine type systems, making their
combination natural. Each session type constructor is decorated
with a natural number that declares a potential that must be trans-
ferred (conceptually!) along with the corresponding message. Since
the interface to a process is characterized entirely by the resource-
aware session types of the channels it interacts with, this design
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provides a compositional resource specification. For closed pro-
grams (which evolve into a closed network of interacting processes)
the bound becomes a single constant. In addition to the natural
compositionality of type systems we also preserve the necessary
support for deriving resource annotations via LP solving, a key fea-
ture of type-based amortized analysis. Moreover, resource-aware
session types integrate well with type-based amortized analysis for
functional programs because they are based on compatible logi-
cal foundations (intuitionistic linear logic and intuitionistic logic,
respectively), as exemplified in the design of SILL [30, 35] that
combines them monadically.

A conceptual challenge is to express symbolic bounds in a setting
without static data structures and intrinsic sizes. Our innovation
is that resource-aware session types describe bounds as functions
of interactions (messages sent) on a channel. A major technical
challenge is to account for the global number of messages sent
with local derivation rules: operationally, local message counts are
forwarded to a parent process when a sub-process terminates. As a
result, local message counts are incremented by sub-processes in
a non-local fashion. Our solution is that messages and processes
carry potential to amortize the cost of a terminating sub-process
proactively as a side-effect of the communication.

Our main contributions are as follows. We present the first ses-
sion type system for deriving parametric bounds on the resource
usage of message-passing processes. We prove the nontrivial sound-
ness of the type system with respect to an operational cost se-
mantics that tracks the total number of messages exchanged in a
network of communicating processes. We demonstrate the effec-
tiveness of the technique by deriving tight bounds for standard
examples of amortized analysis from the literature on session types.
We also show how resource-aware session types can be used to
specify and compare the performance characteristics of different
implementations of the same protocol. The analysis is currently
manual, with automation left for future work.

2 Overview
Wemotivate and informally introduce resource-aware session types
and show how they can be used to analyze the resource usage of
message-passing processes. We start with building some intuition.

Session Types. Session types were introduced by Honda [24] to de-
scribe the structure of communication just like standard data types
describe the structure of data. We follow the approach and syntax
of SILL [30, 35] which is based on a Curry-Howard isomorphism
between intuitionistic linear logic and session types, extended by
recursively defined types and processes. In the intuitionistic ap-
proach, every channel has a provider and a client. We view the
session type as describing the communication from the provider’s
point of view, with the client having to perform matching actions.

As a first simple example, we consider natural numbers in binary
form. A process providing a natural number sends a stream of bits
starting with the least significant bit. These bits are represented
by messages zero and one, eventually terminated by $. Because the
provider chooses which messages to send, we call this an internal
choice, written as

bits = ⊕{zero : bits, one : bits, $ : 1}
Here, ⊕{l1 : A1, . . . , ln : An } is an n-ary, labeled generalization of
A ⊕ B of linear logic, and 1 is the multiplicative unit of linear logic.
Operationally, 1 means the provider has to send an end message,

closing the channel and terminating the communication session.
For example, the number 6 = (110)2 would be represented by the
sequence of messages zero, one, one, $, end. A client of a channel
c : bits has to branch on whether it receives zero, one, or $. Note
that as we proceed in a session, the type of a channel must change
according to the protocol. For example, if a client receives the
message $ along c : bits then c must afterwards have type 1. The
next message along c must be end and its client has to wait for that
after receiving $ so the session is properly closed.

As a second example, we describe the interface to a counter. As
a client, we can repeatedly send inc messages to a counter, until
we want to read its value and send val. At that point the counter
will send a stream of bits representing its value as prescribed by
the type bits. From the provider’s point of view, a counter presents
an external choice, since the client chooses between inc or val.

ctr = N{inc : ctr, val : bits}
The type former N{l1 : A1, . . . , ln : An } is an n-ary labeled gener-
alization of AN B of linear logic. Operationally, the provider must
branch based on which of the labels li it receives. After receiving lk
along a channel c : N{l1 : A1, . . . , ln : An }, communication along c
proceeds at type Ak . Such type formers can be arbitrarily nested to
allow more complex bidirectional protocols.

Modeling a binary counter. We describe an implementation of a
binary counter and use our resource-aware session types to analyze
its resource usage. Like in the rest of the paper, the resource we are
interested in is the total number of messages exchanged along all
channels in the system.

A well-known example of amortized analysis counts the number
of bits that must be flipped to increment a counter. It turns out
the amortized cost per increment is 2, so that n increments require
at most 2n bits to be flipped. We observe this by introducing a
potential of 1 for every bit that is one and using this potential to
pay for the expensive case in which an increment triggers multiple
flips. When the lowest bit is zero, we flip it to one (costing 1) and
also store a remaining potential of 1 with this bit. When the lowest
bit is one we use the stored potential to flip the bit back to zero
(with no stored potential) and the remaining potential of 2 is passed
along for incrementing the higher bits.

We model a binary counter as a chain of processes where each
process represents a single bit (process b0 or b1) with a final process
e at the end. Each of the processes in the chain provides a channel
of the ctr type, and each (except the last) also uses a channel of this
type representing the higher bits. For example, in the first chain
in Figure 1, the process b0 offers along channel s3 (indicated by •
between b0 and s3) and uses channel s2. In our notation, we would
write this as

· ⊢ e :: (s1 : ctr) s1 : ctr ⊢ b1 :: (s2 : ctr)
s2 : ctr ⊢ b0 :: (s3 : ctr) s3 : ctr ⊢ b1 :: (s4 : ctr)

We see that, logically, parallel composition with a private shared
channel corresponds to an application of the cut rule. The definitions
of e , b0 and b1 can be found in Figure 2. The only channel visible
to an outside client (not shown) is s4. Figure 1 shows the messages
triggered if an increment message is received along s4.

Expressing resource bounds. Our basic approach is thatmessages
carry potential and processes store potential. This means the sender
has to pay not just 1 unit for sending the message, but whatever
additional units to amortize future costs. In the amortized analysis
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e b1 b0 b1
inc

s1 s2 s3 s4

e b1 b0 b0

e b1 b1 b0

inc

s1 s2 s3 s4

s1 s2 s3 s4

Figure 1. Binary counter system representing 5 = (101)2 with
messages triggered when inc message is received on s4.

of the counter, each bit flip corresponds exactly to an inc message,
because that is what triggers a bit to be flipped. Our cost model
focuses on messages as prescribed by the session type and does
not count other operations, such as spawning a new process or
terminating a process. This choice is not essential to our approach,
but convenient here.

