
Model-Theoretic Characterization of Boolean and
Arithmetic Circuit Classes of Small Depth∗

Arnaud Durand

IMJ-PRG, CNRS UMR 7586

University Paris-Diderot

Paris, France

durand@math.univ-paris-diderot.fr

Anselm Haak

Theoretische Informatik

Leibniz Universität Hannover

Hannover, Germany

haak@thi.uni-hannover.de

Heribert Vollmer

Theoretische Informatik

Leibniz Universität Hannover

Hannover, Germany

vollmer@thi.uni-hannover.de

Abstract
In this paper we give a characterization of both Boolean and

arithmetic circuit classes of logarithmic depth in the vein of

descriptive complexity theory, i.e., the Boolean classes NC
1
,

SAC
1
and AC

1
as well as their arithmetic counterparts #NC

1
,

#SAC
1
and #AC

1
. We build on Immerman’s characterization

of constant-depth polynomial-size circuits by formulae of

first-order logic, i.e., AC
0 = FO, and augment the logical

language with an operator for defining relations in an induc-

tive way. Considering slight variations of the new operator,

we obtain uniform characterizations of the three just men-

tioned Boolean classes. The arithmetic classes can then be

characterized by functions counting winning strategies in

semantic games for formulae characterizing languages in

the corresponding Boolean class.

Keywords descriptive complexity, counting classes, finite

model theory, arithmetic circuits

1 Introduction
The computational power of arithmetic circuits is of current

focal interest in computational complexity theory, see the re-

cent surveys [14, 17] or the continuously updated collection

of results at [20]. A number of very powerful techniques to

prove lower bounds for such circuits have been developed,

however only for quite restricted classes.

A long line of research in computational complexity is

to characterize complexity classes in a model-theoretic way.

Instead of constructing a computational device such as a

∗
Partially supported by DFG VO 630/8-1 and the ANR-14-CE25-0017-01

project AGGREG

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed

to the Association for Computing Machinery.

ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00

https://doi.org/10.1145/3209108.3209179

Turing machine or a family of circuits deciding a language L,
a formula is built that defines the property of those words

in L. Best-known is probably Fagin’s Theorem stating that

languages in NP are exactly those that can be defined in

existential second-order logic. More important for this paper

is Immerman’s theorem, in which the circuit class AC
0
of all

languages decidable by Boolean circuits of polynomial size

and constant depth is addressed: Immerman showed that

AC
0
equals the class of languages definable by first-order

formulae: AC
0 = FO [12]. The rationale behind this area of

descriptive complexity, as it is called, is to characterize com-

plexity classes in a model-theoretic way in order to better

understand their structure, and to use logical methods in

order to get new insights about the considered classes and,

most prominently, to obtain lower bounds, see the mono-

graphs [13, 16]. The famous lower bound for AC
0
, showing

that the parity function cannot be computed by such circuit

families [10], was obtained independently by Ajtai [1] in a

purely logical way.

For arithmetic circuit classes, only one descriptive com-

plexity characterization is known to date. Generalizing in

a sense Immerman’s Theorem, it was shown very recently

that the class #AC
0
of those functions from binary words to

natural numbers computable by polynomial-size constant-

depth arithmetic circuits with plus and times gates is equal to

the class of those functions computing winning strategies in

semantic games for first-order formulae: #AC
0 = #Win-FO

[11]. A different way to view this result is to say that #AC
0

is the class of functions counting Skolem functions for FO-

formulae.

Central for this result is a way of looking at arithmetic

computation as a counting process: Say that a proof tree of
a Boolean circuit C for a given input word w is a minimal

subtree (of the circuit unfold into a tree) witnessing that

the circuit outputs 1 on input w , and let #C(w) denote the
number of such proof trees. It is folklore that #AC

0
consists

of those functions counting proof trees for AC
0
-circuits. To

prove the mentioned result from [11], a formula has to be

constructed whose number of winning strategies (or, number

of Skolem functions) equals the number of proof trees of the

original circuit.

The class #P is analogously defined by counting accepting

paths of nondeterministic polynomial time Turing machines.

1

https://doi.org/10.1145/3209108.3209179


LICS ’18, July 9–12, 2018, Oxford, United Kingdom Arnaud Durand, Anselm Haak, and Heribert Vollmer

Saluja et al. developed a model theoretic characterization of

this class by counting assignments to free relational variables

of second-order logic [19]. In analogy to this, the mentioned

characterization of #AC
0
counts assignments to free Skolem

functions; this connection is further explored in [7]. A some-

what different look at descriptive complexity of counting

classes is given in [2], using formulae involving summation

and multiplication. A characterization of #AC
0
in the same

vein was given already in [9].

The aim of this paper is to generalize the above mentioned

theorem #AC
0 = #Win-FO from [11] to larger circuit classes,

in particular the classes #NC
1
, #SAC

1
and #AC

1
, defined by

families of arithmetic circuits of polynomial size and logarith-

mic depth with bounded fan-in addition and multiplication

gates (for #NC
1
), unbounded fan-in addition and bounded

fan-in multiplication gates (#SAC
1
), and unbounded fan-in

addition and multiplication gates (#AC
1
), see [21]. The men-

tioned equality between the value computed by an arithmetic

circuit and the number of proof trees of the corresponding

Boolean circuit does not only hold in the case of the class AC
0

but is a general observation. Thus, a reasonable roadmap to

obtain our generalization seems to be to study logical charac-

terizations of the corresponding decision classes NC
1
, SAC

1

and AC
1
. Such characterizations can be found in the litera-

ture: NC
1
can be characterized by an extension of first-order

logic by so called monoidal quantifiers [4], and similarly

SAC
1
by extending FO by groupoidal quantifiers [15]. How-

ever, for such logics with generalized quantifier the notion

of winning strategy is not clear. Following a completely dif-

ferent approach, Immerman extended first-order logic by

allowing repeated quantifier blocks and thus characterized

AC
1
[12]. Here it can be said that in Immerman’s notation,

#AC
1 = #Win-FO[log], but this result cannot be transfered

to the other log-depth classes NC
1
and SAC

1
. Hence we have

to start by developing new logical characterizations for the

Boolean classes NC
1
, SAC

1
and AC

1
.

Inspiration comes from a result by Compton and Laflamme,

characterizing NC
1
by FO logic augmented with the RPR-

operator allowing us to define relations by a certain kind

of linear recursion [6] (RPR stands for relational primitive

recursion). This approach does not generalize to the classes

SAC
1
and AC

1
, though. Also, the number of winning strate-

gies does not seem to be related to the number of proof

trees; so again, their approach is not suitable for our aim.

Instead, we consider a new operator, called GPR (“guarded

predicative recursion”), allowing us to define relations by a

certain kind of parallel recursion. We show that FO(GPR),
first-order logic augmented by GPR, characterizes AC

1
, and

that slight modifications of the GPR-operator lead to charac-

terizations of NC
1
and SAC

1
. In a second step, we show that

these characterizations are in a sense “close enough” to the

circuit world to mirror the process of counting proof trees

by counting winning strategies in semantic games.

