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Abstract

Wepresent a sound and complete axiomatisation of the Rieszmodal

logic extended with one inductively defined operatorwhich allows

the definition of threshold operators. This logic is capable of inter-

preting the bounded fragment of the logic probabilistic CTL over

discrete and continuous Markov chains.

Keywords Probabilistic logics, Real–Valued Semantics, Axioma-

tisation

1 Introduction

Modal and temporal logics are formalisms designed to express prop-

erties of directed graphs representing the behavior of computing

systems. Well studied examples include Computation Tree Logic

(CTL), the modal µ-calculus, Propositional Dynamic Logic (PDL),

among others. Probabilistic temporal logics are variants of tempo-

ral logics specifically designed to express properties of probabilis-

tic computing systems, often modelled as Markov chains, Markov

decision processes or similar structures. Examples include proba-

bilistic CTL (pCTL [1, 3, 8]), the probabilistic µ-calculus ([10, 12]),

probabilistic (pPDL [5]), etc.

Among these logic, pCTL is arguably the best known at the

present moment because it has a relatively simple definition, it is

capable of expressing useful properties and, yet, it poses significant

research problems. Indeed, despite more than three decades of re-

search, some basic problems regarding pCTL remain open. These

include the problem of axiomatisation and the decidability of the

satisfiability problem. A seminal result was obtained by Lehmann

and Shelah in [8] (see also [4]). They provided a sound and com-

plete axiomatisation for the qualitative fragment of pCTL∗ (an ex-

tension of pCTL) and proved that the satisfiability problem for

formulas belonging to this fragment is decidable. As the authors

clearly state, however, their methods cannot be easily extended to

the analysis of full (quantitative) pCTL. In fact, since this seminal

paper, no much progress has beenmade towards an axiomatisation

of full pCTL. The recent paper [7] presents an axiomatisation of a

logic which can interpret a very limited fragment of quantitative

pCTL but, again, it is not clear how to extend the axiomatisation

to full pCTL.
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In an attempt to make progress, some research has focused on

an alternative, real–valued approach to probabilistic logics. Follow-

ing Kozen’s seminal work [5], formulas ϕ of these logics are inter-

preted as real–valued functions JϕK : X → R on the state space

X of a Markov chain, rather than (characteristic functions of) sets

JϕK :X→{0, 1} as in ordinary probabilistic logics such as pCTL.

Following this line of research, the author has focused on study-

ing probabilistic real–valuedmodal logics for probabilistic systems.

One of the first observation made (see [10] and [12]) was that ex-

tending a simple basic real–valuedmodal logic with (co)inductively

defined operators (à la Kozen µ-calculus) results in a very expres-

sive formalism capable of interpreting the full logic pCTL:

Basic real–valued modal logic

+ ⊇ pCTL

(co)inductive operators

This observation suggested the following research program to-

wards the axiomatisation of pCTL:

1. identify a convenient basic real–valuedmodal logicL which,

once extended with (co)inductively defined operators (as in

[10] and [12]), can interpret pCTL,

2. obtain a sound and complete axiomatisation of L,

3. extend L with the required (co)inductive operators,

4. try to axiomatise the extended logic using the axiomatisa-

tion ofL and the theoretical machinery for reasoning about

fixed–points and (co)inductive definitions.

Carrying on this research program, in [11] a basic real–valued

modal logic called Riesz modal logic (R) was identified (step 1). The

semantics of the logic R is based on the theory of Riesz spaces, also

known as vector lattices. Historically, research on Riesz spaces was

pioneered in the 1930’s by F. Riesz, L. Kantorovich and H. Freuden-

thal among others and was motivated by the applications in the

study of function spaces (X → R) in functional analysis. Using

some key results of this theory, most notably the Riesz representa-

tion theorem and the Yosida representation theorem, a sound and

complete axiomatisation of R was obtained in [11] with respect to

a large class of (discrete and continuous) Markov chains (step 2).

1.1 Contribution

This work is a continuation of [11] and deals with steps 3–4 from

the research program outlined above. We extend the Riesz modal

logic R with a unary inductively defined predicate P(_) whose se-

mantics is:

JPϕK(x) =
{ 1 if JϕK(x) > 0

0 otherwise

Thus the semantics of JPϕK is the characteristic function of a set

of states. The possibility of turning a real–valued function ϕ into

a set, which comes available when the logic R is extended with

P (denoted by R {P}), is a key element for the interpretation of

Boolean logics. We indeed show that the logic R {P} can interpret

the bounded fragment of pCTL (step 3).