To capture the informal analysis we need to express in the type
that we have to send 1 unit of potential with the label inc. We do
this using a superscript indicating the required potential with the
label, postponing the discussion of val.

ctr = N{inc1 : ctr, val? : bits}
When we assign types to the processes, we now use these more
expressive types.We also indicate the potential stored in a particular
process as a superscript on the turnstile.

t : ctr ⊢
0 b0 :: (s : ctr) (1)

t : ctr ⊢
1 b1 :: (s : ctr) (2)

· ⊢
0 e :: (s : ctr) (3)

With our formal typing rules (Section 5) we can verify these typing
constraints, using the definitions of b0, b1 and e from Figure 2.
Informally, we can reason as follows:

b0: When b0 receives inc it receives 1 unit of potential. It contin-
ues as b1 (which requires no communication) which stores
this 1 unit (as prescribed from the type of b1 in Equation 2).

b1: When b1 receives inc it receives 1 unit of potential which,
when combined with the stored one, makes 2 units. It needs
to send an inc message which consumes these 2 units (1
to send the message, and 1 to send along a potential of 1
as prescribed in the type). It has no remaining potential,
which is sufficient because it transitions to b0 which stores
no potential (inferred from the type of b0 in Equation 1).

e: When e receives inc it receives 1 unit of potential. It spawns
a new process e and continues as b1. Spawning a process is
free, and e requires no potential, so it can store the potential
it received with b1 as required.

How do we handle the type annotation val? : bits of the label val?
Recall that bits = ⊕{zero : bits, one : bits, $ : 1}. In our implemen-
tation, upon receiving a val message, a b0 or b1 process will first
respond with zero or one respectively. It then sends val along the
channel it uses (representing the higher bits of the number) and
terminates by forwarding further communication to the higher bits
in the chain. The e process will just send $ and end, indicating the
empty stream of bits.

We knowwewill have enough potential to carry out the required
send operations if each process (b0, b1 and e) carries an additional
2 units of potential. We could impart these with the inc and val
messages by sending 2 more units with inc and 2 units with val.

That is, the following type is correct:

bits = ⊕{zero0 : bits, one0 : bits, $0 : 10}
ctr = N{inc3 : ctr, val2 : bits}

Here, the superscript 0 in the type of bits indicates that the corre-
sponding messages carry no potential.

However, this type is a gross over-approximation! The processes
of a counter of value n, would carry 2n additional potential while
only 2

⌈
log(n + 1)

⌉
+ 2 are needed. To obtain this more precise

bound, we need families of session types.

A more precise analysis. This requires that in the type we can
refer either to the number of bits in the representation of a number
or its value. This form of internal measure is needed only for type-
checking purposes, not at runtime. It is also not intrinsically tied
to a property of a representation, the way the length of a list in a
functional language is tied to its memory requirements. We indicate
these measures using square brackets, so that ctr[n] is a family
of types, and ctr[0], for example, is a counter with value 0. Such
type refinements have been considered in the literature on session
types (see [17]) with respect to type-checking and inference. Here,
we treat it as a meta-level notation to denote families of types.
Following the reasoning above, we obtain the following type:

bits = ⊕{zero0 : bits, one0 : bits, $0 : 10}
ctr[n] = N{inc1 : ctr[n + 1], val2⌈log(n+1)⌉+2 : bits}

To check the types of our implementation, we need to revisit and
refine the typing of the b0, b1 and e processes.

t : ctr[n] ⊢
0 b0 :: (s : ctr[2n])

t : ctr[n] ⊢
1 b1 :: (s : ctr[2n + 1])

· ⊢
0 e :: (s : ctr[0])

Our type system verifies these types against the implementation
of b0, b1, and e (see Figure 2). The typing rules reduce the well-
typedness of these processes to arithmetic inequalities which we
can solve by hand, for example, using that log(2n) = log(n)+1. The
intrinsic measure n and the precise potential annotations are not
automatically derived, but come from our insight about the nature
of the algorithms and programs.

Before introducing the formalism in which the programs are
expressed, together with the typing rules that let us perform rigor-
ous amortized analysis of the code (as expressed in the soundness
theorem in Section 6), we again emphasize the compositional nature
of the way resource bounds are expressed in the types themselves
and in the typing judgments for process definitions. Of course, they
reveal some intensional property of the implementations, namely a
bound on its cost, so different implementations of the same plain
session type may have different resource annotations.

The typing derivation provides a proof certificate on the resource
bound for a process. For closed processes typed as

· ⊢
p Q :: (c : 10)

the number p provides a worst case bound on the number of mes-
sages sent during computation of Q , which always ends with the
process sending end along c , indicating termination.

3 Resource-Aware SILL
We briefly introduce the linear, process-only fragment of SILL [30,
35], which integrates functional and concurrent computation. A
program in SILL is a collection of processes exchanging messages
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Type Continuation Process Term Continuation Description
(current) (current)
c : ⊕{lqii : Si } c : Sk c .lk ; P P provider sends label lk along c with potential qk

case c (li ⇒ Qi )i ∈I Qk client receives label lk along c with potential qk
c : N{lqii : Si } c : Sk case c (li ⇒ Pi )i ∈I Pk provider receives label lk along c with potential qk

c .lk ; Q Q client sends label lk along c with potential qk
c : S

q
⊗ T c : T send c w ; P P provider sends channelw : S along c with potential q

y ← recv c ; Qy [w/y]Qy client receives channelw : S along c with potential q

c : S
q
⊸ T c : T y ← recv c ; Py [w/y]Py provider receives channelw : S along c with potential q

send c w ; Q Q client sends channelw : S along c with potential q
c : 1q − close c − provider sends end along c with potential q

wait c ; Q Q client receives end along c with potential q
Table 1. Linear resource-aware session types

through channels. A new process is spawned by invoking a process
definition, which also creates a fresh channel. The newly spawned
process acts as a provider of the fresh channel while the parent pro-
cess acts as its client. The exacting nature of linear typing provides
strong guarantees, including session fidelity (a form of preservation)
and absence of deadlocks (a form of progress).

We present an overview of the session types in SILL along with
a brief description of their communication protocol. They follow
the type grammar below.