Our paper is structured as follows. In the next section,

we will give the necessary preliminaries from first order

logic and circuit complexity including the respective count-

ing mechanism. In Sect. 3 we briefly recall the result by

Compton and Laflamme and then introduce our inductive

operator GPR. To demonstrate suitability of our logical ap-

proach, we give an example of a formula defining an AC
1
-

complete problem. We then prove our main results: In Sect. 4

we characterize the Boolean classes NC
1
, SAC

1
and AC

1
in a

model-theoretic way by first-order logic with different forms

of the GPR-operator. This is the technically most demanding

part of our paper. We would like to stress that our proofs are

completely different from the one for the mentioned result

from Compton and Laflamme [6]. In Sect. 5 we characterize

the arithmetic classes #NC
1
, #SAC

1
and #AC

1
by counting

winning-strategies in semantic games for the above logics.

Finally, we conclude with a summary and some open prob-

lems.

2 Preliminaries
In this paper we will use first-order logic FO with usual syn-

tax and semantics, see, e.g., [8]. SF(φ) denotes the set of all
subformulae of formula φ. We consider finite σ -structures
where σ is a finite vocabulary consisting of relation and con-

stant symbols. For structureA, dom(A) denotes its universe.
We will always use structures with universe {0, 1, . . . ,n − 1}
for some n ∈ N \ {0}. Furthermore, we will always assume

that our structures contain the built-in relation BIT
2
, which

is implicitly interpreted in the expected way: BIT(i, j) is true,
iff the i’th bit of the binary representation of j is 1, where
the 0’th bit is the LSB. When talking about structures with

built-in relations, ⊨ includes the interpretation of the built-in

relations in the intended way.

We assume the standard encoding of structures as binary

strings (see, e.g., [13]): Relations are encoded row by row by

listing their truth values as 0’s and 1’s. Constants are encoded

by the binary representation of their value and thus a string

of length ⌈log
2
(n)⌉. A whole structure is encoded by the

concatenation of the encodings of its relations and constants

except for numerical predicates and constants: These are not

encoded, because they are determined by the input length.

Sincewewant to talk about languages accepted by Boolean

circuits, we will need the vocabulary

τstring = (≤2, S1)
of binary strings. A binary string is represented as a structure

over this vocabulary as follows: Letw ∈ {0, 1}∗ with |w | = n.
Then the structure representing this string is the structure

with universe {0, . . . ,n−1}, ≤2
interpreted as the ≤-relation

on N restricted to the universe and x ∈ S , iff the x ’th bit of

w is 1. The structure corresponding to string w is denoted

by Aw . Also, by the above, w is the encoding of structure

Aw . We will often use the natural extensions of = and ≤
to tuples, denoting these by the same symbols. We denote

2



Model-Theoretic Characterizations of Circuit Classes of Small Depth LICS ’18, July 9–12, 2018, Oxford, United Kingdom

by FO not only the set of first-order formulae, but also the

complexity class of all languages definable in first-order logic

with built-in BIT:

Definition 2.1. A language L ⊆ {0, 1}∗ is in FO if there is

an FO-formula φ over vocabulary τstring ∪ (BIT2) such that

for allw ∈ {0, 1}∗:

w ∈ L ⇔ Aw ⊨ φ.

We will also use relativized quantifiers. A relativization

of a quantifier is a formula restricting the domain of ele-

ments considered for that quantifier. We also use these for

quantification of tuples. More precisely, we write

(∃(x1, . . . ,xk ).φ) ψ
as a shorthand for ∃x1 . . . ∃xk (φ ∧ψ ) and, respectively,

(∀(x1, . . . ,xk ).φ) ψ
as a shorthand for ∀x1 . . . ∀xk (φ → ψ ) ≡ ∀x1 . . . ∀xk (¬φ ∨
ψ ).

Furthermore, we consider bounded variants of relativized

quantifiers, that is, quantifiers where we only consider the

maximal two elements meeting the condition expressed by

the relativization. Notation: ∃b, ∀b. Formally, the semantics

for ∃b can be given in FO as follows:

(∃b(x).φ(x) ψ (x) ≡
(
∃x . (φ(x)∧

∀y∀z (y , z ∧ x < y ∧ x < z)

→ (¬φ(y) ∨ ¬φ(z))
) )
ψ (x)

The semantics for ∀b is defined analogously.

For the definition of uniform circuit families we will need

FO-interpretations, which are mappings between structures

over different vocabularies.

Definition 2.2. Let σ , τ be vocabularies, τ = (Ra1
1
, . . . ,Rarr ).

A first-order interpretation (or FO-interpretation)

I : STRUC[σ ] → STRUC[τ ]

is given by a tuple of FO-formulae φ0,φ1, . . . ,φr over vocab-
ulary σ . For some k , φ0 has k free variables and φi has k · ai
free variables for all i ≥ 1. For each structureA ∈ STRUC[σ ],
these formulae define the structure

I (A) = ⟨|I (A)|,RI (A)
1
, . . . ,RI (A)

r ⟩ ∈ STRUC[τ ],

where the universe is defined by φ0 and the relations by

φ1, . . . ,φr in the following way:

|I (A)| = {⟨b1, . . . ,bk ⟩ | A ⊨ φ0(b1, . . . ,bk )}

RI (A)
i = {(b1, . . .bai ) ∈ |I (A)ai | A ⊨ φi (b1, . . .bai )},

where bi = ⟨b1i , . . . ,bki ⟩ for all i .

For better readability, we will write φuniverse instead of φ0
and φRi instead of φi for all i .

We will next recall the definition of Boolean circuits and

complexity classes defined using them. A circuit is a di-

rected acyclic graph (dag), whose nodes (also called gates)

are marked with either a Boolean function (in our case ∧
or ∨), a constant (0 or 1), or a (possibly negated) bit of the

input. Also, one gate is marked as the output gate. On any

input, a circuit computes a Boolean function by evaluating

all gates according to what they are marked with. The value

of the output gate then is the function value for that input.

If C is a circuit, we denote the function it computes by C(x).
When we want circuits to work on different input lengths,

we have to consider families of circuits: A family contains

a circuit for any input length n ∈ N. Families of circuits

allow us to talk about languages being accepted by circuits:

A circuit family C = (Cn)n∈N is said to accept (or decide) the

language L, if it computes its characteristic function cL :

C |x |(x) = cL(x) for all x .

The complexity classes in circuit complexity are classes of

languages that can be decided by circuit families with certain

restrictions on their resources. The resources relevant here

are depth, size and fan-in (number of children) of gates. The

depth here is the length of a longest path from any input

gate to the output gate of a circuit and the size is the number

of non-input gates in a circuit. Depth and size of a circuit

family are defined as functions accordingly.