1
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The main contribution of this work is a sound and complete

axiomatisation of the logic R {P} over (discrete and continuous)

Markov chains (step 4). This result is obtained once again by ap-

plying key results from the theory of Riesz spaces, most notably a

theorem of Yudin (about theDedekind completion of Archimedean

Riesz spaces) and a theorem of Kantorovich (about the extension

of positive additive operators).

Remarkably, our axiomatisation is purely equational and the

only inference rules are those of equational logic. This may be seen

as an improvement over axiomatisations of other probabilistic log-

ics (see, e.g., [6, 7]) which rely on the use of infinitary inference

rules (i.e., having countable number of premises).

2 Markov Chains and Probabilistic Logics

Definition 2.1. Given a set X we denote with D≤1(X )

D≤1(X ) = {d : X → [0, 1] |
∑

x

d(x) ≤ 1}

the collectionof sub–probability distributions onX .We denotewith

D=1(X ) the collection of full probability distributions. With some

abuse of notation, given a subset A ⊆ X we denote with d(A) the

cumulative probability of A:

d(A) =
∑

{d(x) | x ∈ A}.

The value d(X ) is called the mass of d .

Definition 2.2. Let X be a set. Then for every d ∈ D≤1(X ) and

bounded function f : X → Rwe define the expectation of f relative

to the sub–probability distribution d as:

E(f ,d) =
∑

x ∈X

f (x) · d(x)

Definition 2.3. AMarkov chain is a pair (X , τ )whereX is the (pos-

sibly infinite) set of states and τ : X → D≤1(X ) it the transition

function which maps each state to a sub–probability distribution

over states.

The intended interpretation is that, at a state x ∈X , the computa-

tion stops with probability 1−d(X ), where d = τ (x), and continues

with probabilityd(X ) following the (normalized) probability distri-

bution d .

Example 2.1. Consider the Markov chain (X , τ ) with X = {x,y}

and τ : X → D≤1(X ) defined by: τ (x) = {0 : x, 1 : y} and τ (y) =

{ 13 : x, 0 : y},

��������x 1
//'&%$ !"#y
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From state x the computation progresses to y with probability 1.

From state y the computation halts with probability 2
3 and pro-

gresses to x with probability 1
3 .

Remark 2.2. Other similar definitions include Markov chains with

full distributions rather than sub–probability distributions, labelled

Markov chains (X , {τb }b ∈L) having a set of transition functions in-

dexed by a set L of labels, and many others. Our definition follows

the development of [11]. All the results of this work can be adapted

to most variants of Markov chains with only minor variations. See

discussion in Section 7.

We denote with X∞ the set of non–empty finite and infinite

sequences of states of the Markov chain (X , τ ). Given a state x ∈ X

and a finite sequence ®y = 〈y0, . . . ,yn〉 ∈ X
∞ of states, the Markov

chain naturally determines the probability τx (®y) of this sequence

occurring when starting from the state x as follows:

τx (®y) =
{ 0 if y0 , x0
λ0 · λ1 · . . . λn−1 otherwise

where λi =
(
τ (yi )

)
(yi+1), for all i ∈ {0, . . . ,n − 1}, and where we

adopt the convention Π∅ = 1 so that τx (〈x〉) = 1. Using standard

methods (see, e.g., [1, §10.1]) it is possible to extend the assignment

τx to a sub–probability Borel measure µx on the whole topologi-

cal spaceX∞ (whereX is endowed with the discrete topology).We

omit the standard definitions and proceed directly with the follow-

ing.

Definition 2.4. Given aMarkov chain (X , τ ) and x ∈ X we denote

with µx the sub–probability Borel measure on X∞ induced by τx .

We adopt the standard notation of linear temporal logics for de-

scribing subsets of X∞.

Definition 2.5. Given subsets A,B ⊆ X and L ⊆ X∞ we denote:

• {A} = {(x0,x1, . . . ) ∈ X
∞ | x0 ∈ A}

• ◦L = {(x0, x1, . . . ) ∈ X
∞ | (x1, x2, . . . , ) ∈ L}

• AU≤0 B = {B}

• AU≤n+1B = {B} ∪
(
{(A∩ (X \ B))} ∩ ◦

(
AU≤n B

))

• AU B =
⋃
n (AU≤n B)

Thus {A} is the set of sequences whose first state is in A and ◦L

is the set of sequences (x0,x1, . . . ) whose tail (x1, . . . ) belongs to

L. So for example ◦{A} denotes the set of sequences having at least

two elements and whose second element is in A. The inductively

defined set A U≤nB is made of sequences (x0, . . . ) with xi ∈ B,

for some i ≤ n and xj ∈ A for all j < i . Lastly, A U B consists of

sequences (x0, . . . ) with xi ∈ B, for some i ∈ N and xj ∈ A for all

j < i .

