
Classical realizability as a classifier for nondeterminism
Guillaume Geoffroy

guillaume.geoffroy@univ-amu.fr
Institut de mathématiques de Marseille

Aix-Marseille Université
France

Abstract
We show how the language of Krivine’s classical realizability may
be used to specify various forms of nondeterminism and relate them
with properties of realizability models. More specifically, we intro-
duce an abstract notion of multi-evaluation relation which allows
us to finely describe various nondeterministic behaviours. This de-
fines a hierarchy of computational models, ordered by their degree
of nondeterminism, similar to Sazonov’s degrees of parallelism.
What we show is a duality between the structure of the charac-
teristic Boolean algebra of a realizability model and the degree of
nondeterminism in its underlying computational model.

ACM Reference Format:
Guillaume Geoffroy. 2018. Classical realizability as a classifier for nondeter-
minism. In LICS ’18: LICS ’18: 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, July 9–12, 2018, Oxford, United Kingdom. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3209108.3209140

1 Introduction
Classical realizability Realizability is an instance of the formulas-
as-types/proofs-as-programs correspondence in which each for-
mula is interpreted as the specification of a certain computational
behaviour. Initially, this correspondence (and hence realizability)
was limited to intuitionistic reasoning, until Griffin noted a con-
nection between control operators and classical reasoning [4],
which lifted this limitation. Classical realizability is an extension
of Kleene’s realizability to accommodate classical reasoning: using
control operators, Krivine developed a theory capable of interpret-
ing all classical reasoning within second-order arithmetic ([11, 12])
and Zermelo–Fraenkel set theory with dependent choice ([6–9, 13]).
Subsequently, Miquel adapted this framework to higher-order arith-
metic [15].

Following intuitionistic realizability, Krivine’s framework ismade
of three ingredients:

• A computational model (in Krivine’s setting, it is called a
realizability algebra). In general, it is a set of programs (with
an operational semantics);

• A logical language (for arithmetic, higher-order arithmetic or
set theory), together with a realizability relation expressing
the fact that a given program realizes a given formula. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00
https://doi.org/10.1145/3209108.3209140

essential result is the adequacy lemma which states that
classical realizability is compatible with deduction rules;

• A realizability model (in the usual sense of model theory),
which satisfies all formulas that are realized. Such a model
must exist by the completeness theorem. Krivine noted that
this construction may be seen as an extension of Cohen’s
forcing construction [2]. Here, we will not look at it directly,
nor even define it explicitly: we will look at realizability
theories (i.e. consistent sets of realized formulas) rather than
realizability models.

In Krivine’s framework, each realizability model comes with a
characteristic Boolean algebra 2ג (“gimel 2”) [13] whose structure
encodes interesting properties of the model. In particular, forcing
models correspond to the degenerate case where 2ג = {0, 1}.

In order to emphasise the central role of the characteristic Boolean
algebra, let us recall that classical realizability gives rise to surpris-
ing models of set theory (such as the model of threads [13]), whose
strange set-theoretic properties are mostly direct consequences of
the structure of their characteristic Boolean algebras.

As noted above, classical realizability can be seen as an extension
of forcing. However, while there are plenty of theoretical results
connecting the properties of a forcing model to the structure of the
underlying forcing set, there is currently a severe lack of general
results connecting the properties of a classical realizability model
to the properties of the underlying computational model. The goal
of this paper is to start addressing this state of affairs by two means.
First, by proving new results of this kind (namely, results which con-
nect the presence of nondeterminism in the computational model
with the size of the characteristic Boolean algebra in the realizabil-
ity model), and second, by introducing a new framework which
should make it easier, in the future, to find such results.

Nondeterminism The logical language can be extended by adding
realizability connectives (such as union “∪” and intersection “∩”),
which may in particular be used to express various forms of nonde-
terminism in the computational model.

For example, we will see that the formula ∀X∀Y X → Y →
X ∩ Y specifies the may-nondeterministic choice operator “fork”,
which takes two programs as arguments and does whatever either
does. Dually the formula ∀X∀Y X → Y → X ∪ Y specifies the
must-nondeterministic choice operator “choose”, which takes two
programs as arguments and only does what both do.

It is known that adding a must-nondeterministic choice opera-
tor does not change the realizability model (no new formulas are
realized), and that adding a may-nondeterministic choice operator
collapses it into a forcing model.

However, we show that adding more subtle nondeterministic
instructions corresponding to different mixes of may and must has
the effect of altering the properties of .2ג To this end, we define
an abstract notion of multi-evaluation relation which can express
arbitrary mixes of may- and must-nondeterminism such as Kleene’s

https://doi.org/10.1145/3209108.3209140
https://doi.org/10.1145/3209108.3209140

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Guillaume Geoffroy

“parallel or” [5], Berry’s “Gustave’s function” [1], and Trakhtenbrot’s
“voting function” [18], as well as generalisations thereof.

Outline We recall Krivine’s formalisation of classical realizability
– in the context of second-order arithmetic – (sections 2 and 3). Our
presentation follows closely those given by Krivine and Miquel,
except that, instead of individual poles, we consider sets of poles
(which we call realizability structures), a formula being realized
if it has a common realizer for all the poles in the structure. The
rationale behind this is that realizability structures are a notion
dual to multi-evaluation relations.

Then, we define the notion of multi-evaluation relation (section
4) and show that each multi-evaluation relation defines a unique
realizability structure.

Next, we analyse in detail particular examples of such mixes, to
notice that they are organised in a hierarchy, in terms of both their
computational expressiveness and the properties of 2ג to which
they correspond (sections 6 and 5). This hierarchy is reminiscent
of Sazonov’s degrees of parallelism [17].

Finally, we prove that this hierarchy does not collapse: each level
is indeed strictly more expressive than the levels below (section 7).
To this end, we prove that 2ג can be made elementarily equivalent
to any finite Boolean algebra with at least two elements. The case of
Boolean algebras with 4 elements was stated and proved by Krivine
[7], but the method used here is new.

The contributions of this paper are:

• The dual notions of realizability structures and multi-evalua-
tion relations,

• The results connecting the size of 2ג to voting functions,
parallel or and Gustave’s function (the result about fork is
due to Krivine),

• The method presented in section 7, which fits nicely in the
framework developed here, and will be used in some future
work to prove the same result about all Boolean algebras,
not just the finite ones.

2 Classical realizability semantics
Following Krivine [13], we define the model of computation and
the logical language which will be used throughout this paper, and
we connect them through the classical realizability interpretation.

2.1 The computational model: the λc -calculus
The λc -calculus is a model of computation which extends pure λ-
calculus (with a specific evaluation strategy, namely: weak head β-
reduction) by the addition of a control operator cc (call-with-current-
continuation). It is made up of three kinds of syntactic entities:
λc -terms, stacks and processes.

Definition 1. Let us fix a countably infinite set of variables. The
sets of λc -terms, stacks and processes are defined by the following
grammars, modulo α-equivalence (free and bound variables are
defined as usual, abstraction being the only binding construction):

λc -terms:
t ,u ::= x (x variable)

| tu (t ,u λc -terms – application)
| λx .t (x variable, t λc -term – abstraction)
| cc (call-with-current-continuation)
| kπ (π stack – continuation constants)
| ξn (n ∈ N – nonrestricted instructions)
| ηn (n ∈ N – restricted instructions),

Stacks:
π ::= ωn (n ∈ N – stack bottoms)

| t •π (t closed λc -term, π stack),
Processes:

p ::= t ⋆ π (t closed λc -term, π stack).

The additional instructions (i.e. ξn and ηn) will serve as customiz-
able instructions: the evaluation relation of the λc -calculus, which
we will define in this section, gives no evaluation rule for them,
and therefore treats them as inert constants. On the other hand,
in section 4, we will define multi-evaluation relations, which can
specify evaluation rules for these instructions: thus, the meaning
of a given additional instruction will depend on the particular eval-
uation relation which we are considering at the moment. Typically,
they will represent nondeterministic choice operators.

Intuitively, restricted instructions correspond to privileged in-
structions of real-world processors (which cannot be called directly
be the user), while unrestricted instructions correspond to system
calls (through which the user can access privileged instructions, in
a controlled fashion).

From now on, closed λc -terms will be simply called terms.
The set of terms is denoted by Λ, the set of stacks by Π and the

set of processes by Λ⋆Π.
If t ⋆ π is a process, we call t its head term and π its stack.
Application is left-associative (so tuvw means ((tu)v)w) and has

higher priority than abstraction (so λx .tu means λx .(tu)). We write
tnu for t applied n times to u.

Substitutions [10]. Given any list of λc -terms t ,u1, . . . ,un and
any list of distinct variables x1, . . . ,xn , we will denote by t[x1 :=
u1, . . . ,xn := un] the λc -term obtained by replacing simultaneously
each free occurrence of xi by ui in t for i = 1, . . . ,n.