S,T ::= V | ⊕{li : S } | N{li : S } | S ⊸ T | S ⊗ T | 1
V denotes a type variable. Types may be defined mutually recur-
sively in a global signature, where type definitions are constrained
to be contractive [14]. This allows us to treat them equi-recursively,
meaning we can silently replace a type variable by its definition for
type-checking purposes.

Internal choice S ⊕ T and external choice S NT have been gen-
eralized to n-ary labeled sums ⊕{li : Si }i ∈I and N{li : Si }i ∈I (for
some index set I ) respectively. As a provider of internal choice
⊕{li : Si }i ∈I , a process can send one of the labels li to its client.
As a dual, a provider of external choice N{li : Si }i ∈I receives one
of the labels li sent by its client. We require external and internal
choice to comprise at least one label, otherwise there would ex-
ist a linear channel without observable communication along it,
which is computationally uninteresting and would complicate our
proofs. The connectives ⊗ and ⊸ are used to send channels via
other channels. A provider of S ⊗ T sends a channel of type S to
its client and then behaves as a provider of T . Dually, a provider
of S ⊸ T receives a channel of type S from its client. The types of
the provider and client change consistently, and the process terms
of a provider and client come in matching pairs.

Formally, the syntax of process expressions of Resource-Aware
SILL is same as SILL.

P ::= x ← X ← y ; P | x ← y | close x | wait x ; P
| x .lk ; P | case x (li ⇒ Pi )i ∈I
| send x w ; P | y ← recv x ; P

The term x ← X ← y ; P invokes a process definition X to spawn
a new process Q , which uses the channels in y as a client and
provides service along a fresh channel substituted for x in P . A
forwarding process x ← y (which provides channel x) identifies
channels x and y and terminates. The effect is that clients of x
will afterwards communicate along y. The rest of the program
constructs concern communication between two processes and
are guided by their corresponding session type. Table 1 provides

an overview of session types, associated process terms, and their
operational description (ignore the annotations in red). For each
connective in Table 1, the first row presents the perspective of the
provider, while the second presents that of the client. The first two
columns present the type of the channel before (current) and after
(continuation) the interaction. Similarly, the next two columns
present the process terms before and after the interaction. The last
column provides the operational description.

We conclude by illustrating the syntax, types and semantics of
SILL using a simple example. Recall the counter protocol (ignoring
the resource annotations in red):

bits = ⊕{zero0 : bits, one0 : bits, $0 : 10}
ctr[n] = N{inc1 : ctr[n + 1], val2⌈log(n+1)⌉+2 : bits}

Figure 2 presents implementations of the b0, b1 and e processes
respectively that were analyzed in Section 2. The comments (start-
ing with %) show the channel types after the interaction on each
line (again ignoring the annotations in red). Since the b0 process
provides an external choice along s , b0 needs to branch based on
the label received (line 4). If it receives the label inc, the type of the
channel s updates to ctr, as indicated on the typing in the comment.
At this point, we spawn the b1 process whose type (line 8) matches
with the type on line 4. If instead b0 receives the val label along
s , it continues at type bits. It sends zero (since the lowest bit is
indeed zero) and requests the value of the higher bits by sending
val along channel t . Now both s and t have type bits (indicated in
the typing on line 7) and b0 can terminate by forwarding further
communication along t to s .

The b1 process operates similarly, taking care to handle the
carry upon increment by sending an inc label along t . The e process
spawns a new e process and continues as b1 upon receiving the
label inc and closes the channel after sending $ when receiving val.

4 Cost Semantics
We present an operational cost semantics for Resource-Aware SILL
tracking the work performed by the system. Our semantics is a
substructural operational semantics [31] based on multiset rewrit-
ing [10] and asynchronous communication [30]. It can be seen as a
combination of an asynchronous version of a recent synchronous
session-type semantics [6] with the cost tracking semantics of Con-
current C0 [32]. The technical advantage of our semantics is that it
avoids the complex operational artifacts of Silva et al. [32] such as
message buffers: processes and messages can be typed with exactly
the same typing rules, changing only the cost metric.
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1: (t : ctr[n]) ⊢0 b0 :: (s : ctr[2n])
2: s ← b0← t =
3: case s
4: (inc⇒ s ← b1← t % (t : ctr[n]) ⊢1 s : ctr[2n + 1]
5: | val⇒s .zero ; % (t : ctr[n]) ⊢2 ⌈log(2n+1)⌉+2−1 s : bits
6: t .val ; % (t : bits) ⊢2 ⌈log(2n+1)⌉+1−2 ⌈log(n+1)⌉−3 s : bits
7: s ← t ) % (t : bits) ⊢0 s : bits

8: (t : ctr[n]) ⊢1 b1 :: (s : ctr[2n + 1])
9: s ← b1← t =
10: case s
11: (inc⇒ t .inc ; % (t : ctr[n + 1]) ⊢0 s : ctr[2n + 2]
12: s ← b0← t

13: | val⇒s .one ; % (t : ctr[n]) ⊢2 ⌈log(2n+2)⌉+2−1 s : bits
14: t .val ; % (t : bits) ⊢2 ⌈log(2n+2)⌉+1−2 ⌈log(n+1)⌉−3 s : bits
15: s ← t ) % (t : bits) ⊢0 s : bits

16: · ⊢0 e :: (s : ctr[0])
17: s ← e =
18: case s
19: (inc⇒ t ← e ; % (t : ctr[0]) ⊢1 (s : ctr[1])
20: s ← b1← t

21: | val⇒s .e ; % · ⊢2 ⌈log(0+1)⌉+2−1 s : 10

22: close s )

Figure 2. Implementations for the b0, b1 and e processes with their
type derivations demonstrating the binary counter.

Our cost semantics is asynchronous, that is, processes can con-
tinue their evaluation without waiting after sending a message. In
order to guarantee session fidelity, the semantics must ensure that
messages are received in the order they are sent. Intuitively, we
can think of channels as FIFO message buffers, although we will
formally define them differently. Synchronous communication can
be implemented in our language in a type-safe, logically motivated
manner exploiting adjoint shift operators (see [30]).