2.1 Probabilistic CTL and its Bounded Fragment

In this subsection we give the basic definitions of the logic proba-

bilistic CTL (or just pCTL) and its interpretation on Markov chains.

We refer to [1, §10.2] for a detailed introduction.

Definition 2.6 (Syntax). The set of pCTL formulas is generated

by the following grammar F ,G ::=

⊤ | F ∧G | ∼G | P∗p ◦ F | P∗p (F U≤n G) | P∗p (F U G)

where ∗ ∈ {>,≥} and p ∈ [0, 1].

The set of bounded formulas is given by formulas not containing

the P∗p (F U G) operator.

Remark 2.3. The version of the logic pCTL presented in [1, §10.1]

is interpreted over Markov chains having full probability distribu-

tions and not sub–probability distributions. As already mentioned

(see also discussion in Section 7) this is a minor difference and all

the results of this paper can be reformulated to agree with the def-

inition of [1, §10.1].

Definition 2.7 (Semantics). Given a Markov chain (X , τ ), the se-

mantics (or interpretation) of a pCTL formula F is the set L F Mτ ⊆

X defined by induction on F as follows:

L⊤ Mτ =X L∼F Mτ =X \ L F Mτ L F ∨G Mτ =L F Mτ ∪ LG Mτ
2
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LP⋆p (◦F ) M =
{
x ∈ X | µx (◦{A})⋆p

}

LP⋆p (F U≤n G) M =
{
x ∈ X | µx (AU≤n B)⋆p

}

LP⋆p (F U G) M =
{
x ∈ X | µx (AU B)⋆p

}

with ⋆p ∈ {> p, ≥ p} and where A,B ⊆ X are defined as A=L F Mτ
and B=LG Mτ .

Example 2.4. Consider the Markov chain of Example 2.1 and the

bounded pCTL formula F = P
>

1
2
(◦⊤). Then L F Mτ = {x} as the

formula holds on those states that can progress to any other state

with probability strictly greater than 1
2 . Consider now the formula

G = P≥1(⊤ U≤7 ∼ F ). The formula G holds on those state that

reach a state satisfying ∼F , in at most 7 steps, with probability 1.

Clearly both y and x satisfy this property since y is already in ∼F

and x reaches y with probability 1 in one step.

2.2 Riesz Modal Logic

We now recall the definition of the Riesz modal logic R from [11].

Definition 2.8 (Syntax). The set of formulas of R is generated by

the following grammar:

ϕ,ψ ::= 0 | 1 | rϕ | ϕ +ψ | ϕ ⊔ψ | ϕ ⊓ψ | ^ϕ where r ∈ R.

The quantitative semantics of formulas is given as follows.

Definition 2.9 (Semantics). Given a Markov chain (X , τ ), the se-

mantics (or interpretation) of a formula ϕ is the real–valued func-

tion JϕKτ :X→R defined by induction on ϕ as follows:

J0Kτ (x) = 0 J1Kτ (x) = 1

JrϕKτ (x) = r ·
(
JϕKτ (x)

)
Jϕ +ψ Kτ (x) = JϕKτ (x) + Jψ Kτ (x)

Jϕ ⊔ψ Kτ (x) = max
{
JϕKτ (x), Jψ Kτ (x)

}

Jϕ ⊓ψ Kτ (x) = min
{
JϕKτ (x), Jψ Kτ (x)

}

J^ϕKτ (x) = E(JϕKτ , τ (x)) =
∑

y∈X

JϕKτ (y) · τ (x)(y)

Beside the arithmetic operators having the expected meaning,

the formula ^ϕ is the function that assigns to the state x the ex-

pectation of the (interpretation of) the formula ϕ relative to to the

sub–probability distribution τ (x).

Remark 2.5. It is immediate to verify that the semantics of every

formula ϕ is a bounded function and therefore the semantics of

the ^ connective, which uses the expectation functional, is well

defined.

Example 2.6. Let us consider the Markov chain of Example 2.1 and

consider the Riesz modal logic formula^1. The formula ^1 can be

understood as mapping each state x ∈ X to the total mass of the

sub–probability distribution τ (x). Thus we have J^1Kτ (x) = 1 and

J^1Kτ (y) = 1
3 .