Definition 2. The evaluation relation of the λc -calculus, denoted
by ≻K, is the smallest preorder on Λ⋆Π satisfying the following
rules:

tu ⋆ π ≻K t ⋆u •π (push)
λx .t ⋆u •π ≻K t[x := u] ⋆ π (grab)
cc ⋆ t •π ≻K t ⋆ kπ •π (save)
kπ ′ ⋆ t •π ≻K t ⋆ π ′ (restore)

The one-step evaluation relation of λc -calculus, denoted by ≻1
K,

is the smallest binary relation on Λ⋆Π satisfying these rules.

The push and grab rules simulateweak head β-reduction; theywill
make the realizability interpretation compatible with intuitionistic
logic. The save and restore rules allow a program (i.e. a term) to save
its evaluation context (i.e. the stack), and restore it later; they will
make the realizability interpretation compatible with classical logic.

Remark. The one-step evaluation relation is deterministic: for all
p,q,q′, if p ≻1

K q and p ≻1
K q′, then q = q′.

Classical realizability as a classifier for nondeterminism LICS ’18, July 9–12, 2018, Oxford, United Kingdom

2.2 The realizability language
The realizability language is a second-order logical language, whose
first-order terms are intended to represent integers.

Definition 3. We fix a set of first-order variables, and for each nat-
ural number n, we fix a set of n-ary propositional variables. Those
sets are taken pairwise disjoint and countably infinite. The sets
of first-order terms and of formulas are described by the following
grammars, modulo α-equivalence (the binding constructions being
first- and second-order universal quantifications).

First order terms:
a,b ::= x (x first-order variable)

| f (a1, . . . ,an) (f : Nn → N),
Formulas:
A,B ::= X (a1, . . . ,an) (X n-ary relational variable)

| ⊤ | ⊥ | A → B | ∀x A | ∀X A

| (a = b) ↪→ A | A ∩ B | A ∪ B
| F (a1, . . . ,an) (F : Nn → P(Π)).

All formulas can be interpreted as describing program behaviours.
In addition, formulas which only contain first-order terms, propo-
sitional variables, ⊤, ⊥, → and ∀ also have a logical meaning: they
can be interpreted in N (or any model of second-order arithmetic).
These formulas are called arithmetic formulas.

The construction (a = b) ↪→ A is called equational implcation.
As we will see later, it is logically equivalent to regular implication
((a = b) → A), and its interest lies in the fact that realizers of
(a = b) ↪→ A are easier to read, write and understand than realizers
of (a = b) → A (they involve less “red tape”).

We write a , b for (a = b) ↪→ ⊥.
Caution: we use the same letters for first-order variables and

variables of λc -calculus. It will always be clear from context which
is which.
Additional connectives. Equality and additional logical connec-
tives are defined by the usual second-order encodings:

• a = b means ∀Z , Z (a) → Z (b);
• A ∧ B means ∀Z , (A → B → Z) → Z ;
• A ∨ B means ∀Z , (A → Z) → (B → Z) → Z ;
• ¬Ameans A → ⊥;
• A ↔ B means (A → B) ∧ (B → A);
• ∃x Ameans ∀Z , (∀x , A → Z) → Z ;
• ∃X Ameans ∀Z , (∀X , A → Z) → Z .

Connectives are, from highest to lowest precedence: ¬, ,, =, ∩,
∪, ∧, ∨, →, ↪→, ↔, ∃ and ∀. In addition, ∧ ∨, ∩ and ∪ are left-
associative, and → is right-associative.
First-order substitutions. Given any formula or first-order term
α , any list of first-order terms b1, . . . ,bn and any list of distinct
first-order variables x1, . . . ,xn we denote by α[x1 := u1, . . . ,xn
:= un] the formula or the first-order term obtained by replacing
simultaneously each free occurrence of xi by bi in α for i = 1, . . . ,n.
Second-order substitutions. Given any two formulasA,B, anyn-
ary propositional variable X and any list of distinct first-order vari-
ables y1, . . . ,yn , we denote by A[X (y1, . . . ,yn) := B] the formula
obtained by replacing X by B inA. Specifically, each free occurence
of X of the form X (a1, . . . ,an), is replaced by B[y1 := a1, . . . ,yn
:= an].
Formulas and terms with parameters. Given any formula or
first-order termα and any list of distinct first-order variablesx1, . . . ,

xn containing at least all the free variables of α , we will sometimes
denote α by α(x1, . . . ,xn) (the point of this notation is to order
the free variables of α). In that case, given any list of first-order
terms a1, . . . ,an we will write α(a1, . . . ,an) for α[x1 := a1, . . . ,xn
:= an].

When writing first-order terms, we will use all sorts of abuses of
notation, such as writing a+b instead of +(a,b), or∑n

i=1 ai instead
of +(a1, . . . ,an), etc.

In addition, if A1, . . .An are formulas and ⊙ is ∧, ∨, ∩ or ∪, we
will write

⊙n
i=1 Ai for A1 ⊙ . . . ⊙ An .

2.3 Classical realizability
Definition 4. A pole is a set of processes which is closed by anti-
evaluation, that is to say, a set ⊥⊥ ⊆ Λ⋆Π such that for all p,q ∈
Λ⋆Π, if p ≻K q and q ∈ ⊥⊥, then p ∈ ⊥⊥. The set of all poles is
denoted by S0.

Definition 5. Leta be a closed first-order term. The value ofa, writ-
ten v(a) is the integer defined (inductively) by v(f (a1, . . . ,an)) =
f (v(a1), . . . ,v(an)).

Definition 6. Let ⊥⊥ be a pole and X a subset of Π. The dual of X
with respect to ⊥⊥, denoted byX⊥⊥, is the set {t ∈ Λ;∀π ∈ X , t⋆π ∈
⊥⊥}.

Definition 7. Let ⊥⊥ be a pole and A a closed formula. The falsity
value of A with respect to ⊥⊥, denoted by ∥A∥⊥⊥, is the subset of
P(Π) defined below, and the truth value of A with respect to ⊥⊥,
denoted by |A|⊥⊥, is defined as (∥A∥⊥⊥)⊥⊥.

Falsity values of closed formulas are defined as follows:
• ∥⊤∥⊥⊥ = ∅, ∥⊥∥⊥⊥ = P(Π);
• ∥A → B∥⊥⊥ = {t •π ; t ∈ |A|⊥⊥ ,π ∈ ∥B∥⊥⊥};
• ∥∀x A∥⊥⊥ =

⋃
n∈N ∥A[x := n]∥⊥⊥;

• ∥∀X A∥⊥⊥ =⋃
F :Nn→P(Π)

∥A[X (y1, . . . ,yn) := F (y1, . . . ,yn)]∥⊥⊥

• ∥(a = b) ↪→ A∥⊥⊥ =
{

∥A∥⊥⊥ if v(a) = v(b)
∥⊤∥⊥⊥ otherwise;

• ∥A ∩ B∥⊥⊥ = ∥A∥⊥⊥ ∪ ∥B∥⊥⊥;
• ∥A ∪ B∥⊥⊥ = ∥A∥⊥⊥ ∩ ∥B∥⊥⊥;
• ∥F (a1, . . . ,an)∥⊥⊥ = F (v(a1), . . . ,v(an)).

Notation. Let A be a closed formula. We denote by ∥A∥ the func-
tion which maps ⊥⊥ to ∥A∥⊥⊥, and by |A| the function which maps
⊥⊥ to |A|⊥⊥.

Definition 8. Let A be a closed formula, t a term and ⊥⊥ a pole. If
t ∈ |A|⊥⊥, we say that t realizes A with respect to ⊥⊥, and we write
t ⊩⊥⊥ A.

Definition 9. Let A be a closed formula and t a term. We say that
t realizes A universally if t realizes A with respect to every pole.

Remark. Let ⊥⊥ be a pole. For all X ,Y ⊆ P(Π), if X ⊆ Y , then
X⊥⊥ ⊇ Y⊥⊥. Therefore, for all closed formulas A and B, if ∥A∥⊥⊥ ⊆
∥B∥⊥⊥, then |A|⊥⊥ ⊇ |B |⊥⊥ – in particular, the identity term λx .x
realizes B → A.

Semantic equivalence and semantic subtyping [16]. Let A
and B be two closed formulas. If ⊥⊥ is a pole, we write A ≈⊥⊥ B
if ∥A∥⊥⊥ = ∥B∥⊥⊥ and A ≲⊥⊥ B if ∥A∥⊥⊥ ⊇ ∥B∥⊥⊥. Moreover, we
write A ≈ B if A ≈⊥⊥ B for all ⊥⊥, and A ≲ B if A ≲⊥⊥ B for all ⊥⊥.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Guillaume Geoffroy

2.4 Adequacy
2.4.1 Typing λc -terms
We type λc -terms with (non-necessarily closed) formulas of the
realizability language.