A collection of communicating processes is called a configura-
tion. A configuration is formally modelled as a multiset of propo-
sitions proc(c,w, P ) and msg(c,w,M ). The predicate proc(c,w, P )
describes a process executing expression P and providing channel
c . The predicate msg(c,w,M ) describes the messageM on channel
c . In order to guarantee that messages are received in the order
they are sent, only a single message can be on a given channel c . In
order for computation to remain truly asynchronous, every send
operation (except for close) on a channel c creates not only a fresh
message, but also a fresh continuation channel c ′ for the next mes-
sage. This continuation channel is encoded within the message via
a forwarding operation. Remarkably, this simple device allows us
to assign session types to messages just as if they were processes!
SinceM need only encode a message, it has a restricted grammar.

M ::= c ← c ′ | c .lk ; c ← c ′ | c .lk ; c ′ ← c
| send c e ; c ← c ′ | send c e ; c ′ ← c | close c

The work is tracked by the local counterw in proc(c,w, P ) and
msg(c,w,M ) propositions. For process P , w maintains the total
work performed by P so far. When a process sends a message (i.e.,
creates a newmsg predicate), we increment its counterw by the cost
for sending. When a process terminates we remove the respective
predicate from the configuration, but preserve its work done. A
process can terminate either by sending a close message, or by
forwarding. In either case, we conveniently preserve the process’
work in the msg predicate to pass it on to the client process.

We will only count communication costs, ignoring internal com-
putation. To this end, we introduce 3 costs, M label, Mchannel and
Mclose, for labels, channels, and close messages, respectively. A
concrete semantics can be obtained by setting appropriate values
for each of those metrics. For instance, setting each cost to 1 will
lead to counting the total number of messages exchanged.

The semantics is defined by a set of rules rewriting the configu-
ration that consume the proposition in the premise of the rule and
produce the propositions in the conclusion (rules should be read
top-down!). A step consists of non-deterministic application of a
rule whose premises match a part of the configuration. Consider
for instance the rule NCs that describes a client that sends label lk
along channel c .

proc(d,w, c .lk ; P ) (c ′ fresh)

proc(d,w +M label, [c ′/c]P ) msg(c ′, 0, c .lk ; c ′ ← c )

The above rule can be applied to every proposition of the form
proc(d,w, c .lk ; P ). When applying the rule, we generate a fresh
continuation channel c ′ and replace the premise by proc(d,w +
M label, [c ′/c]P ) and msg(c ′, 0, c .lk ; c ′ ← c ) propositions. The
message predicate contains the process c .lk ; c ′ ← c which will
eventually deliver the message to the provider along c and will
continue communication along c ′ (which is achieved by c ′ ← c).
The work of the sender is incremented byM label to account for the
sent message, while the work of the message is 0.

Conversely, the rule NCr defines how a provider receives a label
lk along c .

msg(c ′,w, c .lk ; c ′ ← c ) proc(c,w ′, case c (li ⇒ Qi )i ∈I )

proc(c,w +w ′, [c ′/c]Qk )

The rule replaces themsg and proc propositions in the configuration
that match the premises, with the single proc proposition in the
conclusion. Since the provider receives the label lk , it continues
as Qk . However, we replace c with c ′ in Qk since the forwarding
c ′ ← c in the message tells us that the next message will arrive on
channel c ′. Any workw encoded in the message is transferred to
the recipient process.

The rest of the rules of cost semantics are given in Figure 3. The
rule spawnc describes the creation of a new channel c along with
spawning a new process X implemented by Pc . This implementa-
tion is looked up in a signature for the semantics Σ which maps
process names to the implementation code. The new process is
spawned with 0 work (as it has not sent any messages so far), while
Qc continues with the same amount of work. In the rule fwds , a
forwarding process creates a forwarding message and terminates.
The work carried by this special message is the same as the work
done by the process, now defunct. A forwarding message form
does not carry any real information (except for the workw!); it just
serves to identify the two channels c and d . In an implementation
this could be as simple as concatenating two message buffers. We
therefore do not count forwarding messages when computing the
work. Another reason forward messages are special is that unlike
all other forms of messages, they are neither prescribed by nor
manifest in a channel’s type. In our formal rules, the forwarding
message can be absorbed either into the client (fwd+r ) or provider
(fwd−r ), in both cases preserving the total amount of work.

The rules of the cost semantics are successively applied to a
configuration until the configuration becomes empty or the config-
uration is stuck and none of the rules can be applied. At any point
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Σ(X) = x ← X ← y = Px,y proc(d,w,x ← X ← e ; Qx ) (c fresh)
proc(c, 0, [c/x , e/y]Px,y ) proc(d,w, [c/x]Qx )

spawnc
msg(d,w,M ) proc(c,w ′, c ← d )

msg(c,w +w ′, [c/d]M )
fwd+r

proc(c,w, c ← d ) msg(e,w ′,Mc )

msg(e,w +w ′, [d/c]Mc )
fwd−r

proc(c,w, close c )

msg(c,w +Mclose, close c )
1Cs

msg(c,w, close c ) proc(d,w ′,wait c ; Q )

proc(d,w +w ′,Q )
1Cr

proc(c,w, c .lk ; P ) (c ′ fresh)

proc(c ′,w +M label, [c ′/c]P ) msg(c, 0, c .lk ; c ← c ′)
⊕Cs

msg(c,w, c .lk ; c ← c ′) proc(d,w ′, case c (li ⇒ Qi )i ∈I )

proc(d,w +w ′, [c ′/c]Qk )
⊕Cr

proc(c,w, send c e ; P ) (c ′ fresh)

proc(c ′,w +Mchannel, [c ′/c]P ) msg(c, 0, send c e ; c ← c ′)
⊗Cs

msg(c,w, send c e ; c ← c ′) proc(d,w ′,x ← recv c ; Qx )

proc(d,w +w ′, [c ′/c]Qe )
⊗Cr

proc(d,w, send c e ; P ) (c ′ fresh)

proc(d,w +Mchannel, [c ′/c]P ) msg(c ′, 0, send c e; c ′ ← c )
⊸ Cs

msg(c ′,w, send c e ; c ′ ← c ) proc(c,w ′,x ← recv c;Qx )

proc(c,w +w ′, [c ′/c]Qe )
⊸ Cr

Figure 3. Cost semantics tracking total work for programs in SILL

in this local stepping, the total work performed by the system can
be obtained by summing the local countersw for each predicate in
the configuration. We will prove in Section 6 that this total work
can be upper bounded by the initial potential of the configuration
that is typed in our resource-aware type system.