When the Markov chain (X , τ ) is clear from the context, and no

confusion arises, wewill just writeϕ(x) in place of JϕKτ (x). Wewill

often make use of the following useful abbreviations: −ϕ = (−1)ϕ,

ϕ+ = ϕ⊔0 (the non–negative part), |ϕ | = ϕ+ + (−ϕ)+ (the absolute

value) and [ϕ] = ϕ+ ⊓ 1 (the restriction to [0, 1]).

2.3 Riesz modal logic with threshold operators

We now extended the Riesz modal logic with one additional unary

operator denoted by P.

Definition 2.10. The unary operator P is defined as follows:

JPϕKτ (x) =
{ 1 if JϕKτ (x) > 0

0 otherwise

We denote from now on with R {P} the Riesz modal logic extended

with P.

The interpretation of the formula Pϕ is always a {0, 1}-valued

function on X and it is the characteristic function of the set of

states getting strictly positive values by ϕ.

We will refer to {0, 1}-valued functions as Boolean functions,

since they corresponds to (characteristic functions of) subsets of

X . Note that a function f is Boolean if and only if f = Pf and that

PPf = Pf .

Remark 2.7. The usual operations of union (∪), intersection and

complementation (¬) can be easily defined on Boolean functions

f ,д as follows:

f ∪ д = f ⊔ д ¬f = 1 − f f ∩ д = f ⊓ д.

The P operator is useful because it allows the definition of other

threshold operators. For example the useful operatorsT⋆p , withp ∈

[0, 1] and ⋆ ∈ {>,≥} defined as:

JT⋆pϕKτ (x) =
{ 1 if JϕKτ (x)⋆p
0 otherwise

can be encoded using the P operator. First, note that for p = 0

T>0ϕ = Pϕ

T≥0ϕ = ¬T>0(−ϕ)

Then, for the general case p ∈ [0, 1], we have that

T>pϕ = T>0(ϕ − p1)

T≥pϕ = T≥0(ϕ − p1).

Example 2.8. Consider the formulaψ = T
>

1
2
(^⊤). The semantics

of the formulaψ is the (characteristic function of the) set of states

in the Markov chain having outgoing probability strictly greater

than 1
2 . The same property is expressible by the pCTL formula

P
>

1
2
(◦⊤). Considering the Markov chain (X , τ ) of Example 2.1 we

have that Jψ Kτ (x) = 1 and Jψ Kτ (y) = 0

Example 2.9. Let γ = ¬ψ , where ψ is defined as above. Thus γ

expresses the same property of the pCTL formula ∼ F of Example

2.4. Consider the R formula T≥1(γ ⊔^γ ). It is an useful exercise to

verify that this formula expresses the same property as the pCTL

formula P≥1(⊤ U≤1 ∼F ).

We are now ready to state the following expressivity results.

Proposition 2.11. The bounded fragment of pCTL can be inter-

preted in the logic R {P} by the following inductively defined transla-

tion t from pCTL formulas to R {P} formulas:

pCTL formula F R {P} formula t(F )

t(⊤) = 1

t(∼F ) = 1 − t(F )

t(F ∨G) = t(F ) ⊔ t(G)

t
(
P⋆p (◦F )

)
= T⋆p

(
^t(F )

)

t
(
P⋆p (F U≤n G)

)
= T⋆p

(
θn
F ,G

)

3
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where the formula θn (F ,G) is defined inductively as follows:

θ0
F ,G

= t(G)

θn+1
F ,G

= t(G) ⊔
(
t(F ) ⊓ ^θn

F ,G

)

Proof. We need to show that for all bounded pCTL formulas F it

holds that L F Mτ = Jt(F )Kτ (the set L F Mτ ⊆ X is identified as its

corresponding Boolean function).

The proof, by structural induction on F , is straightforward for

the cases regarding the Boolean connectives and the pCTL opera-

tor P⋆p (◦_) given the definition of T⋆p . For the case regarding the

pCTL operatorP⋆p(F U
≤n G) it is sufficient to verify, by induction

on n, that Jθn
F ,G

K(x) = µx (L F Mτ U≤n LG Mτ ), for all x ∈ X .

Case n=0. By Definition 2.5 we have

µx (L F Mτ U≤0 LG Mτ )=µx (
{
LG Mτ

}
)

and µx (
{
LG Mτ

}
)(y)= 1 if and only if y ∈ LG Mτ . This, by induction

hypothesis onG, coincides with the semantics of Jθ0
F ,G

K=Jt(G)Kτ
as desired.