A context is a finite set of hypotheses of the form x : B (with x a
variable of the λc -calculus and B a formula) such that no variable
of the λc -calculus appears more than once. Variables of the λc -
calculus which appear on the left of an hypothesis are said to be
declared in the context, and variables of the realizability language
which appear freely on the right of at least one hypothesis are said
to be free in the context.

Typing judgments are sequents of the form Γ ⊢ t : A, where Γ is
a context, t is a λc -term whose free variables are all declared in Γ,
and A is a formula.

A typing derivation is a tree formed with the following typing
rules. Its root is called its conclusion:

(Axiom)
Γ,x : A ⊢ x : A

(Peirce)
Γ ⊢ cc : ((A → B) → A) → A

(⊤-intro)
Γ ⊢ t : ⊤

Γ ⊢ t : ⊥(⊥-elim)
Γ ⊢ t : A

Γ,x : A ⊢ t : B
(→-intro)

Γ ⊢ λx .t : A → B

Γ ⊢ t : A → B Γ ⊢ u : A(→-elim)
Γ ⊢ tu : B

Γ ⊢ t : A(∀1-intro) (x not free in Γ)
Γ ⊢ t : ∀x A

Γ ⊢ t : ∀x A(∀1-elim)
Γ ⊢ t : A[x := a]

Γ ⊢ t : A(∀2-intro) (X not free in Γ)
Γ ⊢ t : ∀X A

Γ ⊢ t : ∀X A(∀2-elim)
Γ ⊢ t : A[X (y1, . . . ,yn) := B]

These are the usual rules of intuitionistic natural deduction, plus
the rule that cc is typed by Peirce’s law.

A sequent is said to be derivable if it is the conclusion of some
derivation.

The following lemma states the compatibility of classical realiz-
ability with respect to deduction rules:

Proposition 10 (Adequacy lemma). Let⊥⊥ be a pole,x1 : A1, . . . ,xn :
An ⊢ t : B a derivable sequent withA1, . . .An ,B closed, andu1, . . . ,un
terms such that ui realizes Ai w.r.t. ⊥⊥ for all i . The term t[x1 :=
u1, . . . ,xn := un] realizes B w.r.t. ⊥⊥.

The proof can be found in [13] (although in a set-theoretical
rather than second-order-arithmetical setting).

2.5 Realizability structures
So far, we have considered realizability with respect to a fixed pole
and uniform realizability across all poles (i.e. universal realizablity).
However, in order to state the results of this paper, we will need to
consider uniform realizability across arbitrary sets of poles:

Definition 11. A realizability structure is a set of poles.

Definition 12. Let A be a closed formula, t a term and S a realiz-
ability structure. If t ⊩⊥⊥ A for all ⊥⊥ ∈ S, we say that t realizes A
with respect to S, and we write t ⊩S A.

Remark. To simplify notation, when we have fixed a realizability
structure S but no individual pole, we shall say that t realizes A and
write t ⊩ A to mean t ⊩S A, and when we have fixed a pole ⊥⊥, we
shall say that t realizes A and write t ⊩ A to mean t ⊩⊥⊥ A.

Now, we might be tempted to define the theory of a realizability
structure as the set of all formulas which have a realizer with
respect to this structure. However, an important feature of classical
(as opposed to intuitionistic) realizability is that, given any non-
empty pole ⊥⊥, there are terms which realize ⊥ with respect to ⊥⊥.
Indeed, take t ⋆ π ∈ ⊥⊥ and form the term kπ t : when evaluated,
this term ignores its context and replaces it with the “winning”
context π , therefore it realises ⊥ with respect to ⊥⊥. As a result, to
avoid getting inconsistent theories, we will consider the following
restriction:

Definition 13. The set of proof-like terms, denoted by PL, is the
set of all terms which do not contain any continuation constant
(kπ) nor any restricted instruction (ηn).

We also exclude restricted instructions because in some cases
(e.g. in section 7), it will be convenient to require some of them to
realize ⊥ (or other inconsistent formulas), and we want to do so
without breaking the logic.

Definition 14. Let S be a realizability structure. The theory gen-
erated by S, denoted by Th (S), is the set of all closed formulas
A such that there exists a proof-like term t which realizes A with
respect to S.

Intuitively, the adequacy lemma means that Th (S) is closed by
the rules of classical deduction. Therefore, we will write Th (S) |= A
for A ∈ Th (S), and we will say that Th (S) is inconsistent if it
contains ⊥, and consistent if it does not. Likewise, we will say that
the structure S is consistent (respectively, inconsistent) if Th (S) is.

From now on, we will say that a formula is universally realized
if it is universally realized by a proof-like term.

Definition 15. Two formulasA(X1, . . . ,Xm ,y1, . . . ,yn) and B(X1,
. . . ,Xm ,y1, . . . ,yn) are universally equivalent if the formula∀X1 . . .
Xm ∀y1 . . .yn A ↔ B is universally realized.

Remark. A realizability structure S is consistent if and only if there
is no proof-like term t such that t ⋆ π ∈ ⊥⊥ for all ⊥⊥ ∈ S and all
π ∈ Π.

Remark. It is well-known that if ⊥⊥ = ∅, then the truth value of
an arithmetic formula A is Λ if A is true in N, and ∅ else [14]. In
particular, an arithmetic formula which is universally realized must
be true in N. However, the converse is false, as we will shortly see.

Theories of the form Th (S), which we will call realizability theo-
ries, will be our main object of study: what are their properties, and
how do these relate to the properties of the generating realizability
structures?

2.6 Equations, inequations and equational implications
Equations and inequations are preserved by classical realizability,
in the following sense:

Lemma 16. Let a and b be closed first-order terms.

Classical realizability as a classifier for nondeterminism LICS ’18, July 9–12, 2018, Oxford, United Kingdom

• ∥a , b∥ =
{

∥⊤∥ if v(a) , v(b),
∥⊥∥ otherwise.

• ∥a = b∥ =
{

∥∀X X → X ∥ if v(a) = v(b),
∥⊤ → ⊥∥ otherwise.

Proof. Both facts can be checked by expanding the definitions on
either side of the equality. □

Moreover, as mentioned above, equational implication is equiva-
lent to regular implication:

Lemma 17. LetA be a formula and a andb two first-order terms. The
formulas (a = b) ↪→ A and (a = b) → A are universally equivalent.

Proof. By the previous lemma and the definition of ∥(a = b) ↪→ a∥,
we see that λa.λe .ea universally realizes the left-to-right implication
and λb .b(λx .x) the right-to-left implication. □

In particular, formulas which contain the construction ↪→ can
also be read as arithmetic formulas.

2.7 Horn clauses
An other important class of formulas which are preserved by clas-
sical realizability is the class of Horn clauses:

Proposition 18. LetH be a Horn clause, i.e. a closed formula of the
form ∀x1 . . . xm E1 → . . .→ En → G, with Ei of the form ai = bi
for all i , and G of the form either c = d (definite clause) or ⊥ (goal
clause). In particular, H is arithmetic. If H is true in N, then H is
universally realized, and if not, then ¬H is universally realized.

Proof. Let us first assume that H is false in N. Let p1, . . . ,pm be
values for x1, . . . ,xm which invalidate it (i.e. the Ei (p1, . . . ,pm) are
true and G(p1, . . . ,pm) is false). Then I = λy.y universally realizes
Ei (p1, . . . ,pm) for all i , so λ f . f I . . . I universally realizes either
H → ⊥ (if H is a goal clause) or H → ⊤ → ⊥ (if H is a definite
clause).

Now, let us assume that H is true, and let us fix a pole ⊥⊥ and
some p1, . . . ,pm ∈ N. To simplify notation, we will write Ei for
Ei (p1, . . . ,pm), etc. Let t1, . . . , tn be terms such that ti realizes Ei
for all i . If all the Ei are true, then G is true (and therefore, of the
form c = d), so u = λy.t1(. . . (tn (y)) . . .) realizes G ≈ ∀X X → X .
If any of the Ei is false, then u realizes ⊤ → ⊥, therefore, if G is of
the form c = d , it is realized by u, and if it is ⊥, then it is realized
by u(λy.y). □

However, as we will see in section 7, a universal (Π0
1) formula

which is not a Horn clause (i.e. which is not of the form described
in proposition 18) is generally not universally realized, even if it is
true in N.