Above, we have not restricted the computability of the cir-

cuit C |x | from x in any way. This is called non-uniformity,

which allows such circuit families to even compute non-

recursive functions. Since we want to capture a kind of effi-

cient computability, we need some notion of uniformity. For

this, we first define the vocabulary for Boolean circuits as

FO-structures:

τcirc = (E2,G1

∧,G
1

∨, Input
2, negatedInput2, output1),

where the relations are interpreted as follows:

• E(x ,y): gate y is a child of gate x
• G∧(x): gate x is an and-gate

• G∨(x): gate x is an or-gate

• Input(x , i): gate x is an input gate associated with the

i’th input bit

• negatedInput(x , i): gate x is a negated input gate asso-

ciated with the i’th input bit

• output(x): gate x is the output gate

We will now define FO-uniformity of Boolean circuits and

the complexity classes relevant in this paper.

Definition 2.3. A circuit family C = (Cn)n∈N is first-order

uniform (FO-uniform) if there is an FO-interpretation

I : STRUC[τstring ∪ (BIT2)] → STRUC[τcirc]

mapping any structure Aw over τstring with built-in BIT to

the circuitC |w | given as a structure over the vocabulary τcirc.

3



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Arnaud Durand, Anselm Haak, and Heribert Vollmer

Note that implicitly, the mapping I only depends on the

length of the input and not the input bits. Furthermore, this

uniformity by [3] coincides with the maybe better known

DLOGTIME-uniformity formany familiar circuit classes (and

in particular for all classes studied in this paper). All circuit

classes we consider in this paper are FO-uniform.

Definition 2.4. A language L ⊆ {0, 1}∗ is in AC
i
if there is

an FO-uniform circuit family with depth O((logn)i ) accept-
ing L. NCi

is defined analogously with bounded fan-in gates.

SAC
i
is defined analogously with bounded fan-in ∧-gates

and unbounded fan-in ∨-gates.

We will also call circuit families with the above restric-

tions on their resources AC
i
, NC

i
and SAC

i
circuit families,

respectively. Observe that these kind of circuit families al-

ways have polynomial size, since their gates are tuples of

elements of the first-order input structure.

For this paper, the classes AC
0
, AC

1
, NC

1
and SAC

1
are of

particular interest. It is known that the class AC
0
coincides

with the class FO [4, 13]: AC
0 = FO.

We will next define counting variants of the above classes.

The idea for counting classes in general is to use a model of

computation and identify a kind of witness for acceptance

in that model. For a nondeterministic Turing machine, we

usually consider the accepting paths on a given input as

witnesses. Considering polynomial time computations, this

concept gives rise to the class #P. A witness that a Boolean

circuit accepts its input is a so-called proof tree: a minimal

subtree of the circuit showing that it evaluates to true for a

given input. For this, we first unfold the given circuit into tree

shape, and we further require that it is in negation normal
form (meaning that negations only occur directly in front of

literals)—note that this is always the case for τcirc-structures.
A proof tree then is a subtree that contains the output gate,

for every included ∨-gate exactly one child and for every

included∧-gate all children, such that every input gate which
we reach in this way is a true literal. This allows us to define

the following counting complexity classes:

Definition 2.5. A function f : {0, 1}∗ → N is in #AC
i
(resp.,

#NC
i
, #SAC

i
) if there is an AC

i
(NC

i
, SAC

i
) circuit family

C = (Cn)n∈N such that for allw ∈ {0, 1}∗,
f (w) = number of proof trees of C |w |(w).

Remark 1. Alternative definitions of these classes are in terms
of arithmetic circuits: An arithmetic circuit is a circuit with
gates for addition and multiplication. When using these arith-
metic circuits with binary inputs and apply the respective
resource bounds, we get the same classes as by counting proof
trees in Boolean circuits. For details, see, e.g., [21]. In this paper,
we will use both definitions depending on the context.

Note that, already at the first level, the classes #AC
1
, #NC

1
,

#SAC
1
, though based on relatively close circuit classes, have a

rather different computational power. It can be seen, through

the connections between SAC
1
circuits and multiplicatively

disjoint circuits (see [18]) that #NC
1
and #SAC

1
are sub-

classes of #P. On the contrary, the class #AC
1
can output

numbers bigger than 2
nlogn

for input of size n, hence num-

bers of super-polynomial sizes in n. This comes from the fact

that the unfolding of a polynomial size, logarithmic depth

circuit with unbounded fan-in may be of size nO(logn)
. This

means that #AC
1 ⊈ #P.

Similarly, one can identify witnesses for acceptance in

first-order logic. One possibility is to do this in terms of the

two-player model-checking game for FO. In this game, player

1 and player 2 play against each other. The game starts on

the whole formula. From there, depending on the outermost

operator or quantifier (and the current roles of the players,

more on this later) a certain player makes a choice on how

to continue.

For a formula without negations the goal of player 1 is

to reach an atom that is satisfied by the input structure (we

call this role verifier) and the goal of player 2 is to reach an

atom that is not satisfied by the input structure (we call this

role falsifier). If negations occur, the players swap their roles

whenever a negation is encountered.

We now want to define the game more precisely. Since for

our purpose strategies in this game can vary over different

occurrences of identical subformulae, we assume a syntax

tree representation for formulae, that is, each formula φ is

given as φ = (V ,E, r ,L) where (V ,E, r ) is a rooted directed

tree and L is a labeling function assigning to each node in V
either one of the Boolean operators ∧, ∨ and ¬, a quantifier
∃x or ∀x for any variable x or an atom R(x) where R is a

relation symbol from the appropriate vocabulary and x is a

tuple of variables. The current subformula is given by a node

in this syntax tree, allowing a distinction between identical

subformulae.

Let φ = (V ,E, r ,L) be an FO-formula over vocabulary

σ represented as a syntax tree and A ∈ STRUC[σ ]. Then
configurations of the game for A ⊨ φ are of the form

(φ = (V ,E, r ,L),A,v,θ , s)
where v ∈ V , θ is an assignment from the free variables

in the subformula of φ rooted in v to elements of dom(A)
and s is a bit specifying whether the players have currently
swapped roles: If s = 0, player 1 has role verifier and player

2 has role falsifier and if s = 1 the roles are reversed.