Case n + 1. By definition of θn
F ,G

we get

Jθn+1F ,G Kτ (x) =



1 if x ∈ Jt(G)Kτ
0 if x < Jt(G)Kτ ∩ Jt(F )Kτ
J^θn

F ,G
Kτ (x) otherwise

From the definition of the set L = (L F Mτ U≤n LG Mτ ) ⊆ X∞ we

get:

µx (L) =




1 if x ∈ LG Mτ
0 if x < LG Mτ ∩ L F Mτ
µx (◦

(
L F Mτ U≤n LG Mτ

)
) otherwise

It remains to verify that J^θn
F ,G

Kτ (x) and µx (◦
(
L F Mτ U≤n LG M

)
)

coincide and this follows from the inductive hypothesis and the

definition of ◦(_) and J^_Kτ . �

3 Inductive characterization of P

The goal of this section is to express the semantics of the operators

P, introduced in the previous section, by means of an inductive

definition.

We first recall the fundamental Knaster–Tarski fixed–point the-

orem.

Definition 3.1. Given a lattice L and a monotone function f :

L → L, a point a∈L is called a prefixed–point (of f ) if a ≥ f (a) and

it is called a fixed–point if a = f (a).

Theorem3.2 (Knaster–Tarski (A)). LetL be a lattice and f : L → L

be monotone function. If a ∈ L is the least prefixed–point of f then

it is also the least fixed–point.

Theorem 3.3 (Knaster–Tarski (B)). Let L be a complete lattice and

f : L → L be monotone function. Then the least fixed–point of f

exists and is definable as
⊔
α f α where

f 0 = ⊥ f α+1 = f (f α ) f β =
⊔

α<β

f α

where α ranges over ordinals and β over limit ordinals. Furthermore

the least fixed–point is the least prefixed–point.

Recall, from the previous section, that the meaning of the abbre-

viation [ϕ] is

J[ϕ]Kγ (x) =
{ 1 if JϕKτ (x) > 1

JϕKγ (x) if JϕKτ (x)∈ [0, 1]
0 if JϕKτ (x) < 0

Proposition 3.4. Let (X , τ ) be a Markov chain. Then for every for-

mula ϕ, the semantics JPϕKγ is the least solution (in the lattice of

functions f : X → R ordered pointwise) satisfying the equation

f =
[
ϕ + f

]
, or just written as:

Pϕ
µ
=

[
ϕ + Pϕ

]
.

Proof. By Lemma 3.5 and Lemma 3.6 below, the least prefixed–

point of f 7→ [ϕ + f ] is the indicator function of the smallest set

which contains {x | ϕ(x) > 0} and this is the semantics of Pϕ. �

Lemma 3.5. A function f : X → R is a prefixed–point of f 7→

[ϕ + f ] if and only if it has the following properties:

1. for all x ∈ X it holds that f (x) ≥ 0, and

2. for all x ∈ X , if ϕ(x) > 0 then f (x) ≥ 1,

Proof. First we show that any prefixed–point has these two prop-

erties. The first property follows directly from the definition of the

operation [_]. For the second point, assume towards a contradic-

tion that ϕ(x) = a > 0 and f (x) = b < 1, for some x ∈ X . Since f

is a prefixed–point we get b ≥ [a + b] and this is a contradiction

because b < [a + b].

Now, take any function f with the two properties above, we

need to show that f is prefixed–point, i.e., f (x) ≥ [ϕ + f (x)] for

all x ∈ X . There are two cases: if ϕ(x) ≤ 0 then [ϕ(x) + f (x)] ≤

[f (x)] and, since f (x) ≥ 0 we have that [f (x)] ≤ f (x) and thus the

desired inequality holds; if ϕ(x) > 0 then, by the second property

f (x) ≥ 1, and since [ϕ(x)+ f (x)] ≤ 1 the desired equality holds. �

Lemma 3.6. The least (pre)fixed–point f
µ
= [ϕ + f ] is a Boolean

function.

Proof. First observe that f ≤ 1. Indeed, towards a contradiction, if

f � 1 then f ⊓ 1 � f and since f ⊓ 1 satisfies the properties of

Lemma 3.5 it is a prefixed–point smaller than f . Hence we have

established that f : X → [0, 1].

To show that f is a Boolean function, assume towards a con-

tradiction that f : X → [0, 1] is the least (pre)fixed–point and,

for some x ∈ X it holds that 0 < f (x) < 1. But then the function

д(x) = f (x) · f (x) has the properties of Lemma 3.5 and thus is a

prefixed–point and clearly д � f . A contradiction. �

4 The Axiomatisation

The goal of this section is to present the axiomatisation of the logic

R {P} which will later be proved complete with respect to the ap-

propriate class of models.