2.8 The axioms of arithmetics in the realizability model
Let s denote the successor function: s(n) = n + 1 for all n ∈ N.
The first two axioms of Peano, which can be written as ∀x s(x) ,
0 and ∀x∀y s(x) = s(y) → x = y, are universally realized (by
proposition 18). However, the axiom of induction, which can be
written as ∀x ∀Z (∀y Z (y) → Z (s(y))) → Z (0) → Z (x), is not, as
we will see later.

Notwithstanding, we can define a predicate Nat(x) such that all
three axioms are realized when relativized to Nat: let Nat(x) denote
the formula ∀Z (∀y Z (y) → Z (s(y))) → Z (0) → Z (x) Intuitively,
Nat(x) says “x is a natural number”.

Proposition 19. The following formulas are universally realized:

• Nat(0);
• ∀x Nat(x) → Nat(s(x));
• ∀x Nat(x) → s(x) , 0;
• ∀x∀y Nat(x) → Nat(y) → s(x) = s(y) → x = y;
• ∀x Nat(x) → ∀Z (∀y Z (y) → Z (s(y))) → Z (0) → Z (x).

Proof. The third and fourth are consequences of their non-rela-
tivized versions, and the other three are provable in second-order
logic (and therefore realized, by the adequacy lemma). □

3 The characteristic Boolean algebra 2ג
In this section, we define the characteristic Boolean algebra 2ג and
prove some general properties about it.

Intuitively, 2ג is a unary predicate (i.e. a set of individuals)
present in each realizability model. Since we are dealing with mod-
els of second-order logic, 2ג must be thought of as a “first-class”
object in the realizability model. However, for simplicity, we will
define it as a formula with one parameter, i.e. a purely syntactic
object.

The predicate (x)2ג is designed so that (0)2ג and (1)2ג are both
true (i.e. universally realized) and ,(2)2ג ,(3)2ג . . . are all false. More-
over, and crucially, it is designed so that (0)2ג and (1)2ג are true
in the same way, i.e. ∥(0)2ג∥ = .∥(1)2ג∥ In that respect, it is very
different from the predicate (x = 0 ∨ x = 1), which represents the
set {0, 1}.

In fact, we can define a predicate nג for all n, although only 2ג
is a Boolean algebra:

Notation. For all integersm and n, we denote by max(m,n) the
greater of the two, and by min(m,n) the lesser. For all first order
terms a and b, we write a ≤ b for min(a,b) = a.

Definition 20. Let n be a natural number and a a first-order term:
we denote by n(a)ג the formula a + 1 ≤ n.

By lemma 16, n(k)ג is universally realized if k < n, and ¬ n(k)ג
is universally realized otherwise.

However, whenever n > 1, the formula ∀x n(x)ג → (x = 0) ∨
. . . ∨ (x = n − 1) is not universally realized, even though it is true
in N. This means that the predicate nג does not represent the set
{0, . . . ,n − 1}. We will prove this for n = 2 in section 7.
Relativized quantifiers. Let n be an integer, x a first-order vari-
able and A a formula. We write ∀xגnA for ∀x n(x)ג ↪→ A.

Now, we show how to equip 2ג with the structure of a Boolean
algebra, inherited from the set {0, 1}:

Notation. For all natural numbersm and n, let
• m ∨ n = 1 ifm > 0 or n > 0,m ∨ n = 0 otherwise,
• m ∧ n = 1 ifm > 0 and n > 0,m ∧ n = 0 otherwise,
• ¬m = 1 ifm = 0, ¬m = 0 otherwise,

Definition 21. The language of Boolean algebras is the subset of
the realizability language defined by the following grammar:

Terms: a,b ::= x | 0 | 1 | a ∨ b | a ∧ b | ¬a
Formulas:A,B ::= ⊤ | ⊥ | a , b | a = b | A → B

| A ∨ B | A ∧ B | ∀x A

Terms and formulas of this language can be interpreted in any
Boolean algebra. In particular, they can be interpreted in the Boolean
algebra {0, 1}.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Guillaume Geoffroy

Note that we use the same notations ∨, ∧ and ¬ for operations
in Boolean algebras and for logical connectives: the context will
always make it clear which is which.

Notation. If A is a formula of the language of Boolean algebras,
we denote by 2ג |= A the formula A relativized to 2ג (i.e., A with all
∀x turned into ∀x2ג).

We choose this notation, rather than the more conventional A2ג,
in order to emphasise that we think of 2ג as a first-class object of the
realizability model which, from the point of view of the realizability
model, happens to be a Boolean algebra (i.e. a first-order structure
on the language of Boolean algebras satisfying all the axioms of
Boolean algebras).

Note that the formula 2ג |= A is true in N if and only if A is true
in {0, 1}.

The following proposition establishes that 2ג is indeed a Boolean
algebra (with at least two elements):

Proposition 22. LetA be a closed formula of the language of Boolean
algebras. If A is true in every Boolean algebra with at least two ele-
ments, then 2ג |= A is universally realized.

Proof. The theory of Boolean algebras with at least two elements
can be axiomatised by a list E1, . . . ,En of formulas, where each Ei
is of the form ∀xi,1 . . . xi,mi Gi and Gi is of the form ai = bi or
ai , bi .

For all i , denote by Hi the formula ∀xi,1 . . . ∀xi,mi (xi,1)2ג →
. . . → xi,mi)2ג) → Gi : it is a Horn clause, and it is universally
equivalent to the formula 2ג |= Ei , which is true in N (because Ei is
true in {0, 1}). Therefore, by proposition 18, 2ג |= Ei is universally
realized.

The proposition follows by the adequacy lemma and the com-
pleteness theorem of first-order logic. □

The cardinality of 2ג
An important property of a realizability model is the cardinality
of its characteristic Boolean algebra. This subsection develops the
basic tools that we will need in order to state and prove facts about
this cardinality.

If B is a Boolean algebra and n a positive integer, then formula
∀x1 . . . xn

∨
i,j (xi = x j) is true in B if and only if B has fewer

than n elements. This justifies the following notation:

Notation. Let n be a positive integer.
• We denote by |2ג| < n (or |2ג| ≤ n + 1) the formula

2ג |= ∀x1 . . . xn
∨
i,j

(xi = x j),

• We denote by |2ג| ≥ n the formula |2ג|) < n) → ⊥,
• We denote by |2ג| = n the formula |2ג|) ≥ n)∧(|2ג| < n + 1).

Remark. The cardinality of a finite Boolean algebra is always a
power of two. Therefore, for all n, the formulas |2ג| ≤ 2n |2ג| < 2n+1

are universally equivalent, and in particular, the formula |2ג| = 2n
is universally equivalent to |2ג| ≥ 2n ∧ |2ג| < 2n+1.

In general, a Boolean algebra has at least 2n element if and only
if it contains a sequence of n pairwise-disjoint non-zero elements.
Therefore, by proposition 22, the sentences 2ג“ has at least 2n ele-
ments” and 2ג“ contains a sequence of n pairwise-disjoint elements”

are equivalent (see [3], chapter 15). We will favour the latter, be-
cause because its formal statement (as a formula of the realizability
language) has a better-behaved falsity value:

Notation. For all positive integers n, let us denote by An the
following formula of the language of Boolean algebras:

∀x1 . . . xn x1 , 0 → . . . → xn , 0 → ©«
∨
i,j

xi ∧ x j
ª®¬ , 0.

IfB is a Boolean algebra andn a positive integer, then the formula
An is true in B if and only if it is not possible to find n pairwise-
disjoint non-zero elements in B.

The following lemma describes the falsity value of 2ג |= An and
shows that it is indeed quite simple:

Lemma 23. Let n be a positive integer, ⊥⊥ a pole, t1, . . . , tn ∈ Λ and
π ∈ Π. Then t1 • . . . • tn •π ∈ 2ג∥ |= An ∥⊥⊥ if and only if at most one
of the ti does not realize ⊥.

Proof. For all x1, . . . ,xn , one can check that
(∨

i,j xi ∧ x j
)
= 0

if and only if at most one of the xi is not equal to 0. Therefore,
t1 • . . . • tn •π ∈ 2ג∥ |= An ∥⊥⊥ if and only there exist x1, . . . ,xn
such that ti realize xi , 0 for all i and at most one of the xi is not
equal to 0. □

The following notation provides a third way of expressing tha
cardinality of .2ג In a way, it is the most important one, since it is
the one which provides the connection with non-determinism (as
we will see in section 5):

Notation. Let n be a positive integer. We denote by Bn the formula

∀X

⊤ → X → · · · → X → X (1)

∩ X → ⊤ → · · · → X → X (2)
...

...
...

∩ X → X → · · · → ⊤ → X (n)

.