5 Type System
We present the resource-aware type system of our language which
extends the linear-only fragment of SILL [30, 35] with resource
annotations. It is in turn based on intuitionistic linear logic [16]
with sequents of the form

A1,A2, . . . ,An ⊢ A

where A1, . . .An are the linear antecedents and A is the succedent.
Under the Curry-Howard isomorphism for intuitionistic linear logic,
propositions are related to session types, proofs to processes, and
cut reduction in proofs to communication. Appealing to this corre-
spondence, we assign a process term P to the above judgment and
label each hypothesis as well as the conclusion with a channel.

(x1 : A1), (x2 : A2), . . . , (xn : An ) ⊢ P :: (x : A)
The resulting judgment states that the process P provides a service
of session type A along channel x , using the services of session
types A1, . . . ,An provided along channels x1, . . . ,xn respectively.
The assignment of a channel to the conclusion is convenient here
because, unlike functions, processes do not evaluate to a value but
continue to communicate along their providing channel once they
have been created. For the judgment to be well-formed, all the
channel names need to be distinct. Whether a session type is used
or provided is determined by its positioning to the left or right,
respectively, of the turnstile.

Resource-aware session types are obtained by annotating simple
session types with potential, defined by the following grammar.

S,T ::= V | ⊕{lqii : S } | N{lqii : S } | S
q
⊸ T | S

q
⊗ T | 1q

V is a type variable. The meaning of the types and the process
terms associated with it are defined in Table 1 (annotations and
descriptions pertaining to potentials are marked in red).

The typing judgment of Resource-Aware SILL has the form
Σ ; Ω ⊢q P :: (x : S )

Intuitively, the judgment describes a process in state P using the
context Ω and signature Σ and providing service along channel x
of type S . In other words, P is the provider for channel x : S , and
a client for all the channels in Ω. The resource annotation q is a
natural number and defines the potential stored in the process P .

When reasoning about the work performed by a system, we
reason parametrically in certain quantities, such as the value of a
counter, the number of elements in a queue, the potential carried
by a message, or even the type of the elements in a queue. In an im-
plementation, we would have to make type families, index domains,
constraint solving, etc. explicit, but fortunately we can avoid the
notational overhead that this entails. This is because the types and
rules are always schematic in their parameters and quantification
over these parameters can remain entirely at the metalevel. We
model this by allowing (conceptually) infinite signatures with all
instances of parametric definitions. In this way, when we reason
parametrically we can be assured that any instance of what we
derive is indeed a valid judgment. This allows us to focus on the
key conceptual and technical contributions of our approach.

Σ defines this signature containing type and process definitions.
It is defined as a possibly infinite set of type definitions V = SV
and process definitions x : S ← X @ q ← y :W = Px,y . The
equation V = SV is used to define the type variable V as SV . We
treat such definitions equirecursively. For instance, ctr[n] = N{inc1 :
ctr[n + 1], val2⌈log(n+1)⌉+2 : bits} exists in the signature for all
n ∈ N for the binary counter system. The process definition x :
S ← X @ q ← y :W = Px,y defines a (possibly recursive) process
named X implemented by Px,y providing along channel x : S
and using the channels y :W as a client. The process also stores
a potential q, shown as X @ q in the definition. For instance,
s : ctr[2n] ← b0 @ 0 ← t : ctr[n] = Ps,t (Ps,t defines the
implementation of b0) exists in the signature for all n ∈ N.

Messages are typed differently from processes as their work
counters w (introduced in the predicate msg(c,w,M )) are not in-
cremented when they actually deliver the message to the receiver.
Hence, to type the messages, we define an auxiliary cost-free typing
judgment, Σ;Ω ⊢q

cf
P :: (x : S ), which follows the same typing rules

as Figure 4, but with M label = Mchannel = Mclose = 0. This avoids
paying the cost for sending a message twice. A fresh signature Σ is
used in the derivation of the cost-free judgment.

The principle behind the type system is that eachmessage carries
potential and the sending process pays the potential along with the
cost of sending a message from its local potential. The receiving
process receives the potential when it receives the message and
adds it to its local potential. For example, consider the rule NLk for
a client sending a label lk along channel x .

q ≥ p + rk +M
label Σ ; Ω (x : Sk ) ⊢

p Q :: (z : U )

Σ ; Ω (x : N{lrii : Si }) ⊢q x .lk ; Q :: (z : U )
NLk
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q ≥ p + rk +M
label Σ ; Ω ⊢p P :: (x : Sk ) (k ∈ I )

Σ ; Ω ⊢q (x .lk ; P ) :: (x : ⊕{lrii : Si }i ∈I )
⊕Rk

q + ri ≥ qi Σ ; Ω (x : Si ) ⊢qi Qi :: (z : U ) (∀i ∈ I )

Σ ; Ω (x : ⊕{lrii : Si }i ∈I ) ⊢
q case x (li ⇒ Qi )i ∈I :: (z : U )

⊕L

q + r ≥ p Σ ; Ω (y : S ) ⊢p Py :: (x : T )

Σ ; Ω ⊢q (y ← recv x ; Py ) :: (x : S
r
⊸ T )

⊸ R

q ≥ p + r +Mchannel Σ ; Ω (x : T ) ⊢p Q :: (z : U )

Σ ; Ω (w : S ) (x : S
r
⊸ T ) ⊢q (send x w ; Q ) :: (z : U )

⊸ L

q ≥ p + r +Mchannel Σ ; Ω ⊢p P :: (x : T )

Σ ; (w : S ) Ω ⊢q send x w ; P :: (x : S
r
⊗ T )

⊗R

q + r ≥ p Σ ; Ω (y : S ) (x : T ) ⊢p Qy :: (z : U )

Σ ; Ω (x : S
r
⊗ T ) ⊢q y ← recv x ; Qy :: (z : U )

⊗L

q ≥ r +Mclose

Σ ; · ⊢q close x :: (x : 1r )
1R

q + r ≥ p Σ ; Ω ⊢p Q :: (z : U )

Σ ; Ω (x : 1r ) ⊢q wait x ; Q :: (z : U )
1L

Figure 4. Typing rules for session-typed programs

Since the continuationQ is typed with potential p, and the potential
sent with the label is rk , the total original potential need be at least
p + rk +M

label. Thus, we get the constraint q ≥ p + rk +M
label.