The game starts in config

(φ = (V ,E, r ,L),A, r ,θ0, 0)
where θ0 is the function with empty domain. The game pro-

ceeds as follows: Let

(φ = (V ,E, r ,L),A,v,θ , s)
be a configuration of the game for A ⊨ φ. Depending on the

label L(v), the next move is either fixed or a specific player

can make a choice as follows: If L(v) is . . .
4



Model-Theoretic Characterizations of Circuit Classes of Small Depth LICS ’18, July 9–12, 2018, Oxford, United Kingdom

• ∨: Player with role verifier chooses child v ′
of v in

(V ,E, r ), game continues in (φ,A,v ′,θ , s)
• ∧: Player with role falsifier chooses child v ′

of v in

(V ,E, r ), game continues in (φ,A,v ′,θ , s)
• ¬: Game continues in (φ,A,v ′,θ , 1 − s) where v ′

is

the single child of v in (V ,E, r )
• ∃x where x is a variable: Player with role verifier

chooses a value c ∈ dom(A); game continues in con-

figuration (φ,A,v ′,θ ′, s) where v ′
is the single child

ofv in (V ,E, r ) and θ is the function defined on the set

of free variables in the subformula of φ rooted in v ′

with θ ′(y) = θ (y) for all variables y , x and θ ′(x) = c
• ∀x where x is a variable: Player with role falsifier

chooses a value c ∈ dom(A); game continues in con-

figuration (φ,A,v ′,θ ′, s) where v ′
is the single child

ofv in (V ,E, r ) and θ is the function defined on the set

of free variables in the subformula of φ rooted in v ′

with θ ′(y) = θ (y) for all variables y , x and θ ′(x) = c
In this game, player 1 wins if and only if L(v) is an atom

and either s = 0 and A ⊨ L(v) or s = 1 and A ⊭ L(v).
A strategy for player 1 in this game is a function mapping

configurations to specific choices in such a way that a choice

is specified for all configurations that give player 1 a choice

and are reachable from the starting configuration if player 1

acts according to this strategy and player 2 makes arbitrary

choices. This can be made formal by defining the configura-

tion tree of the game. Strategies of player 1 then are subtrees,

which contain the root and contain exactly one child of each

configuration that gives player 1 a choice and all children of

configurations that do not give player 1 a choice.

A winning strategy of player 1 is a strategy which lets

player 1 win independently of the choices of player 2.

Now player 1 has a winning strategy in this game if and

only if A ⊨ φ. This means that winning strategies in this

game can be seen as witnesses for acceptance in first-order

logic, which allows us to define a counting class based on

FO.

Definition 2.6. A function f : {0, 1}∗ → N is in #Win-FO,

if there is an FO-formula φ over vocabulary τstring ∪ (BIT2)
such that for allw ∈ {0, 1}∗:

f (w) = #Win(φ,Aw ),

where #Win(φ,Aw ) is the number of winning strategies of

player 1 in the model checking game for Aw ⊨ φ.

As was shown in [11], the counting versions of AC
0
and

FO coincide, i.e.: #AC
0 = #Win-FO (note that the definition

of the model checking game was different there, but the

resulting counting classes are the same).

For the quantifiers ∃b and ∀b we define the following

rules in the model checking game for FO: Here, the choosing

player is restricted to the maximal two elements satisfying

the relativization.

3 GPR
We aim to characterize counting classes from circuit complex-

ity beyond #AC
0
by counting winning strategies in different

logics. It has been proved in [6] that NC
1
can be character-

ized using FO with a certain kind of linear recursion, called

relational primitive recursion (RPR). It allows the recursive

definition of predicates in the following way:

[P(x ,y) ≡ θ (x ,y, P(x ,y − 1))]
where y − 1 is a shorthand for a term thas is uniquely deter-

mined to be equal to y − 1, which is definable since we have

arithmetic. Also, by θ (x ,y, P(x ,y − 1)) we mean that θ has

free variables x and y and can contain P(x ,y) as an atom,

but P is not allowed in θ in any other form. Semantically,

this means that P(x ,y) is defined recursively to have the

same truth value as θ (x ,y, P(x ,y − 1)) for y > 0 and P(x , 0)
is defined to be equivalent to θ (x , 0,⊥). FO(RPR) denotes the
class of languages definable by formulae of the form:

[P(x ,y) ≡ θ (x ,y, P(x ,y − 1))] φ(P)
where φ(P) is first-order and makes use of the inductively

defined P . Over structures with built-in BIT, it holds that

NC
1 = FO(RPR) [6]. This characterization does not imme-

diately generalize to the classes SAC
1
and AC

1
as well as

counting classes. However, inspired by this, we define a dif-

ferent kind of inductive definition called guarded predicative
recursion, GPR for short, that allows us to capture all these

classes in a unified way.

Definition 3.1 (GPR). FO(GPR) is the set of all formulae φ
of the following form:

φ ::= [P(x ,y) ≡ θ (x ,y, P)] φ(P) | ψ
whereψ ∈ FO and θ ∈ FO with free variables x ,y such that

each atomic sub-formula involving symbol P

1. is of the form P(x , z) where z is in the scope of a

guarded quantification Qz.(z < y/2 ∧ ξ (y, z)) with
Q ∈ {∀,∃}, ξ ∈ FO and

2. never occurs in the scope of any quantification not

guarded in this way, that is:

For allψ ∈ SF(θ ) starting with a quantifier not guarded
in the above way, it holds that P(x , z) < SF(ψ ).

Similar to the definition of RPR, we use z < y/2 as a

readable shorthand for

∃a 2 · z = a ∧ a < y.

Here, we use the extensions of order and arithmetic to tu-

ples, which are FO-definable (see, e.g., [13]). We call the part

in [ ·] a GPR-operator. We define FO(GPRbound) similarly by

allowing only bounded variants for guarded quantifications

Qbz.(z < y/2 ∧ ξ (y, z)) and FO(GPRsemi) for which univer-

sal guarded ∀z.(z < y/2 ∧ ξ (y, z)) and bounded existential

guarded ∃bz.(z < y/2 ∧ ξ (y, z)) quantifications are allowed.
5



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Arnaud Durand, Anselm Haak, and Heribert Vollmer

This approach is flexible enough to easily express prob-

lems computable by small circuit classes.

Example 3.2. The shortcake problem was defined and

proven to be AC
1
-complete in [5]. We use a variation of this

game which can be shown to still be AC
1
-complete with the

same proof. Our variation is defined as follows:

Two players, H (or 0) and V (or 1) are alternately moving

a token on an n×n Boolean matrixM . A configuration of the

game is a contiguous submatrix ofM given by the indices of

its first and last rows and columns (i0, i1, j0, j1) as well as a bit
specifying the player whose turn it is. The token is always

on the top-left corner of the current submatrix. Due to this

we do not need to explicitly store the token location. In the

beginning the submatrix is given by (1,n, 1,n) and H starts

to play.

In his turn, H tries to move the token horizontally in

the submatrix to some entry (i0, j), j0 < j ≤ j1 satisfying
Mi0, j = 1. After H ’s move either all columns to the left of j
or all columns to the right of j are removed from the current

submatrix, whichever number of columns is greater. The

token is then placed on the top-left corner of the current

submatrix. This means that the new submatrix is given by

(i0, i1, j, j1), if (j1 + j0)/2 ≤ j ≤ j1 and
(i0, i1, j0, j), otherwise

In his turn, V plays similarly but vertically on the rows. The

first player with no move left loses.