Its falsity value is quite similar to that of 2ג |= An (which is why
they are equivalent):

Lemma 24. Let n be a positive integer, ⊥⊥ a pole, t1, . . . , tn ∈ Λ and
π ∈ Π. Then t1 • . . . • tn •π ∈ ∥Bn ∥⊥⊥ if and only if there is at most
one i such that ti ⋆ π < ⊥⊥.

Proposition 25. Let n be a positive integer. The formulas |2ג| < 2n ,
2ג |= An and Bn are universally equivalent.

Proof of proposition 25. The formulas |2ג| < 2n , 2ג |= An are uni-
versally equivalent by proposition 22.

By lemmas 23 and 24, Bn → 2ג) |= An) is universally realized by
λt .t (because Bn ≲ 2ג) |= An)) and 2ג) |= An) → Bn is universally
realized by λt . λu1.λun . cc (λk . t (ku1) . . . (kun)) (because for
all ⊥⊥, π and i , ui ⋆ π ∈ ⊥⊥ implies kπui ⊩⊥⊥ ⊥). □

As a side note, we would like to bring the reader’s attention on
the following result (which is due to Krivine, but does not seem to
appear in any published work):

Proposition 26. The formulas |2ג| = 2 and ∀x Nat(x) are univer-
sally equivalent.

Proof. By proposition 25, it suffices to realize B2 ↔ ∀x ,Nat(x).
Let us denote by δ the λc -term λd .x(dd) and by Y the λc -term

δδ . For all t ∈ Λ and all π ∈ Π, Y [x := t]⋆ π ≻K t ⋆Y [x := t] •π .

Classical realizability as a classifier for nondeterminism LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Let 0 denote the term λ f .λx . x (i.e the Church numeral 0) and s
the term λn.λ f .λx . n f (f x) (i.e. the Church successor function).
Using the adequacy lemma, one can check that 0 universally realizes
Nat(0) and that s universally realizes ∀n. Nat(n) → Nat(n + 1).

To simplify notation, let us denote Y [x := λy. ψ 0 (sy)] by Yψ .
We prove that the left-to-right implication is universally realized
by l = λψ . Yψ . Let us fix a pole ⊥⊥, and let ψ ⊩ B2. For all π ∈ Π,
Yψ ⋆ π ≻K ψ ⋆ 0 • sYψ •π . Therefore, Yψ ⊩ Nat(0), and for all
n such that Yψ ⊩ Nat(n), Yψ ⊩ Nat(n + 1) (because s realizes
Nat(n) → Nat(n + 1)). By induction, Yψ realizes Nat(n) for all n.

Let us prove that the right-to-left implication is universally real-
ized by r = λt . λu . λv . t (λz.u)v . First, note thatNat(0) ≈ ∀Z , ⊤ →
Z → Z and Nat(1) ≈ ∀Z0,Z1, (Z0 → Z1) → Z0 → Z1. Let us fix
a pole ⊥⊥, and let t ⊩ ∀x , Nat(x), X ∈ P(Π) and u •v •π ∈ ∥B2∥⊥⊥,
which means that π ∈ X , and u orv realizes X . Ifv realizes X , then,
since t realizes Nat(0), t (λz.u) v realizes X . If u realizes X , then
λz.u realizes ⊤ → X , t realizes Nat(1) and v realizes ⊤, so again
t (λz.u) v realizes X . In both cases, r ⋆ t •u •v •π ∈ ⊥⊥. □

4 Multi-evaluation relations
This section defines a correspondence between realizability struc-
tures and a certain notion of multi-evaluation relations which ex-
tend the evaluation relation of λc -calculus: this notion is powerful
enough to express arbitrary mixes of may- and must-nondetermin-
ism.

Then, we will explore some of the connections between the
properties of the theory generated by a structure and the properties
of the corresponding evaluation relation.

While the evaluation relation of λc -calculus is a relation between
processes, multi-evaluation relations are relations between sets of
processes which satisfy certain axioms. Using “≻” generic symbol
for evaluation relations, the following intuitions should be kept in
mind:

The statement “{p} ≻ {q1} and {p} ≻ {q2}” specifies that, under
“≻”, p reduces nondeterministically to q1 or q2, according to an ora-
cle which “favours” being in the pole: this is may-nondeterminism.
One can also imagine that the program tries both branches in par-
allel, to find out if one eventually meets the condition for being in
the pole. Meanwhile, “{p} ≻ {q1,q2}” specifies that p reduces non-
deterministically to q1 or q2, according to an oracle which “favours”
being out of the pole: this is must-nondeterminism.

Additionally, we can mix may- and must-nondeterminism by
writing, say, “{p} ≻ {q1,q2} and {p} ≻ {q2,q3} and {p} ≻ {q3,q1}”.
This kind of two-out-of-three nondeteministic choicewill be studied
in detail in the next section, under the name of 3-voting instruction.

Finally, statements like “{p1,p2} ≻ {q1,q2}” allow interaction
between different branches of execution: if one branch evaluates to
p1 and another to p2, then they merge and evaluate must-nonde-
terministically to q1 or q2.

Definition 27. A multi-evaluation relation, or simply evaluation
relation is a binary relation on P(Λ⋆Π) such that

• For all p,q ∈ Λ⋆Π such that p ≻1
K q, {p} ≻ {q},

• For all p ∈ Λ⋆Π, {p} ≻ {p} (identity),
• For all P ,Q, P ′,Q ′ ∈ P(Λ⋆Π), for all r ∈ Λ⋆Π, if P ≻
Q ∪ {r } and P ′ ∪ {r } ≻ Q ′, then P ∪ P ′ ≻ Q ∪Q ′ (cut),

• For all P ,Q, P ′,Q ′ ∈ P(Λ⋆Π) such that P ≻ Q , if P ⊆ P ′

and Q ⊆ Q ′, then P ′ ≻ Q ′ (weakening).

The intuition behind the cut rule is the following: if on the one
hand p1, . . . ,pm , together, evaluate to r or one of q1, . . . ,qn , and
the other hand p′1′ , . . . ,p

′
m′ , together with r , evaluate to one of

q′1′ , . . . ,q
′
n′ , then, together, p1, . . . ,pm and p′1′ , . . . ,p

′
m′ must eval-

uate to one of q1, . . . ,qn (directly) or one of q′1′ , . . . ,q
′
n′ (via r).

Definition 28. Let ≻ be a binary relation on P(Λ⋆Π). The real-
izability structure generated by ≻, denoted by S≻ , is the of set all
poles ⊥⊥ such that, for all P ,Q such that P ≻ Q , if Q ⊆ ⊥⊥, then
P ∩ ⊥⊥ , ∅.

Definition 29. Let S be a realizability structure. The evaluation
relation associated with S, written “≻S”, is the binary relation on
P(Λ⋆Π) defined by the following: for all P ,Q ∈ P(Λ⋆Π), P ≻S Q
if and only if for all ⊥⊥ ∈ S, if Q ⊆ ⊥⊥, then P ∩ ⊥⊥ , ∅.

Proposition 30. Let S0 be a realizability structure: ≻S0 is an eval-
uation relation, and S≻S0

= S0.

This means that any realizability structure is fully described by
its associated evaluation relation.

Proof. Let ⊥⊥ ∈ S. By definition of ≻S , ⊥⊥ ∈ S≻S . Let ⊥⊥ ∈ S0 \ S.
Then for all ⊥⊥′ ∈ S, ⊥⊥′ , ⊥⊥, which means that if ⊥⊥ ⊆ ⊥⊥′, there
exists p ∈ ⊥⊥′ such that p < ⊥⊥. In other words, (Λ⋆Π \⊥⊥) ≻S ⊥⊥,
so ⊥⊥ < S. □

Lemma 31. Let ≻ be a binary relation on P(Λ⋆Π). There exists a
smallest evaluation relation containing ≻. Moreover, if we denote this
relation by ≻∗, then S≻∗ = S≻ .

Proof. The set of evaluations relations containing ≻ is stable by
arbitrary intersections, so it has a smallest element.

Since ≻ ⊆ ≻∗, S≻ ⊇ S≻∗ . Moreover, ≻S≻ is an evaluation
relation which contains ≻, so it contains ≻∗. Therefore, S≻∗ ⊆
S≻S≻ = S≻ , by proposition 30. □

If ≻ is an evaluation realation, it is true in general that ≻ ⊆ ≻S≻ ,
but not that ≻ = ≻S≻ .1

5 Voting instructions and fork
Using the language of evaluation relations, one can state the fol-
lowing specification result:

Definition 32. Let n be a positive integer and ≻ an evaluation
relation. An n-voting instruction modulo ≻ is a term ϕ such that
for all terms t1, . . . , tn and all stacks π , for all j ∈ {1, . . . ,n}, {ϕ ⋆
t1 • . . . • tn •π } ≻ {ti ⋆ π ; i , j}.