The axiomatisation is simply obtained by putting together ax-

ioms expressing:

1. the axioms of the Riesz modal logic R from [11], shown in

Figure 1, and

2. some axioms expressing the inductive definition

P(ϕ)
µ
= [ϕ + Pϕ

]

shown in Figure 2.

4



Riesz Modal Logic with Threshold Operators LICS ’18, July 9–12, 2018, Oxford, United Kingdom

1a) axioms of R-vector spaces: f + (д+h) = (f +д)+h, f +д =

д + f , f + 0 = f , f + (−f ) = 0, 1f = f , r (r ′ f ) = (r · r ′)f ,

r (f + д) = r f + rд, (r + r ′)f = r f + r ′ f , where −f is the

abbreviation of (−1)f .

1b) axioms of lattices: f ⊔ (д ⊔ h) = (f ⊔ д) ⊔ h, f ⊔ д = д ⊔ f ,

f ⊔ (f ⊓ д) = f , f ⊓ (д ⊓ h) = (f ⊓ д) ⊓ h, f ⊓ д = д ⊓ f ,

f ⊓ (f ⊔ д) = f ,

1c) compatibility axioms: 0 ≤ 1, (f ⊓ д) + h ≤ д + h and 0 ≤

r (f ⊔ 0), for all r ∈ R≥0, where f ≤ д is the abbreviation of

f ⊓ д = f ,

1d) modal axioms:

(Linearity) ^(f +д) = ^(f )+^(д) and ^(r f ) = r (^ f ), for

all r ∈R,

(Positivity) ^(f ⊔ 0) ≥ 0,

(1-decreasing) ^(1) ≤ 1.

Figure 1. Axioms of the Riesz Modal Logic R .

Note that the axiomatisation of the Riesz modal logic R from

[11], shown in Figure 1, is a purely equational axiomatisation and

the only deduction rules are those of equational logic (i.e., substi-

tution of equals for equals).

2a) P(д) ≤ P(д ⊔ д′)

2b) Pд = [д + Pд]

2c) д − [д] ≤ д − P(д − [д])

Figure 2. Axioms of the P operator.

An axiomatisation of the inductively defined operator P could

be obtained using the well–known Park induction rules [14] ex-

pressing that Pϕ is the least prefixed–point of [f + ϕ]:

[f + Pf ] ≤ Pf [f + д] ≤ д ⇒ Pf ≤ д

The second of these rules is, however, an equational implication

and not an equation. The methods we will use to investigate the

axiomatisation and prove the completeness theorem are algebraic

in nature. For this reason it is useful to work with a purely equa-

tional axiomatisation such as the one forR of Figure 1. Fortunately,

by invoking a theorem of Santocanale [15], it is possible to express

the inductive definition of the operator P by means of equalities.

The price to pay is a less transparent axiomatisation.

The rest of this section is devoted to the application of Santo-

canale’s theorem from [15] to derive the equations expressing the

inductive definition of P shown in Figure 2. The full axiomatisation

of the logic R {P} is obtained by merging the equations of Figure 1

and Figure 2.

Remark 4.1. We will never make use of the concrete equational

axioms of Figure 2 and instead just use the knowledge that they

correctly express the least prefixed–point definition of P. Hence

the reader can safely skip Subsection 4.1.

4.1 Application of Santocanale’s Theorems

The techniques of [15] for deriving equational axiomatisations of

operators defined by least fixed–point equations are applicable to

all equational theories extending the theory of lattices with a closed

structure. The theory of R satisfies this requirement as it extends

the theory of lattice–ordered abelian groups and it is therefore an

ordered structure (the lattice order f ≤ д ⇔ f = f ⊓ д) where

the closed structure is given by the operations x ⊗ y = x + y and

x ⊸ y = −x + y. We refer to [15] for further details.

We now state Proposition 2.11 from [15] as a Theorem by adapt-

ing the notation and terminology to the present setting.

Theorem 4.1. Let T be an equational theory extending the equa-

tional theory of R . Let F1(f ) and F2(f ) be terms with variable f

and assume they are both monotone in f , i.e., that the equalities

F1(f ) ≤ F1(f ⊔ д) and F2(f ) ≤ F2(f ⊔ д) both belong to the the-

ory T . Let F (f ,д) = F1(F2(f )+д). Lastly, letG(д) be any term such

that the following equations belong to T :

1. G(д) ≤ G(д ⊔ д′) (G is monotone in д),

2. F (G(д),д) = G(д)

3. д − F ∗(д) ≤ д − F2
(
G(д − F ∗(д))

)

where F ∗(д) = F2(F1(д)).