The rule NR describes a provider that is awaiting a message on
channel x and has local potential q available.

q + ri ≥ qi Σ ; Ω ⊢qi Pi :: (x : Si ) (∀i ∈ I )

Σ ; Ω ⊢q case x (li ⇒ Pi )i ∈I :: (x : N{lrii : Si })
NR

The second premise prescribes that the branch Pi is typed with
potential qi . Moreover, branch Pi is reached after receiving the
label li with potential ri . Hence, the initial potential q must be able
to cover the difference qi − ri . Since potential q can typecheck all
the branches, we get the constraint q ≥ qi − ri for all i .

To spawn a new process defined by X, we split the context Ω
into Ω1 Ω2, and we use Ω1 to type the newly spawned process and
Ω2 for the continuation Qx .

r ≥ p + q x ′ : S ← X @ p ← y′ :W = Px ′,y′ ∈ Σ

Ω1 = y :W Σ ; Ω2 (x : S ) ⊢q Qx :: (z : U )

Σ ; Ω1 Ω2 ⊢
r (x ← X ← y ; Qx ) :: (z : U )

spawn

If the spawned process needs potentialp (indicated by the signature)
and the continuation needs potentialq then thewhole process needs
potential r ≥ p + q.

A forwarding process x ← y terminates and its potential q is lost.
Since we do not count forwarding messages in our cost semantics,
we don’t need any potential to type the forward.

q ≥ 0
Σ ; y : S ⊢q x ← y :: (x : S ) id

The rest of the rules are given in Figure 4. They are similar to the
discussed rules and we omit their explanation.

As an illustration, the implementation and resource-aware type
derivation (marked in red) of the binary counter is presented in Fig-
ure 2. The derivation provides a proof certificate that increment has
an amortized cost of 1, while reading a value costs 2

⌈
log(n + 1)

⌉
+2.

Σ ; (·)
0
⊨ (·) :: (·)

emp

Σ ; Ω
E
⊨ C :: Ω′ Σ ; Ω′

E′
⊨ C′ :: Ω′′

Σ ; Ω
E+E′
⊨ (C C′) :: Ω′′

compose

Σ ; Ω1 ⊢
p P :: (x : A)

Σ ; Ω Ω1
p+w
⊨ (proc(x ,w, P )) :: (Ω (x : A))

Cproc

Σ ; Ω1 ⊢
p

cf
P :: (x : A)

Σ ; Ω Ω1
p+w
⊨ (msg(x ,w, P )) :: (Ω (x : A))

Cmsg

Figure 5. Typing rules for a configuration

6 Soundness
This section concludes the discussion of Resource-Aware SILL by
demonstrating the soundness of the resource-aware type system
with respect to the cost semantics. So far, we have analyzed and
type-checked processes in isolation. However, as our cost semantics
indicates, processes always exist in a configuration interacting
with other processes. Thus, we need to extend the typing rules to
arbitrary configurations.

ConfigurationTyping At runtime, a program in Resource-Aware
SILL is a set of processes interacting via channels. Such a set is
represented as a multi-set of proc and msg predicates as described
in Section 4. To type the resulting configuration C, we first need to
define a well-formed signature.

A signature Σ iswell formed if (a) every type definitionV = SV in
Σ is contractive, and (b) every process definition x : S ← X @ p ←

y :W = Px,y in Σ is well typed according to the process typing
judgment, that is, Σ ; y :W ⊢

p Px,y :: (x : S ). Note that the
same process name X can have different resource-aware types in
the signature Σ. We pick the appropriate type while applying the
spawn rule.

We use the following judgment to type a configuration.

Σ;Ω1
E
⊨ C :: Ω2

It states that Σ is well-formed and that the configuration C uses
the channels in the context Ω1 and provides the channels in the
context Ω2. The natural number E denotes the sum of the total
potential and work done by the system. We call E the energy of
the configuration. The configuration typing judgment is defined
using the rules presented in Figure 5. The rule emp defines that
an empty configuration is well-typed with energy 0. The compose
rule composes two configurations C and C′; C provides service on
the channels in Ω′ while C′ uses the channels in Ω′. The energy
of the composed configuration C C′ is obtained by summing up
their individual energies. The rule Cproc creates a configuration
out of a single process. The energy of this singleton configuration
is obtained by adding the potential of the process and the work
performed by it. Similarly, the rule Cmsg creates a configuration
out of a single message. Messages are typed in a cost-free judgment
whereM label = Mchannel = Mclose = 0, introduced in Section 5.

Soundness Theorem 6.1 is the main theorem of the paper. It is
a stronger version of a classical type preservation theorem and
the usual type preservation is a direct consequence. Intuitively, it
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states that the energy of a configuration never increases during an
evaluation step, i.e., the energy remains conserved with possibly
some loss (due to throwing away potential, or friction).

Theorem 6.1 (Soundness). Consider a well-typed configuration C

w.r.t. a well-formed signature Σ such that Σ;Ω1
E
⊨ C :: Ω2. If C 7→ C′,

then there exist Ω′1, Ω
′
2 and E

′ such that Σ;Ω′1
E′
⊨ C′ :: Ω′2 and E

′ ≤ E.

The proof of the soundness theorem is achieved by a case analysis
on the cost semantics, followed by an inversion on the typing of
a configuration (refer our technical report [12] for the complete
proof). The preservation theorem is a corollary since soundness
implies that the configuration C′ is well-typed.

The soundness implies that the energy of an initial configuration
is an upper bound on the energy of any configuration it will ever
step to. In particular, if a configuration starts with 0work, the initial
potential (equal to initial energy) is an upper bound on the total
work performed by an evaluation starting in that configuration.

Corollary 6.2 (Upper Bound). If Σ;Ω1
E
⊨ C :: Ω2, and C 7→∗ C′,

then E ≥ W ′, whereW ′ is the total work performed by the config-
uration C′, i.e., the sum of the work performed by each process and
message in C′. In particular, if the work done by the initial config-
uration C is 0, then the total potential P of the initial configuration
satisfies P ≥W ′.

Proof. Applying the Soundness theorem successively, we get that

if C 7→∗ C′ and Σ;Ω1
E
⊨ C :: Ω2 and Σ;Ω′1

E′
⊨ C′ :: Ω′2, then

E ′ ≤ E. SinceW ′ ≤ E ′ and P = E (no initial work), we combine the
inequalities to obtain P ≥W ′. □

The progress theorem of Resource-Aware SILL is a direct con-
sequence of progress in SILL [35]. Our cost semantics are a cost
observing semantics, i.e., it is just annotated with counters ob-
serving the work. Hence, any runtime step that can be taken by a
program in SILL can be taken in Resource-Aware SILL.