In order to give an FO(GPR)-formula expressing whether

H has a winning strategy in this game, we encode the matrix

by a binary word of lengthn2. Note that the size of the matrix

is reduced to half of the previous size in each turn.

The following formula expresses the existance of a win-

ning strategy. Here, s is an upper bound for the size of the

matrix in each step with some padding and p encodes the

current player.

Φ :=
[
P(x , s, i0, i1, j0, j1,p) ≡

p = 0 ∧ θH (x ,y) ∨ p = 1 ∧ θV (x ,y)
]
φ(P)

with φ(P) ≡ P(n, 2n2, 1,n, 1,n, 0) and θH and θV specifying

the possible moves of the players. For this, θH can be chosen

as

θH (x ,y) ≡∃z = (s ′, i ′
0
, i ′
1
, j ′
0
, j ′
1
,p ′).(z < y/2)

(s ′ ≤ s/2 − 2) ∧ p ′ = 1 ∧ i ′
0
= i0 ∧ i ′

1
= i1∧[(

j ′
0
, j0 ∧ j ′

1
= j1 ∧ (j1 + j0)/2 ≤ j ′

0
≤ j1 ∧M(i ′

0
· n + j ′

0
)
)
∨(

j ′
0
= j0 ∧ j ′

1
, j0 ∧ j0 ≤ j ′

1
< (j1 + j0)/2 ∧M(i ′

0
· n + j ′

1
)
)]
∧

P(x , s ′, i ′
0
, i ′
1
, j ′
0
, j ′
1
,p ′)

By using s we can ensure that the numerical value of the

tuple decreases to less than half of the previous value in

each step. The formula θV (x ,y) is defined analogously with

universal guarded quantification instead of the existential

one.

In [5] a variant of this game, called semicake, is shown to

be SAC
1
-complete. It is easily definable along the same lines

in FO(GPRsemi).
We now introduce a certain normal-form for circuits show-

ingmembership in NC
1
, SAC

1
andAC

1
, whichwill be needed

for our later proofs. Note that for FO-uniform circuits there

is an inherent interpretation of gates as natural numbers

due to built-in BIT in the logical language and its extension

to tuples. This also means there is an order and arithmetic

for gates using their encoding in the logic. This allows us

to define the following normal-form for circuit families: All

tuples of the appropriate size are gates (so φuniverse from the

FO-interpretation showing uniformity is always true). The∧-
gates are exactly the gates that are odd and neither input nor

negated input gates. The ∨-gates are exactly the gates that

are even and neither input nor negated input gates. Children

of gates are smaller than half of each of their parents.

Lemma 3.3. Let C ∈ {NC1, SAC1,AC1, #NC1, #SAC1, #AC1}
and L ∈ C. Then there is an FO-interpretation

I : STRUC[τstring] ∪ (BIT2) → STRUC[τcirc]
with tuple size k ∈ N that uniformly describes a circuit family
showing L ∈ C such that for allw ∈ {0, 1}∗:

1. dom(I (Aw )) = dom(Aw )k
2. for all x ∈ dom(I (Aw )):

G I (Aw )
∧ (x) if and only if

(¬InputI (Aw )(x) ∧ ¬negatedInputI (Aw )(x) ∧ x is odd)
and
G I (Aw )
∨ (x) if and only if

(¬InputI (Aw )(x)∧¬negatedInputI (Aw )(x)∧x is even)
3. for all x ,y ∈ dom(I (Aw )):

EI (Aw )(x ,y) ⇒ Numerically, y is at most half of x

Proof. Properties 1 and 2 are straightforward. For property

3, a certain unary encoding of the depth can be added to the

encoding of gates in order to halve the numerical value of

gates in each step from parent to child.

A formal proof can be found in the full version. □

4 Logical Characterizations of Small Depth
Decision Classes

We now show that the newly defined logics characterize the

classes NC
1
, SAC

1
and AC

1
, respectively.

Theorem 4.1.
1. NC1 = FO(GPRbound)
2. SAC1 = FO(GPRsemi)
3. AC1 = FO(GPR)

Proof. AC1 ⊆ FO(GPR): Let L ∈ AC
1
via the FO-uniformAC

1

circuit family C = (Cn)n∈N with the properties from Lemma

6



Model-Theoretic Characterizations of Circuit Classes of Small Depth LICS ’18, July 9–12, 2018, Oxford, United Kingdom

3.3 and Cn has depth at least 1 for all n. The latter can easily

be achieved by adding a new ∧-gate as output-gate with the

old output-gate being its only child. Let

I = (φuniverse,φG∧ ,φG∨ ,φInput,φnegInput,φE ,φoutput)
be an FO-interpretation showing that C is uniform. Here,

negInput is short for negatedInput. Furthermore, let

φLiteral(x) ··= ∃i(φInput(x , i) ∨ φnegInput(x , i)),
φtrueLiteral(x) ··= ∃i(φInput(x , i) ∧S(i) ∨φnegInput(x , i) ∧¬S(i)),

ψ (z, P(z)) =
(
P(z) ∧ ¬φLiteral(z)

)
∨ φtrueLiteral(z).

Then the following FO(GPR)-formula defines L:

Φ ··= [P(y) ≡ θ (y, P)] ∃o(φoutput(o) ∧ P(o))
with

θ (y, P) ··=
(
Even(y)∧(
(∃z.(z < y/2 ∧ φE (y, z))) ψ (z, P(z))) )∨(

Odd(y)∧(
(∀z.(z < y/2 ∧ φE (y, z))) ψ (z, P(z))) ) .

Even and Odd check the parity of the least significant bit

within the least significant variable within tuple y using BIT.

Since Odd(y) ≡ ¬Even(y), we can write θ as

θ (y, P) ≡
(
Qz.(z < y/2 ∧ φE (y, z))

)(
P(z) ∧ ¬φLiteral(z)

)
∨ φtrueLiteral(z)

where Q is either ∃ or ∀ depending on the parity of y.
Let n ∈ N andw ∈ {0, 1}n . We now prove that the predi-

cate P in the above formula (as defined by the GPR-operator)

is the valuation for the gates in circuit Cn . By definition, on

input structure Aw , the formulae from I used above give

access to Cn . We prove inductively that for any k ∈ N, P(д)
gives the value of gate д in Cn on inputw if all children of д
have depth ≤ k .

k = 0: Note that φtrueLiteral(h) gives the value of h inCn on

inputw if h is an input gate. Then for gates д all children of

which are input gates we have:

P(д) ≡
(
Qz.(z < д/2 ∧ φE (д, z))

)(
P(z) ∧ ¬φLiteral(z)︸       ︷︷       ︸

false︸                ︷︷                ︸
false

∨φtrueLiteral(z)
)
. (⋆)

By assumption, if φE (д, z) then z < д/2, and thus

z < д/2 ∧ φE (д, z) ≡ φE (д, z).
This yields

P(д) ≡
(
Qz.φE (д, z)

)
φtrueLiteral(z)

This means that P actually gives the value of д.

k → k + 1: Again, by assumption,

z < д/2 ∧ φE (д, z) ≡ φE (д, z).
We also know that for all children z of д only two cases can

occur:

If z is an input gate, then ¬φLiteral(z) is false and the truth

value of φtrueLiteral(z) is the value held by gate z.
If z is not an input gate, then φtrueLiteral(z) is false, ¬φLiteral

is true and P(z) gives the value of z by induction hypothesis.