Theorem 33. Let S be a realizability structure and n a positive
integer. A term ϕ realizes Bn with respect to S if and only if ϕ is an
n-voting instruction modulo ≻S .

Proof. First, we notice that, by lemma 23, for all poles ⊥⊥, t1 • . . .

• tn •π ∈ ∥Bn ∥⊥⊥ if and only if there exists j ∈ {1, . . . ,n} such that
for all i , j, ti ⋆ π ∈ ⊥⊥. Therefore, both sides of the equivalence
amount to saying that for all⊥⊥ ∈ S, for all, t1 • . . . • tn •π ∈ ∥Bn ∥⊥⊥,
ϕ ⋆ t1 • . . . • tn •π ∈ ⊥⊥, and so they are equivalent. □

1This becomes true if ≻ is compact (i.e. for all P ≻ Q , there exist two finite sets
P0 ⊆ P and Q0 ⊆ Q such that P0 ≻ Q0) or if ≻ satisfies the following infinitary
cut-rule (which is implied by compactness): if there exists R such that, for all S ⊆ R ,
P ∪ S ≻ (R \ S) ∪Q , then P ≻ Q .

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Guillaume Geoffroy

Corollary 34. Let S be a realizability structure and n a positive
integer. We have Th (S) |= |2ג| ≤ 2n if and only if there is a proof-
like n-voting instruction modulo ≻S .

We use the name n-voting instruction because whenever all but
one of the ti “agree on” a certain behaviour, ϕ t1 . . . tn “chooses”
it. For example, if one of the ti is the church numeral 0 and all the
others are 1, then ϕ t1 . . . tn behaves like 1. (The notion of 3-voting
instruction was introduced by Trakhtenbrot [18].)

Interestingly, the important point turns out to be, not the number
of “votes for”, but rather their proportion. Indeed, one can define a
notion of (n,k)-voting instruction, which takes n arguments and
requires at least n − k “votes” (so that an n-voting instruction is
the same thing as an (n, 1)-voting instruction). Then, using the
same method, one can prove that there is a proof-like (n,k)-voting
instruction if and only if Th (S) |= |2ג| < 2 ⌈

n
k ⌉ .

Now, let us consider the following definitions:

Definition 35. Let ≻ be an evaluation relation.
• A fork instruction (ormay-nondeterministic choice operator)
modulo ≻ is a termψ such that for all termsu,v and all stacks
π , {ψ ⋆u •v •π } ≻ {u ⋆π } and {ψ ⋆u •v •π } ≻ {v ⋆π } (i.e.
a 2-voting instruction).

• Amust-nondeterministic choice operator modulo ≻ is a term
χ such that for all termsu,v and all stacks π , {χ⋆u •v •π } ≻
{u ⋆ π ,v ⋆ π }.

Proposition 36. Let S be a realizability structure and t a term.
Then t is a may-nondeterministic choice operator modulo ≻S if and
only if it realizes ∀X∀Y X → Y → X ∩Y with respect to S, and it is
a must-nondeterministic choice operator ≻S if and only if it realizes
∀X∀Y X → Y → X ∪ Y with respect to S.

Proof. If t is a fork instruction, let ⊥⊥ ∈ S, X ,Y ⊆ Π, u ⊩⊥⊥ X ,
v ⊩⊥⊥ Y and π ∈ X∪Y . If π ∈ X , then {t⋆u •v •π } ≻S {u⋆π } ⊆ ⊥⊥,
and similarly if π ∈ Y .

Assume t is not a fork instruction.Without loss of generality, one
can assume that there existu,v and π such that {t⋆u •v •π } ̸≻S {u⋆
π }. Let ⊥⊥ ∈ S such that u ⋆ π ∈ ⊥⊥ and t ⋆u •v •π < ⊥⊥, and let
X = {π } and Y = ∅: then u •v •π ∈ ∥X → Y → X ∪ Y ∥⊥⊥, so t
does not realize X → Y → X ∪ Y with respect to π .

The proof of the second point is similar. □

Proposition 37. LetS be a realizability structure.We haveTh (S) |=
|2ג| = 2 if and only if there exists a proof-like fork instruction modulo
≻S .

Proof. Consequence of corollary 34 and proposition 22. □

6 Parallel Or
Definition 38. LetBool(y) denote the formula∀X X (0) → X (1) →
X (y).

Lemma 39. We have Bool(0) ≈ ∀X X → ⊤ → X , Bool(1) ≈
∀X , ⊤ → X → X , and for all n > 1, Bool(n) ≈ ⊤ → ⊤ → ⊥.

Remark. The formula Bool(0) is universally realized by false =
λx .λy.x , and Bool(1) by true = λx .λy.y.

Proposition 40. Let S be a realizability structure and t a term: t
realizes Bool(0) in S if and only if for all terms u,v and all stacks π ,
{t ⋆u •v •π } ≻S {u ⋆ π }, and t realizes Bool(1) in S if and only if
for all terms u,v and all stacks π , {t ⋆u •v •π } ≻S {v ⋆ π }.

Proof. Similar to theorem 33 □

In other words, realizers of Bool(0) are terms which behave like
false, and realizers of Bool(1) are terms which behave like true.

One can say that a term “computes the or function” (modulo some
realizability structure S) if it realizes the formula ∀xy Bool(x) →
Bool(y) → Bool(x ∨ y), which we denote by Or. In general, there
are two different ways of doing that:

• left-first: orl = λx .λy. x y true,
• right-first: orr = λx .λy. y x true.

The left-first version “returns true”, i.e. behaves like true, as soon
as its first argument does, even if its second argument diverges.
The right-first version does the symmetric.

Let Orl denote the formula (∀x Bool(0) → Bool(x) → Bool(x))
∩ (Bool(1) → ⊤ → Bool(1)), and let Orr denote the formula (∀x
Bool(x) → Bool(0) → Bool(x)) ∩ (⊤ → Bool(1) → Bool(1)). Note
that Orl ≲ Or and Orr ≲ Or.

Lemma 41. The term orl universally realizes Orl , and the term orr
universally realizes Orr .

How different are orl and orr ? Can we come up with a (proof-
like) term which captures the behaviour of both? That is to say, a
parallel or, which returns true as soon as either of its arguments
is true, even if the other diverges, and false if both arguments are
false. This turns out to depend on the realizability structure and to
be related to the properties of .2ג

First, let us denote by Or∥ the formula (Bool(1) → ⊤ → Bool(1))
∩ (⊤ → Bool(1) → Bool(1)) ∩ (Bool(0) → Bool(0) → Bool(0)).

Definition 42. Let S be a realizability structure and t a term. The
term t computes parallel or modulo S if it realizes Or∥ with respect
to S.

Theorem 43. The formulas Or∥ and |2ג| ≤ 4 are universally equiv-
alent.

Proof. In order to realize the left-to-right implication, by proposi-
tion 25, it suffices to realize Or∥ → 2ג) |= A3). Let us prove that this
formula is universally realized by l = λt .λu1.λu2.λu3. (t u1 u2)u1 u3.
Let us fix a pole ⊥⊥, and let t ⊩⊥⊥ Or∥ and u1 •u2 •u3 •π ∈ ∥ 2ג |=
A3∥⊥⊥. By lemma 23, at least two of the ui realize ⊥. If u1 and u2 re-
alize ⊥, in particular, they realize Bool(0), which means that t u1 u2
realizes Bool(0). Since u1 realizes ⊥, (t u1 u2) u1 u3 realizes ⊥, so
l ⋆ t •u1 •u2 •u3 •π ∈ ⊥⊥. If u1 and u3 realize ⊥, in particular, u1
realizes Bool(1), so t u1 u2 realizes Bool(1), (t u1 u2) u1 u3 realizes
⊥, and l ⋆ t •u1 •u2 •u3 •π ∈ ⊥⊥. The last case (u2 and u3 realize ⊥)
is similar tho the second.

In order to realize the right-to-left implication, by proposition 25,
it suffices to realize Bn → Or∥ . Let us prove that this formula
is universally realized by r = λt .λu .λv . t (orl u v) (orr u v) true.
Indeed, let us fix a pole ⊥⊥, and let t ⊩⊥⊥ B3, u,v ∈ Λ and π ∈ Π.

If u realizes Bool(1) and π ∈ ∥Bool(1)∥⊥⊥, then orl u v and true
both realize Bool(1), so t (orl u v) (orr u v) true realizes Bool(1)
(because t realizes ∀X X → ⊤ → X → X), so r ⋆ t •u •v •π ∈ ⊥⊥.

If v realizes Bool(1) and π ∈ ∥Bool(1)∥⊥⊥, then r ⋆ t •u •v •π
∈ ⊥⊥ for similar reasons.