7 Case Study: Stacks and Queues
As an illustration of our type system, we analyze the total work
performed by a concurrent stack or queue implementation. Both
these data structures have the same interaction protocol: they store
elements of a variable type A and support inserting and deleting
elements. They only differ in their implementation and resource
usage.We express their common interface type as the simple session
type storeA (parameterized by type variable A).

storeA = N{ ins : A ⊸ storeA,
del : ⊕{none : 1, some : A ⊗ storeA}}

The session type dictates that a process providing a service of type
storeA gives a client the choice to either insert (ins) or delete (del)
an element of type A. Upon receipt of the label ins, the providing
process expects to receive a channel of type A to be enqueued and
recurses. Upon receipt of the label del, the providing process either
indicates that the queue is empty (none), in which case it terminates,
or that there is an element stored in the queue (some), in which
case it deletes this element, sends it to the client, and recurses.

To account for the resource cost, we add potential annotations
leading to two different resource-aware types for stacks and queues.
Since we are interested in counting the total number of messages

exchanged, we again setM label = Mchannel = Mclose = 1 to obtain
a concrete bound.

Stacks The type for stacks is defined as follows.

stackA = N{ ins0 : A
0
⊸ stackA,

del2 : ⊕{none0 : 10, some0 : A
0
⊗ stackA}}

A stack is implemented using a sequence of elem processes termi-
nated by an empty process. Each elem process stores an element of
the stack, while empty denotes the end of stack.

Inserting an element simply spawns a new elem process (which
has no cost in our semantics), thus having no resource cost. Delet-
ing an element terminates the elem process at the head. Before
termination, it sends two messages back to the client, either none
followed by close or some followed by element. Thus, deletion has
a resource cost of 2. This is reflected in the stackA type, where ins
and del are annotated with 0 and 2 units of potential respectively.

Queues A queue is implemented by a sequence of elem processes
(each storing one element) terminated by the empty process.

The queue interface is achieved by using the same storeA type
and annotating it with a different potential. The tight potential
bound depends on the number of elements stored in the queue.
Hence, a precise resource-aware type needs access to this internal
measure in the type. A type queueA[n] intuitively defines a queue
of size n (for n > 0).

queueA[n] = N{ ins2n : A
0
⊸ queueA[n + 1],

del2 : ⊕{none0 : 10, some0 : A
0
⊗ queueA[n

.
− 1]}}

The
.
− operator denotes the monus operator defined as a

.
− b =

max(0,a − b). This prevents the type queueA[0] from referring the
undefined type queueA[−1] in the del label. Resource-aware session
types also allow us to provide a more precise type for queueA, i.e.,
different types for queueA[0] and queueA[n] for n > 0.

queueA[0] = N{ ins0 : A
0
⊸ queueA[1],

del2 : ⊕{none0 : 10}}

queueA[n] = N{ ins2n : A
0
⊸ queueA[n + 1],

del2 : ⊕{some0 : A
0
⊗ queueA[n − 1]}}

For each insertion, the ins label along with the element travels to
the end of the queue. There, it spawns a new elem process that holds
the inserted element. Hence, the resource cost of each insertion is
2n where n is the size of the queue. On the other hand, deletion is
similar to that of stack and has a resource cost of 2. Again, this is
reflected in the queueA type, where ins and del are annotated with
2n and 2 units of potential respectively.

The resource-aware types show that stacks are more efficient
than queues. In particular, the label ins is annotated by 0 for stackA
and with 2n for queueA. Hence, an efficiency comparison can be
performed by simply observing the resource-aware session types
without needing access to the implementation. The implementation
and resource-aware type derivation for elem and empty can be
found in a companion technical report [12].

Queues as two stacks In a functional language, a queue is often
implemented with two stacks. The idea is to enqueue into the first
stack and to dequeue from the second stack. If the second stack is
empty then we copy the first stack over, thereby reversing its order.
Since the cost of the dequeue operation can vary drastically between
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successive dequeues, amortized analysis is again instrumental in
the analysis of the worst-case behavior and shows that the worst-
case amortized cost for deletion is actually a constant. The type for
such a queue implemented as two stacks is

queue′A = N{ ins6 : A
0
⊸ queue′A,

del2 : ⊕{ some0 : A
0
⊗ queue′A, none

0 : 10}}
Resource-aware session types enable us to translate the amortized
analysis to the distributed setting. The type prescribes that an
insertion has an amortized cost of 6 while the deletion has an
amortized cost of 2. The main idea here is that the elements are
insertedwith a constant potential in the first stack.While deletion, if
the second stack is empty, then this stored potential in the first stack
is used to pay for copying the elements over to the second stack. As
demonstrated from the resource-aware type, this implementation
is more efficient than the previous queue implementation, which
has a linear resource cost for insertion.

Generic clients The notion of efficiency of a store can be gener-
alized and quantified by considering clients for the stack and queue
interface. A client interacts with a generic store via a sequence
of insertions and deletions. A provider can then implement the
store as a stack, queue, priority queue, etc. (same interface) and
just expose the resource-aware type for storeA. Our type system
uses just the interface type and the generic client implementation
to derive resource bounds on the client. For simplicity, the clients
are typed in an affine type system which allows us to throw away
dummy channels at termination.

We provide a general mechanism for implementing clients for a
generic store (see [12] for more details). We define a generic storeA
type where the potential annotations are arbitrary natural numbers
(or functions of internal measure n).

storeA[n] = N{ insi : A
a
⊸ storeA[n + 1],

deld : ⊕{nonep : 1e , somes : A
t
⊗ storeA[n

.
− 1]}}

A client of the storeA interface is defined by a list ℓ of ins and del
messages that it sends to the store. We index the client Cℓ,n by ℓ
and the internal measure n of storeA[n]. The channel along which
the client provides is irrelevant for our analysis and is represented
using a dummy channel d : D. For ease of notation, we define the
potential needed for a client Cℓ,n as a function ϕ (ℓ,n).