By (⋆) this means that P(д) actually gives the value of д.
Since P gives the value of arbitrary non-input gates in Cn

on inputw for any n and we assumed that the output gate

is not an input gate, it is easy to see that the above formula

defines L: The formula behind the recursive definition of P
simply states that the output gate of the circuit evaluates to

true.

FO(GPR) ⊆ AC
1
: At first assume that only one occurrence

of GPR-operators is allowed. The proof easily extends to the

general case. Furthermore, we begin by proving the result

without negations in θ . We will explain how to handle arbi-

trary FO(GPR)-formulae afterwards.

Let L ∈ FO(GPR) via the formula

[P(x ,y) ≡ θ (x ,y, P)] φ(P).
By definition of FO(GPR), P occurs in θ only in the form

P(x , z), where z is in the scope of a guarded quantification

Qz.(z < y/2) with Q ∈ {∃,∀} and not in the scope of any

unguarded quantification. Ignoring occurrences of P , φ is

an FO-formula. Hence, we can build an AC
0
circuit family

evaluating φ except for these occurrences.

In order to compute the predicate P we proceed as follows:

θ is also an FO-formula except for occurrences of P , so we

can build for all x ,y an AC
0
circuit that computes θ (x ,y, P)

with certain input gates marked with P(x , z). The circuit

can easily be built in a way that z is part of the encoding

of gates that are marked with P(x , z). Thus, we can remove

the marks and instead connect each gate that was marked

with P(x , z) to the output gate of the subcircuit comput-

ing θ (x , z, P). Since occurrences of P(x , z) only occur within

guarded quantifications Qz.(z < y/2), there can be at most

logarithmically many steps from any P(x ,y) before reaching
P(x , 0), terminating the recursion. By the above, each such

step—computing P(x ,y), when given values of P(x , z) for cer-
tain z—can be done in constant depth leading to logarithmic

depth in total.

The gates computing values of P can now be connected

to the AC
0
circuit family evaluating φ as needed. This leads

to an AC
1
circuit family evaluating the whole formula.

Next, we talk about the case of θ containing negations.

For this, we use the same construction as above, but add a

negated version of each gate.We do this by adding a negation-

bit to the encoding of all gates (possibly with padding). This

is toggled exactly when negations occur in the quantifier-

free part. For example, consider a subformula α = β ∧ ¬γ
7



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Arnaud Durand, Anselm Haak, and Heribert Vollmer

and assume there was no negation around α . Then we have

a gate д, which will compute the truth-value of α , for which
the negation-bit is 0. We connect this to the gate for the

truth-value of β with negation-bit 0 and—since there is a

negation around γ—the gate for the truth-value of γ with

negation-bit 1.

Apart from constructing the connections in this way, the

negation-bit also changes the gate-type of gates: If a non-

negated gate is a ∨-gate, the negated version is a ∧-gate
and vice versa. Also, negated gates computing the value of

literals use the negated version of the respective literal.

In total, this construction only doubles the size of the

circuit and does not change its depth, but handles arbitrary

negations.

For the case of multiple GPR-operators, we build a circuit

for each of them in the above way. In case of nesting, we start

from the innermost operator. Adequate connections between

the different circuits are easily doable and size and depth of

the combination of all those circuits still stays within the

desired bounds.

NC
1 ⊆ FO(GPRbound) and SAC

1 ⊆ FO(GPRsemi) can both

be shown with the same formula and the same proof as

AC
1 ⊆ FO(GPR), replacing GPR by GPRbound or GPRsemi,

respectively.

FO(GPRbound) ⊆ NC
1
: This can be proven completely anal-

ogously to FO(GPR) ⊆ AC
1
. Instead of AC

0
circuit families

for evaluation of φ and θ , we now use NC
1
circuit families.

This leads to logarithmic depth for evaluation of θ . In gen-

eral, repeating this for logarithmically many steps would be

a problem. By definition there are no occurrences of P inside

any unbounded quantifier, though. For the bounded quanti-

fiers, we still create subcircuits for all possible values for the

quantified variable, but we only connect the maximal two

satisfying the relativization to the parent. This ensures that

gates markedwith P(x , z) for some x , z still only occur in con-
stant depth in the circuit evaluating θ (x ,y, P), this time with

only bounded fan-in gates. Consequently, the construction

still only leads to logarithmic depth in total.

FO(GPRsemi) ⊆ SAC
1
: Here, the same trick as for NC

1
can

be used. θ can be evaluated using anNC1
circuit family which

is also an SAC
1
circuit family. Also, the semi-unboundedness

of the quantifiers around occurrences of P directly corre-

sponds to the semi-unboundedness in SAC
1
circuit families.

□

The proof of the inclusion AC
1 ⊆ FO(GPR) also imme-

diately gives us the following normal-form for our logical

classes.

Corollary 4.2. Let G ∈ {GPR,GPRbound,GPRsemi}. Then

FO(G) = G-FO,

where G-FO denotes the class of languages definable in first-
order logic with one GPR-operator in the beginning.

5 Logical Characterizations of Small Depth
Counting Classes

Next, we want to define the game semantics for our new log-

ics. Let φ be an FO(GPR) formula and A an input structure.

The GPR-operators within the formula are global informa-

tion in the model-checking game for A ⊨ φ. Configurations
of the game are of the form

(ψ ,A,θ , s,H )
whereψ is the current formula,A is the input structure, θ is

an assignment to the free variables inψ , s is a bit specifying
whether the players currently swapped roles and H is the

complete history of choices made up to this point. The game

starts in configuration

(ψ ,A,θ0, 0,H0)
where ψ is the subformula of φ to the right of the GPR-

operators (soψ ∈ FO), θ0 is the function on empty domain

and H0 is the empty history. The game then proceeds in

the same way as the model-checking game for FO, but the

history is kept in H and occurrences of predicates defined

by GPR have to be handled: Whenever a predicate symbol

P defined by GPR is reached, the game continues on the

recursive definition given by the respective GPR-operator

(without changing the input structure, the assignment, the

s-bit or the history).
A strategy of player 1 is again a function mapping con-

figurations to specific choices in such a way that a choice

is specified for all configurations that give player 1 a choice

and are reachable from the starting configuration if player 1

acts according to this strategy and player 2 makes arbitrary

choices. Since the history is part of the configuration, choices

may differ throughout the recursion. Winning strategies of

player 1 are strategies of player 1 that allow him to win

independent of the choices made by player 2.

Similar to the approach in [11], we can also count the

number of winning strategies of the verifier.