Then the term G(д) is the unique, up to equality in the theory T ,

least (pre)fixed-point of F (f ,д), writtenG(д)
µ
= F (G(д),д).

The above result can be used to axiomatise the operator P by

instantiating the statement of Theorem 4.1 as follows:

F1(f ) = [f ] F2(f ) = f G(д) = Pд F (f ,д) = [f + д]

The axioms for the operator P are listed in Figure 2. Note that The-

orem 4.1 is indeed applicable because F1 and F2 are clearly mono-

tone.

5 Algebraic Semantics and Completeness

The goal of this section is to investigate the axiomatisation of the

R {P} logic with algebraic methods. Since all the axioms (Figures 1

and 2) are equational, the axiomatisation defines a variety, in the

usual sense of universal algebra, of structures over the appropriate

signature.

We remark here that formulas of the R {P} logic coincide with

closed terms (no variables) in the language {0, 1,+, r (_),⊔,⊓,^, P}.

For this reason, in what follows, the lettersϕ andψ will range over

closed terms.

5.1 Riesz spaces

The axioms 1a, 1b and 1c of Figure 1 define the variety of alge-

bras over the signature {0, 1,+, r (_),⊓,⊔} called Riesz spaces, also

known as vector lattices. We refer to the textbooks [16] and [9] for

an introduction to the theory of Riesz spaces. The recent confer-

ence paper [11] also provides a succinct introduction to some of

the basic required concepts.

Among the class of Riesz spaces we will be mostly interested in

the Archimedean and unital spaces.

Definition 5.1. Let R be a Riesz space. An element a , 0 of R

is infinitely small if there exists some b ∈ R such that n |a | ≤ |b |,

for all n ∈N. A Riesz space is Archimedean if it does not have any

infinitely small element.

Definition 5.2. We say that a Riesz space is unital if for every

a ∈ R there exists some n ∈ N such that |a | ≤ n1.

Example 5.1. For any given set X , the Riesz space (X → R) with

operations defined pointwise is Archimedean. However, if X is in-

finite, it is not unital. Indeed consider X = N and the identity func-

tion f (x) = x . Then, for every n ∈ N, it is not true that f ≤ n1.

5
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The subspace (X → R)b of all bounded functions is Archimedean

and unital.

We denote with AURiesz the class of Archimedean and unital

Riesz spaces. The importance of this class comes from the Yosida

representation theorem (see, e.g., [9, §45] and [11, §E]) which states

that each R ∈ AURiesz is isomorphic to a subalgebra of C(X ),

the Riesz space of real–valued continuous functions with opera-

tions defined pointwise on a (essentially unique) compact Haus-

dorff space. Hence, elements of a AURiesz space can always be

identified with real–valued bounded functions. For this reason we

often use the letters f ,д,h to range over elements ofAURiesz spaces.

The following notion is also very important in the theory of

Riesz spaces.

Definition 5.3. ARiesz spaceR isDedekind complete if every bounded

subset A ⊆ R has a least upper bound (
⊔
A) and a greatest lower

bound (
d
A).

Example 5.2. For example, the Riesz space R2 is Dedekind com-

plete. More generally, for any set X , the Riesz space of function

(X → R) is Dedekind complete. The subspace (X → R)b is Archimedean

unital and Dedekind complete. The spaceC([0,1]) is Archimedean

and unital but not Dedekind complete. Indeed one can verify (see,

e.g., [2, 9E.4]) that the set F = { f ≥ 0 | f (x) ≥ 1 for all x ∈ [ 12 , 1]}

has no infimum inC([0, 1]). Note that the pointwise infimum of F ,

which is the indicator function of [ 12 , 1], is not continuous.

WewriteDAURiesz for the class ofDedekind completeArchimedean

unital spaces.

The following result, due to Yudin (see, e.g., [16, §IV.11]) is a

central theorem in the Theory of Riesz spaces.

Theorem 5.4 (Dedekind completion). For every Archimedean uni-

tal Riesz space R there exists a Dedekind complete Archimedean and

unital space R, called the Dedekind completion of R, such that:

1. R embeds in R, so we can just write R ⊆ R,

2. existing sups and infs in R are preserved in R. This means that

for every A ⊆ R and f =
⊔
A (sup taken in R) then f =

⊔
A

in R too.

3. R is the smallest Dedekind complete space satisfying the two

properties above.