We implement the clientCℓ,n as follows. First, consider the case
when ℓ = [], i.e., an empty list. The client for an empty list just
closes the channel d . We assume that all clients are typed with the
cost-free metric to only count for the messages sent within the
store. Hence, C[],n needs 0 potential. For the potential function,
this means ϕ ([],n) = 0. Next, consider the client when the head
of the list ℓ is ins. The client sends an ins label followed by an
element x of type A. If Cins::ℓ,n needs a potential q, then the type
derivation informs us that Cℓ,n+1 needs a potential q − i − a. Thus,
ϕ (ins :: ℓ,n) = ϕ (ℓ,n + 1) + i + a. Finally, consider the client when
the head of the list ℓ is del. The client sends the del label and then
case analyzes on the label it receives. If it receives the some label, it
receives the element and then continues withCℓ,n−1, else it receives
the none label and waits for the channel s to close. In terms of the
potential function, this means

ϕ (del :: ℓ,n) =



ϕ (ℓ,n − 1) + d − s − t if n > 0
max(0,d − p − e ) otherwise

Walking through the list ℓ and chaining the potential equations
together, ϕ (ℓ,n) achieves a resource bound on the client Cℓ,n .

The stackA and queueA interface types are specific instantiations
of the storeA type. The derivation for a client of the stackA interface
defines the following potential equations.

ϕ ([],n) = 0 ϕ (ins::ℓ,n) = ϕ (ℓ,n+1) ϕ (del::ℓ,n) = ϕ (ℓ,n−1)+2

Similarly, considering the queue type as another instantiation de-
fines the following potential equations (again ϕ ([],n) = 0)

ϕ (ins::ℓ,n) = ϕ (ℓ,n + 1) + 2n ϕ (del::ℓ,n) = ϕ (ℓ,n − 1) + 2

This allows us to compare arbitrary clients of two interfaces and
compare their resource cost. The resource-aware types are expres-
sive enough to obtain these resource bounds without referencing
the implementation of the store interface. For instance, an impor-
tant property of queues is that every insertion is more costly than
the previous one. The cost of insertion depends on the size of the
queue, which, in turn, increases with every insertion. Hence, the
complexity of the queue system depends on the sequence in which
inserts and deletes are performed. In particular, we can consider the
efficiency of two different clients for the queue system, by solving
the above system of equations.

Consider two clients Qℓ1,n and Qℓ2,n , with two different mes-
sage lists; ℓ1 = [ins, . . . , ins, del, . . . , del], i.e.,m insertions followed
bym deletions, and ℓ2 = [ins, del, ins, del, . . . , ins, del], i.e.,m in-
stances of alternate insertions and deletions. Both clients send the
same number of insertions and deletions. However, their resource
cost are completely different. Solving the above system of equations,
we obtainϕ (ℓ1,n) = 2mn+m(m−1)+2m, whileϕ (ℓ2,n) = 2m(n+1),
which shows that the second client is an order of magnitude more
efficient than the first one.

8 Related Work
Session types were introduced by Honda [24]. The technical de-
velopment in this work is based on previous work in [30, 35]. By
removing the potential annotation from the type rules in Section 5
we arrive at the type system of loc. cit. The internal measures and
type families we use are inspired by [17]. In contrast to our work,
the aforementioned articles do not discuss resource analysis.

In the context of process calculi, capabilities [34] and static anal-
yses [26] have been used to statically restrict communication for
controlling buffer sizes in languages without session types. For
session-typed communication, upper bounding the size of mes-
sage queues is simpler and studied in the compiler for Concurrent
C0 [36]. In contrast to capabilities, our potential annotations do
not control buffer sizes but provide a symbolic description of the
number of messages exchanged at runtime. It is not clear how
capabilities could be used to perform such an analysis.

Type systems for static resource bound analysis for sequential
programs have been extensively studied (e.g., [11, 27]). Our work is
based on type-based amortized resource analysis. Automatic amor-
tized resource analysis (AARA) has been introduced as a type sys-
tem to automatically derive linear [21] and polynomial bounds [19]
for sequential functional programs. It can also be integrated with
program logics to derive bounds for imperative programs [5, 9].
Moreover, it has been used to derive bounds for term-rewrite sys-
tems [23] and object-oriented programs [22]. A recent work also
considers bounds on the parallel evaluation cost (also called span)
of functional programs [20]. The innovation of our work is the
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integration of AARA and session types and the analysis of message-
passing programs that communicate with the outside world. Instead
of function arguments, our bounds depend on the messages that are
exchanged along channels. As a result, the formulation and proof
of the soundness theorem is quite different from the soundness of
sequential AARA systems.

We are only aware of a few other works that study resource
bounds for concurrent programs. Gimenez et al. [15] introduced a
technique for analyzing the parallel and sequential space and time
cost of evaluating interaction nets. While it also based on linear
logic and potential annotations, the flavor of the analysis is quite
different. Interaction nets are mainly used to model parallel eval-
uation while session types focus on the interaction of processes.
A main innovation of our work is that processes can exchange
potential via messages. It is not clear how we can represent the
examples we consider in this article as interaction nets. Albert et
al. [2, 3] have studied techniques for deriving bounds on the cost
of concurrent programs that are based on the actor model. While
the goals of the work are similar to ours, the used technique and
considered examples are dissimilar. A major difference is that our
method is type-based and compositional. A unique feature of our
work is that types describe bounds as functions of the messages
that are sent along a channel. In a companion paper [13], we com-
plement the present system by analyzing the parallel complexity of
session-typed programs by extending the basic session types with
modalities inspired from linear-time temporal logic.

9 Conclusion and Future Work
We have introduced resource-aware session types, a linear type
system that combines session types [24, 30] and type-based amor-
tized resource analysis [19, 21] to reason about the resource usage
of message-passing processes. The soundness of the type system
has been proved for a core session-typed language with respect
to a cost semantics that tracks the total communication cost in a
system of processes. We have demonstrated that our technique can
be used to prove tight resource bounds and supports amortized
reasoning by analyzing standard session-type data structures such
as distributed binary counters, stacks, and queues.

An important next step is designing an efficient implementation
of Resource-Aware SILL with support for automatic inference of
work bounds. We designed the type system with automation in
mind and we are confident that we can support automatic type
inference using templates and LP solving similar to AARA [19,
21]. To this end, we are working on an algorithmic version of the
declarative type system presented here.

Inferring work bounds has several applications. One direction we
plan to explore is the use of resource bounds in process scheduling.
For instance, oracle schedulers [1] can use a priori knowledge of
the runtime of each parallel thread to calculate thread creation
overheads and enhance efficiency.
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