Definition 5.1. A function f : {0, 1}∗ → N is in the class

#Win-FO(GPR), if there is an FO(GPR)-formula φ over vo-

cabulary τstring ∪ (BIT2) such that for allw ∈ {0, 1}∗:
f (w) = #Win(φ,Aw ),

where #Win(φ,Aw ) is the number of winning strategies of

player 1 in the model checking game for Aw ⊨ φ.

#Win-FO(GPRbound) and #Win-FO(GPRsemi) are defined

analogously.

This then gives us characterizations of the counting ver-

sion of the corresponding classes from circuit complexity:

Theorem 5.2.
1. #NC1 = #Win-FO(GPRbound)
2. #SAC1 = #Win-FO(GPRsemi)
3. #AC1 = #Win-FO(GPR)

8



Model-Theoretic Characterizations of Circuit Classes of Small Depth LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Proof. The proof idea is very similar to the one used for the

decision version. We again begin by proving the unbounded

version.

#AC
1 ⊆ #Win-FO(GPR): Let f ∈ #AC

1
via the FO-uniform

AC
1
circuit family C = (Cn)n∈N with the properties from

Lemma 3.3 and Cn has depth at least 1 for all n. The latter
can easily be achieved by adding a new∧-gate as output-gate
with the old output-gate being its only child. Let

I = (φuniverse,φG∧ ,φG∨ ,φInput,φnegatedInput,φE ,φoutput)

be an FO-interpretation showing that C is uniform. Further-

more, letψ , φLiteral and φtrueLiteral be defined as in the proof

of Theorem 4.1 and θ be defined as follows:

θ (y, P) ··=(
Even(y) ∧

(
(∃z.(z < y/2 ∧ φE (y, z)))ψ (z, P(z))) )∨(

Odd(y) ∧
(
(∀z.(z < y/2 ∧ φE (y, z)))ψ (z, P(z))∧

(z < y/2 ∧ φE (y, z))
) )
.

Then

Φ ··= [P(y) ≡ θ (y, P)] ∃o(φoutput(o) ∧ P(o))

defines f . Note that φE (y, z) within the relativization for z
can be moved outside the relativization without changing

the number of winning strategies, leading to an FO(GPR)-
formula with the same number of winning strategies. Also,

compared to the proof of Theorem 4.1 the guard is added a

second time as part of the formula following the quantifier.

This is, because relativized quantifications are defined as

shorthands for usual quantifications. In the case of univer-

sal quantifications, the resulting disjunction possibly adds

additional winning strategies. To prevent this, the guard is

added afterψ .
Now let n ∈ N and w ∈ {0, 1}n . We now show that the

number of winning strategies in the game for Aw ⊨ Φ is

exactly the number of proof trees of C |w | on inputw .

In the following we use #Win(φ(c)) where c is a tuple of
elements of dom(A), as notation for the number of win-

ning strategies of player 1 in the game for A ⊨ Φ starting

from a configuration with an assignment that assigns vari-

ables according to c and an arbitrary history. Odd(y) can be

constructed such that #Win(Odd(c)) ∈ {0, 1} for all c and
Even(y) can be constructed such that for all c we have

#Win(Even(c)) = 1 − #Win(Odd(c)).

This means that for all c it holds that

#Win(θ (c))

(possibly with occurrences of P in θ ) is equal to

#Win

( (
Qz.(z < c/2 ∧ φE (c, z))

)(
P(z) ∧ ¬φLiteral(z) ∨ φtrueLiteral(z)

)
∧(

z < c/2 ∧ φE (c, z
) )

where Q is either ∃ or ∀ depending on the parity of c .
We now prove that the number of winning strategies

#Win(P(д)) is exactly the number of proof trees of the sub-

circuit of Cn rooted in д. By definition, on input structure

Aw , the formulae from I used above give access to Cn . We

prove inductively that for any k ∈ N, #Win(P(д)) gives the
number of proof trees of the subcircuit of Cn rooted in д on

inputw if all children of д have depth ≤ k .

k = 0: Note that φtrueLiteral(h) gives the value of h in Cn

on inputw if h is an input gate and that for these gates the

value of the gate is equal to the number of proof trees of the

subcircuit rooted in them. This means that for gates д all

children of which are input gates we have:

#Win(P(д)) = #Win(Qz.(z < д/2 ∧ φE (д, z))(
P(z) ∧ ¬φLiteral(z) ∨ φtrueLiteral(z)

)
= ⃝
z∈dom(Aw )k ,
z<д/2∧φE (д,z)

#Win(P(z) ∧ ¬φLiteral(z) ∨ φtrueLiteral(z)),

(⋆⋆)

where ⃝ is either summation or multiplication depending

on the parity ofд. Note that this summation or multiplication

always occurs here, since strategies can differ depending on

the history.

We can assume that there is exactly one winning strategy

showing φLiteral, respectively φtrueLiteral, if it is true (and none
otherwise). Since k = 0, we know that for all z that meet the

conditions, φLiteral(z) is true yielding
#Win(P(д)) = ⃝

z∈dom(Aw )k ,
z<д/2∧φE (д,z)

#Win(φtrueLiteral(z)).

By assumption, if φE (д, z) then z < д/2, and thus z < д/2 ∧
φE (д, z) ≡ φE (д, z).

This means that #Win(P(д)) is exactly the number of proof

trees of the subcircuit of Cn rooted in д.
k → k + 1: Again, by assumption, z < д/2 ∧ φE (д, z) ≡

φE (д, z). We also know that for all children z of д only two

cases can occur:

If z is an input gate, then we have that #Win(¬φLiteral(z)) =
0 and #Win(φtrueLiteral(z)) is exactly the number of proof trees

of the subcircuit of Cn rooted in z.
If z is not an input gate, then by assumption we have

that #Win(φtrueLiteral(z)) = 0, #Win(¬φLiteral) = 1 and by

induction hypothesis #Win(P(z)) is exactly the number of

proof trees of the subcircuit of Cn rooted in z.
By (⋆⋆) this means that #Win(P(д)) is equal to the number

of proof trees of the subcircuit of Cn rooted in д.
9



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Arnaud Durand, Anselm Haak, and Heribert Vollmer

Now for every w ∈ {0, 1}∗ and non-input gate д in C |w |
we have: #Win(P(д)) is the number of proof trees of the

subcircuit of C |w | on inputw that is rooted in д. Thus, it is
easy to see that the above formula defines f : It can be seen

almost immediately that the number of winning strategies

of the formula behind the recursive definition of P is the

number of winning strategies for P(output), where output is
the unique element satisfying φoutput. By the induction above

this is equal to the number of proof trees of circuit C |w | .
#Win-FO(GPR) ⊆ #AC

1
: This can be proven completely

analogously to the decision version. Counting proof trees of

the constructed circuit family leads exactly to the function

given by the number of winning strategies of the formula

we started with.

