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Monotone computation

Informally, we consider a computation ‘monotone’ if it does not use the ‘negation’
operation. The most well-known example of this phenomenon is the case of
Boolean circuits without negation, i.e. over the basis {⊥,>,∨,∧}, often called
monotone circuits, which are fundamental objects of study in circuit complexity.

The subject of uniform monotone computation is much less studied. To this
end Grigni and Sipser initiated a line of work in [11,10], while Lautemann,
Schwentick and Stewart proposed several definitions of the ‘positive’ polynomial-
time predicates which they showed coincide [14,15]. In recent work, [9], we pro-
posed a function algebra characterising the positive polynomial-time functions
by ‘uniformising’ Cobham’s characterisation of the (non-monotone) polynomial-
time functions [4].

Monotone proofs

Working in the setting of the (propositional) sequent calculus, we call a proof
monotone if the ¬ symbol does not occur in it. Namely the system MLK is de-
fined just as Gentzen’s LK but over the basis {⊥,>,∨,∧}. In their seminal work
[1], Atserias, Galesi and Pudlàk showed that tree-like MLK quasipolynomially
simulates LK over monotone implications. Their proof relies on a formalisation
of certain counting arguments and boils down to the existence of monotone for-
mulae for the threshold functions whose basic properties have small proofs in
MLK . This result was recently improved to a polynomial simulation thanks to
a combination of rather technical results by various authors, [1,12,2].

One motivation for the present work-in-progress is to explore whether the
aforementioned results might be simplified or reformulated via a logical ap-
proach. Apart from offering a complementary understanding of these results,
such research might also shed some light on how to extend the polynomial simu-
lation to tree-like MLK or even weaker systems in ‘deep inference’, whose proof
complexity status remain open, cf. [7].
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Towards theories for monotone feasible reasoning

In this work-in-progress, we propose to complete the proof complexity theoretic
account of monotone proofs with extension, by proposing arithmetic theories
that formally link them to the positive polynomial time functions. Monotone
proofs with extension were proposed by Jeřábek in [13], who showed that they
polynomially simulate extended Frege over monotone implications, thanks to
natural monotone AC1-definitions of threshold functions.

Building on [9], we consider a version of Cook’s PV (cf. [5]) adapted for
monotone polynomial-time. On top of this we build logical theory in such a
way that only monotone functions remain definable. The key issue herein, for
witnessing arguments, is the case of right-contraction:

Γ ⇒ ∆,A,A

Γ ⇒ ∆,A

Such steps translate to conditionals at the level of computation, which are in-
herently non-monotone. To avoid this issue we consider a minimal variant of
intuitionistic logic, recovering metalogical reasoning while retaining monotonic-
ity of definable functions. We propose a theory mPV 1 such that:

1. The provably total monotone functions of mPV 1 are precisely the positive
polynomial-time functions, in the sense of [9].

2. Provable equations of mPV 1 translate to polynomial-size monotone proofs
with extension, in the sense of [13].

3. mPV 1 proves a reflection principle for monotone proofs with extension.

This work is thematically similar to a previous work, [8], where intuitionis-
tic second-order theories for monotone systems were proposed using the Paris-
Wilkie translation. Here we rather consider systems with extension via Cook’s
translation, in a ‘ground-up’ approach. As well as additionally giving an asso-
ciated witnessing result, we manage to avoid the quasipolynomial blowup that
occurs in [8] and aim to recover a ‘monotone’ version of Buss’ theory S1

2 for
polynomial-time [3]. With such a theory, it would be interesting to see if logical
methods, e.g. as developed in [6], might offer alternative monotone simulations
of non-monotone proofs.
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