If u and v realize Bool(0) and π ∈ ∥Bool(0)∥, then orl u v
and orr u v both realize Bool(0), so t (orl u v) (orr u v) true re-
alizes Bool(1) (because t realizes ∀X X → X → ⊤ → X), so
r ⋆ t •u •v •π ∈ ⊥⊥. □

Classical realizability as a classifier for nondeterminism LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Corollary 44. Let S be a realizability structure. We have Th (S) |=
|2ג| ≤ 4 if and only if there is a proof-like term which computes
parallel or modulo S.

As a corollary, there is a proof-like term which computes parallel
or if and ony if there is a proof-like 3-voting instruction: a similar
result was stated by Sazonov in [17], though in a very different
setting.

Formulas of the form |2ג| ≤ 2n create a hierarchy on realizability
theories (which is included in the hierarchy of all formulas of the
form 2ג |= A). Through the realizability interpretation, this gives
a hierarchy on models of computation. This hierarchy compares
models of computation on their ability to “try” different execution
paths using nondeterminism (and, consequently, to perform com-
putations on “partial data”, the way parallel or can compute even
when one of its arguments is undefined or diverges): the bigger ,2ג
the more deterministic the computation model.

This hierarchy is reminiscent of the degrees of parallelism of
[17]. Indeed, the first three levels correspond to fork, parallel or and
4-voting functions respectively.

Interestingly, the third level also corresponds to Gérard Berry’s
“Gustave’s function”. More precisely, the behaviour of Gustave’s
function can be encoded by the formula (0 → 1 → ⊤ → 1)∩ (⊤ →
0 → 1 → 1) ∩ (1 → ⊤ → 0 → 1) ∩ (0 → 0 → 0 → 0) ∩ (1 → 1 →
1 → 0) (where 0 stands for Bool(0) and 1 for Bool(1)), and it can
be proved that this formula is universally equivalent to |2ג| ≤ 8
(similar to theorem 43).

7 Models with |2ג| = 2n for any n > 0
In order to prove that the hierarchy described above (of formulas
of the form |2ג| ≤ 2n) does not collapse, we have to prove the
following:

Theorem 45. Let n be a positive integer. There exists a consistent
realizability structure S such that Th (S) |= |2ג| = 2n .

The cardinality of a finite Boolean algebra is always a power
of two. Moreover, for all n, the theory of Boolean algebras with
2n elements is complete, so this theorem means 2ג can be made
elementarily equivalent to any finite Boolean algebra with at least
two elements.

Let us fix a positive integer n.
Because of the results from section 3, it suffices to find a consis-

tent realizability structure where both 2ג |= An+1 and 2ג |= An →
⊥ are realized.

Let β⊤ and β⊥ be two restricted instructions and ϕ and χ two
nonrestricted instructions. Let ≻1 be the smallest binary relation
on P(Λ⋆Π) such that:

• For all p,q ∈ Λ⋆Π, if p ≻1
K q, then {p} ≻1 {q},

• For all t0, . . . , tn ∈ Λ, π ∈ Π and j ∈ {0, . . . ,n},
{ϕ ⋆ t0 • . . . • tn •π } ≻1 {ti ⋆ π ; i , j},

• For all π ∈ Π, u ∈ Λ and k ∈ {1, . . . ,n},
{χ ⋆u •π } ≻1 {u ⋆ β1=k • . . . • βn=k •π ; 1 ≤ k ≤ n},
where βi=k means β⊤ if i = k and β⊥ if i , k ,

• For all π ∈ Π, {β⊥ ⋆ π } ≻1 ∅.
Let ≻ be the smallest evaluation relation which contains ≻1, and

let S = S≻ .
Note that ϕ is an n-voting instruction with respect to ≻.

Lemma 46. The term β⊥ realizes ⊥ with respect to S.

Proposition 47. The term ϕ realizes 2ג |= An+1 with respect to S.

Proof. From lemma 24 and theorem 33. □

Proposition 48. The term χ realizes 2ג |= An → ⊥ with respect to
S.

Proof. Let us fix a pole ⊥⊥ ∈ S. Let u ⊩⊥⊥ 2ג) |= An), π ∈ Π and
k ∈ {1, . . . ,n}. There is at most one i such that βi=k does not realize
⊥, so β1=k • . . . • βn=k •π ∈ 2ג∥ |= An ∥⊥⊥ (by lemma 24). Therefore,
{u ⋆ β1=k • . . . • βn=k •π ; 1 ≤ k ≤ n} ⊆ ⊥⊥, so χ ⋆u •π ∈ ⊥⊥. □

Note that in particular, the formula ∀x2ג∀y2ג x = 0 ∨ x = 1,
which is universally equivalent to |2ג| = 2, is a disjunction of two
positive literals which is true in N, and whose negation is realized
in S if n > 1 (compare this with proposition 18).

Lemma 49. For all P ,Q , P ≻ Q if and only if there exists p ∈ P such
that {p} ≻ Q .

Proof. Let ≻̃ be the binary relation defined by P ≻̃ Q if and only if
there exists p ∈ P such that {p} ≻ Q . It is contained in ≻, it contains
≻1, and it is an evaluation relation, therefore it is equal to ≻. □

Lemma 50. The evaluation relation ≻ is compact: for all P ,Q such
that P ≻ Q , there exist two finite sets P0 ⊆ P and Q0 ⊆ Q such that
P0 ≻ Q0.

Proof. Similar to the previous lemma. □

It remains to prove that the structure S is consistent. It suffices
to find one pole ⊥⊥ ∈ S such that no proof-like term realizes ⊥with
respect to ⊥⊥.

Let ⊥⊥ = {p ∈ Λ⋆Π, {p} ≻ ∅}.

Lemma 51. We have ⊥⊥ ∈ S, and for all ⊥⊥′ ∈ S, ⊥⊥ ⊆ ⊥⊥′: in other
words, ⊥⊥ is the smallest pole in S.

Proof. Let us prove that⊥⊥ ∈ S: letQ ⊆ ⊥⊥ and P ≻ Q . By lemma 50,
one can assume without loss of generality that P and Q are finite.
By lemma 49, there exists p ∈ P such that {p} ≻ Q . Since {q} ≻ ∅
for all q ∈ Q , one can prove by repeatedly applying the cut rule
(once per element of Q) that {p} ≻ ∅: in other words, p ∈ ⊥⊥.

Now, let ⊥⊥′ ∈ S and let p ∈ ⊥⊥. Since {p} ≻ ∅ and ∅ ⊆ ⊥⊥,
necessarily, {p} ∩ ⊥⊥′ , ∅, so p ∈ ⊥⊥′. □

We say that a process is sound if it can be written without the
instruction β⊥.

Let us fix a sequence (γi)i ∈N of pairwise distinct restricted in-
structions all different from β⊤ and β⊥.

Notation. Let p be a process and K a subset of N. We denote by
p[K] the process p where, for all i ∈ N, each occurence of γi has
been replaced by β⊤ if i ∈ K , and by β⊥ if i < K .

Definition 52. Let p be a process. The content of p, denoted by
C(p), is the set of all K ⊆ N such that p[K] ∈ ⊥⊥.

Remark. Let p be a process and K ⊆ L ⊆ N. One can prove that if
L ∈ C(p), then K ∈ C(p).

Proposition 53. Letp be a sound process. For allK1, . . . ,Kn ∈ C(p),
K1 ∪ . . . ∪ Kn , N.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Guillaume Geoffroy

In other words, whenever p is sound, it is impossible to span all
of N with only n elements of C(p).

Proof of proposition 53. By induction, we let ⊥⊥0 = ∅, and for all r ∈
N, ⊥⊥r+1 = {p ∈ Λ⋆Π; there exists Q ⊆ ⊥⊥r such that {p} ≻1 Q}.

For all r ∈ N, let Cr (p) be the set of all K ⊆ N such that p[K] ∈
⊥⊥r .

The sequences (⊥⊥r)r and (Cr (p))r are increasing. Moreover,
⊥⊥ = ⋃

r ∈N ⊥⊥r (because
⋃
r ∈N ⊥⊥r can also be proved to be the

smallest pole in S), and for all p, C(p) = ⋃
r ∈N Cr (p), so we can

prove the result by induction on r .
Let r ∈ N, and let us assume that for all sound p, for all K1, . . . ,

Kn ∈ Cr (p), K1 ∪ . . . ∪ Kn , N.
Let p be a sound process and K1, . . . ,Kn ∈ Cr+1(p). By con-

tradiction, let us assume that K1 ∪ . . . ∪ Kn = N. By definition
of Cr+1(p), for all i ∈ {1, . . . ,n}, there exists Qi ⊆ ⊥⊥r such that
p[Ki] ≻1 Qi . By a case analysis on the structure of the head term
of p (and by considering the definition of ≻1), we must be in one of
the following cases:

• p is of the form tu ⋆ π , λx .t ⋆ u •π , cc⋆t •π or kπ ′ ⋆ t •π .
In that case, there is one and only one q such that p ≻1

K q,
and one can check that necessarily q is sound and for all
i , Qi = {q[Ki]} (because {q[Ki]} is the only R such that
{p[Ki]} ≻1 R). Therefore, for all i ,q[Ki] ∈ ⊥⊥r , soKi ∈ Cr (q).
This contradicts the induction hypothesis, becauseq is sound
and K1 ∪ . . . ∪ Kn = N.