The inclusions #NC
1 ⊆ #Win-FO(GPRbound) and #SAC1 ⊆

#Win-FO(GPRsemi), that is, the bounded and the semi-un-

bounded case, can—as for the decision version—both be

shown with the same formula as the unbounded case by

changing the GPR-operator to a GPRbound- or GPRsemi-op-

erator, respectively.

The converse directions, that is, #Win-FO(GPRbound) ⊆
#NC

1
and #Win-FO(GPRsemi) ⊆ #SAC

1
, can also be shown

analogoulsy, using again the restriction that P occurs only

within bounded quantifiers within θ . □

Analogously to the decision version, the proof again al-

lows us to establish a normal-form for our new logical classes.

Corollary 5.3. Let G ∈ {GPR,GPRbound,GPRsemi}. Then
#Win-FO(G) = #Win-G-FO,

where #Win-G-FO denotes the class of functions that can be
described as the number of winning strategies for first-order
formulae with one GPR-operator in the beginning.

Remark 2. To further show the robustness of our classes, we
want to mention certain variations of our logics that do not
change the resulting complexity classes. For all decision classes,
we can drop condition 2 from Definition 3.1 without changing
the class. For #Win-FO(GPR) the same holds.

For #Win-FO(GPRbound) and #Win-FO(GPRsemi), condition
2 cannot be dropped but can be replaced by the following
weaker version: “never occur in the scope of any universal
quantification not guarded in this way”.

6 Conclusion
We extended the only so-far known logical characterization

of an arithmetic circuit class, namely #AC
0 = #Win-FO [11],

to arithmetic classes defined by circuits of logarithmic depth.

In order to achieve this, we first had to develop logical char-

acterizations of the corresponding Boolean classes.

The result from [11] was used in [7] to place #AC
0
in a

strict hierarchy of counting classes within #P. In this way,

lower bounds for several logically-defined arithmetic classes

were obtained. Our hope is that the characterizations of

larger arithmetic classes presented here will also lead to new

insights about these and hopefully spur development of new

upper and lower bounds, e.g., is #NC
1 ⊆ NC

1
? Is #NC

1 , #P?

Is NC
1 , PP?

References
[1] Miklós Ajtai. 1983. Σ1

1
-Formulae on Finite Structures. Ann. Pure Appl.

Logic 24, 1 (1983), 1–48.
[2] Marcelo Arenas, MartinMuñoz, and Cristian Riveros. 2017. Descriptive

Complexity for counting complexity classes. In LICS. IEEE Computer

Society, 1–12.

[3] David A. Mix Barrington and Neil Immerman. 1994. Time, hardware,

and uniformity. In Proceedings 9th Structure in Complexity Theory. IEEE
Computer Society Press, 176–185.

[4] David A. Mix Barrington, Neil Immerman, and H. Straubing. 1990. On

uniformity within NC
1
. J. Comput. System Sci. 41 (1990), 274–306.

[5] Ashok K. Chandra and Martin Tompa. 1990. The complexity of short

two-person games. Discrete Applied Mathematics (Jan. 1990), 21–33.
[6] Kevin J. Compton and Claude Laflamme. 1990. An Algebra and a Logic

for NC
1
. Inf. Comput. 87, 1/2 (1990), 240–262. https://doi.org/10.1016/

0890-5401(90)90063-N
[7] Arnaud Durand, Anselm Haak, Juha Kontinen, and Heribert Vollmer.

2016. Descriptive Complexity of #AC
0
Functions. In CSL 2016 (LIPIcs),

Vol. 62. 20:1–20:16. https://doi.org/10.4230/LIPIcs.CSL.2016.20
[8] Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas. 1994.

Mathematical logic. Springer-Verlag.
[9] Gudmund Skovbjerg Frandsen, Mark Valence, and David A. Mix Bar-

rington. 1994. Some Results on UniformArithmetic Circuit Complexity.

Mathematical Systems Theory 27, 2 (1994), 105–124.

[10] Merrick L. Furst, James B. Saxe, and Michael Sipser. 1984. Parity,

Circuits, and the Polynomial-Time Hierarchy. Mathematical Systems
Theory 17, 1 (1984), 13–27. https://doi.org/10.1007/BF01744431

[11] Anselm Haak and Heribert Vollmer. 2016. A Model-Theoretic Charac-

terization of Constant-Depth Arithmetic Circuits. In WoLLIC (Lecture
Notes in Computer Science), Vol. 9803. Springer, 234–248.

[12] Neil Immerman. 1989. Expressibility and Parallel Complexity. SIAM J.
Comput. 18, 3 (1989), 625–638. https://doi.org/10.1137/0218043

[13] Neil Immerman. 1999. Descriptive complexity. Springer.
[14] Neeraj Kayal and Ramprasad Saptharishi. 2014. A Selection of Lower

Bounds for Arithmetic Circuits. In Perspectives in Computational Com-
plexity: The Somenath Biswas Anniversary Volume. Birkhäuser, 77–116.

[15] Clemens Lautemann, Pierre McKenzie, Thomas Schwentick, and Herib-

ert Vollmer. 2001. The Descriptive Complexity Approach to LOGCFL.

J. Comput. Syst. Sci. 62, 4 (2001), 629–652.
[16] Leonid Libkin. 2004. Elements of Finite Model Theory. Springer. https:

//doi.org/10.1007/978-3-662-07003-1
[17] Meena Mahajan. 2014. Algebraic Complexity Classes. In Perspectives in

Computational Complexity: The Somenath Biswas Anniversary Volume,
Manindra Agrawal and Vikraman Arvind (Eds.). Birkhäuser, 51–75.

[18] Guillaume Malod and Natacha Portier. 2008. Characterizing Valiant’s

algebraic complexity classes. Journal of Complexity 24, 1 (Feb. 2008).

[19] Sanjeev Saluja, K. V. Subrahmanyam, and Madhukar N. Thakur. 1995.

Descriptive Complexity of #P Functions. J. Comput. System Sci. 50, 3
(1995), 493–505.

[20] Ramprasad Saptharishi. 2017. A survey of known lower bounds

in arithmetic circuits. A continuously updated git survey. (2017).

https://github.com/dasarpmar/lowerbounds-survey.

[21] Heribert Vollmer. 1999. Introduction to Circuit Complexity - A Uniform
Approach. Springer.

Acknowledgments
We thank the anonymous reviewers for helpul comments.

10

https://doi.org/10.1016/0890-5401(90)90063-N
https://doi.org/10.1016/0890-5401(90)90063-N
https://doi.org/10.4230/LIPIcs.CSL.2016.20
https://doi.org/10.1007/BF01744431
https://doi.org/10.1137/0218043
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1

	Abstract
	1 Introduction
	2 Preliminaries
	3 GPR
	4 Logical Characterizations of Small Depth Decision Classes
	5 Logical Characterizations of Small Depth Counting Classes
	6 Conclusion
	References
	Acknowledgments