• p is of the form ϕ ⋆ t0 • . . . • tn •π . In that case, for all i ∈
{1, . . . ,n}, there exists j(i) ∈ {0, . . . ,n} such that Qi =

{(tk ⋆ π)[Ki];k , j(i)}. Therefore, for all i ∈ {1, . . . ,n},
for all k ∈ {0, . . . ,n} such that k , j(i), Ki ∈ Cr (tk ⋆ π).
Let l be an element of {0, . . . ,n} such that for all i ∈ {1, . . . ,n},
j(i) , l . Then for all i , Ki ∈ Cr (tl ⋆ π). This contradicts the
induction hypothesis, because tl ⋆π is sound and K1 ∪ . . .∪
Kn = N.

• p is of the form χ⋆u •π . In that case, for all i ,Qi = {(u⋆β1=k
• . . . • βn=k •π)[Ki]; 1 ≤ k ≤ n}.
Let a1, . . . an ∈ N such that for all i , there is no occurence
of γai in p, let q = u ⋆ γa1 • . . . •γan •π , and for all i , let
Li = (Ki \ {a1, . . . ,an }) ∪ {ai }.
Then for all i , q[Li] = (u ⋆ β1=i • . . . • β1=k •π)[Ki] ∈ ⊥⊥r .
This contradicts the induction hypothesis because q is sound
and L1 ∪ . . . ∪ Ln = N.

• p is of the form γj ⋆ π , with j ∈ N. Since K1 ∪ . . . ∪ Kn = N,
there exists i ∈ {1, . . . ,n} such that j ∈ Ki . Then the head
term of p[Ki] is β⊤, which contradicts p[Ki] ≻1 Qi , since
there is no evaluation rule for β⊤.

Now, since ⊥⊥0 = ∅, for all sound p, C0(p) = ∅, and so for all
K1, . . . ,Kn ∈ C0(p), K1 ∪ . . . ∪ Kn , N: the result follows by
induction. □

Corollary 54. If p is a sound process, then C(p) , P(N).

Corollary 55. The realizability structure S is consistent.

Proof. If t is proof-like and realizes ⊥ with respect to S, then in
particular, t ⋆ω0 is sound and for all K ⊆ N, (t ⋆ω0)[K] = t ⋆ω0 ∈
⊥⊥, which contradicts the previous corollary. □

8 Concluding remarks
We hope to have made apparent the connection between the differ-
ent forms of nondeterminism and the hierarchy of “formulas about
.”2ג In this paper, we only studied this connection on Π0

1 formulas:
further work would include considering more complex first-order
formulas, higher-order formulas, and formulas about the whole .Nג
Moreover, it would be interesting to take a more serious look at the
analogy with the hierarchy of parallelism: currently, little is known
about it, and the methods presented here could help understand it
better.

References
[1] G. Berry. 1976. Bottom-up computation of recursive programs. RAIRO - Theoreti-

cal Informatics and Applications - Informatique ThÃľorique et Applications 10, R1
(1976), 47–82. http://eudml.org/doc/92028

[2] P.J. Cohen. 1966. Set theory and the continuum hypothesis. W. A. Benjamin.
https://books.google.fr/books?id=ZKc-AAAAIAAJ

[3] S. Givant and P. Halmos. 2008. Introduction to Boolean Algebras. Springer New
York. https://books.google.fr/books?id=ORILyf8sF2sC

[4] Timothy G. Griffin. 1990. A Formulae-as-type Notion of Control. In Proceedings
of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’90). ACM, New York, NY, USA, 47–58. https://doi.org/10.1145/
96709.96714

[5] S. Kleene. 1952. Introduction to Metamathematics. (1952).
[6] Jean-Louis Krivine. 2011. Realizability algebras: a program to well order R. Logical

Methods in Computer Science 7, 3 (2011). https://doi.org/10.2168/LMCS-7(3:2)2011
[7] Jean-Louis Krivine. 2012. Realizability algebras III: some examples. CoRR

abs/1210.5065 (2012). arXiv:1210.5065 http://arxiv.org/abs/1210.5065
[8] Jean-Louis Krivine. 2014. On the structure of classical realizability models of ZF.

CoRR abs/1408.1868 (2014). arXiv:1408.1868 http://arxiv.org/abs/1408.1868
[9] Jean-Louis Krivine. 2001. Typed lambda-calculus in classical Zermelo-Frænkel

set theory. Archive for Mathematical Logic 40, 3 (01 Apr 2001), 189–205. https:
//doi.org/10.1007/s001530000057

[10] Jean-Louis Krivine. 2002. Lambda-calculus types and models. (Feb. 2002),
208 pages. https://cel.archives-ouvertes.fr/cel-00574575 Lecture.

[11] Jean-Louis Krivine. 2003. Dependent Choice, ‘Quote’ and the Clock. Theor.
Comput. Sci. 308, 1-3 (Nov. 2003), 259–276. https://doi.org/10.1016/S0304-3975(02)
00776-4

[12] Jean-Louis Krivine. 2009. Realizability in classical logic. Panoramas et synthèses
27 (2009), 197–229. https://hal.archives-ouvertes.fr/hal-00154500

[13] Jean-Louis Krivine. 2012. Realizability algebras II : newmodels of ZF +DC. Logical
Methods in Computer Science 8, 1 (Feb. 2012), 10. https://doi.org/10.2168/LMCS-8(1:
10)2012 28 p.

[14] Alexandre Miquel. 2009. Relating Classical Realizability and Negative Translation
for Existential Witness Extraction. In Typed Lambda Calculi and Applications,
Pierre-Louis Curien (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 188–
202.

[15] Alexandre Miquel. 2011. Forcing as a Program Transformation. In Proceedings of
the 26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011. IEEE
Computer Society, Toronto, Canada, 197–206. https://hal.archives-ouvertes.fr/
hal-00800558

[16] Lionel Rieg. 2014. On Forcing and Classical Realizability. Theses. Ecole normale
supérieure de lyon - ENS LYON. https://tel.archives-ouvertes.fr/tel-01061442

[17] V Yu Sazonov. 1976. Degrees of parallelism in computations. In International
Symposium on Mathematical Foundations of Computer Science. Springer, 517–523.

[18] Mark B Trakhtenbrot. 1975, Russian version 1974. On representation of sequential
and parallel functions. In International Symposium on Mathematical Foundations
of Computer Science. Springer, 411–417.

http://eudml.org/doc/92028
https://books.google.fr/books?id=ZKc-AAAAIAAJ
https://books.google.fr/books?id=ORILyf8sF2sC
https://doi.org/10.1145/96709.96714
https://doi.org/10.1145/96709.96714
https://doi.org/10.2168/LMCS-7(3:2)2011
http://arxiv.org/abs/1210.5065
http://arxiv.org/abs/1210.5065
http://arxiv.org/abs/1408.1868
http://arxiv.org/abs/1408.1868
https://doi.org/10.1007/s001530000057
https://doi.org/10.1007/s001530000057
https://cel.archives-ouvertes.fr/cel-00574575
https://doi.org/10.1016/S0304-3975(02)00776-4
https://doi.org/10.1016/S0304-3975(02)00776-4
https://hal.archives-ouvertes.fr/hal-00154500
https://doi.org/10.2168/LMCS-8(1:10)2012
https://doi.org/10.2168/LMCS-8(1:10)2012
https://hal.archives-ouvertes.fr/hal-00800558
https://hal.archives-ouvertes.fr/hal-00800558
https://tel.archives-ouvertes.fr/tel-01061442

	Abstract
	1 Introduction
	2 Classical realizability semantics
	2.1 The computational model: the c-calculus
	2.2 The realizability language
	2.3 Classical realizability
	2.4 Adequacy
	2.5 Realizability structures
	2.6 Equations, inequations and equational implications
	2.7 Horn clauses
	2.8 The axioms of arithmetics in the realizability model

	3 The characteristic Boolean algebra 2
	4 Multi-evaluation relations
	5 Voting instructions and fork
	6 Parallel Or
	7 Models with "026A30C 2"026A30C = 2n for any n>0
	8 Concluding remarks
	References