Note that the above theorem implies that the equational theo-

ries of DAURiesz and AURiesz coincide.

5.2 modal Riesz spaces

In [11] we investigated the theory ofmodal Riesz spaces which are

Riesz spaces endowed with a unary operation ^ satisfying the ax-

ioms of Figure 1(1d). The terminology introduced before extends

naturally to the modal extension. For example we say that the

modal Riesz space (R,^) is Archimedean if R is Archimedean. We

denote with Riesz^ the class of all modal Riesz spaces.

The following result (see also Corollary 5.7 below) is the first

technical contribution of this work and follows directly from a the-

orem of Kantorovich about the extension of positive linear opera-

tors on Riesz spaces.

Theorem5.5 (Dedekind extension ofmodal Riesz spaces). Let (R,^)

be an Archimedean and unital modal Riesz space. Then there exists a

Dedekind complete Archimedean and unital modal Riesz space (R,^)

such that:

1. R is the Dedekind completion of R, so we view R ⊆ R,

2. ^ extends ^, i.e., ^(f ) = ^(f ) for all f ∈ R.

Proof. We know from the axioms of Figure 1 that ^ : R → R is

positive, linear and 1-decreasing. Kantorovich’s theorem (see, e.g.,

Theorem X.3.1 and subsequent discussion in §X.4.1 in [16]) states

that any function F : R → R which is positive (F (0) ≥ 0) and linear

(F (f + д) = F (f ) + F (д) and F (r f ) = rF (f )) can be extended to a

positive and linear operator F : R → R on the Dedekind comple-

tion of R. Thus we just need to verify that the resulting ^ is also

1-decreasing (^(1) ≤ 1) and this is clear since 1 ∈ R and therefore

^(1) = ^(1) and ^(1) ≤ 1 because ^ is 1-decreasing. �

Remark 5.3. The choice of ^ is, in general, not unique.

In other words (R,^) embeds (preserving the modal operation)

in (R,^) and existing suprema and infima are preserved. Once

again, the result of Theorem 5.5 implies that the equational the-

ories of DAURiesz^ spaces and AURiesz^ spaces coincide.

As already observed, closed terms (i.e., without variables) in

the language of modal Riesz spaces are exactly formulas ϕ of the

Riesz modal logic (see Definition 2.8). The following result from

[11] states that, on closed terms (i.e., formulas), the theories of

AURiesz^ and Riesz^ spaces coincide.

Proposition 5.6. The equality ϕ = ψ holds in the variety Riesz^

if and only if it holds in the class of AURiesz^ . Therefore ϕ = ψ is

derivable from the axioms of Figure 1 if and only if it holds in all

AURiesz^ spaces.

Proof. This is proven in [11] showing that the initial Riesz^ alge-

bra (free algebra with no generators) is Archimedean ([11, VI.2])

and unital ([11, VI.3]) and, therefore, it is also the initial algebra

in AURiesz^ . It is a standard result from universal algebra that

an equation f = д between terms with variablesV = {x1, . . . , xn }

holds in the free algebra generated byV if and only if it is derivable

from the axioms. �

Corollary 5.7. The equality ϕ = ψ holds in the variety Riesz^ if

and only if it holds in the class of DAURiesz^ .

5.3 Modal Riesz spaces with the P operator

In this subsection we study the vareity of algebras over the signa-

ture {0, 1,+, r (_),⊔,⊓,^, P} axiomatised as in Figure 1 and Figure

2. We denote this variety as RieszP
^
.

The first observation is that, since the equations of Figure 2

define the operators P as a least prefixed–point, any modal Riesz

space (R,^) in Riesz^ can either:

1. be extended with some P to (R,^, P) in a unique way, or

2. not admit such extension,

since least prefixed-points, if they exist, are unique.

Example 5.4. Let R = (C[0, 1],^) be the (Archimedean and unital)

modal Riesz space with ^(f ) = f (identity function). Then R can-

not be endowed with a P operation to a RieszP
^
space. Indeed let

f : [0, 1]→R be defined as f (x)=x − 1
2 . Then P(f ) must satisfies

the properties of Lemma 3.5 and Lemma 3.6 and must therefore be

{0, 1}-valued. But the only {0, 1}-valued continuous functions on

[0, 1] are the characteristic functions of the clopen sets ∅ (x 7→ 0)

and [0, 1] (x 7→ 1). And ∅ is not a prefixed–point and [0, 1] is not

the least prefixed–point.
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However, by theKnaster–Tarski fixed–point theorem, fixed–points

ofmonotone bounded functions always exists, if the space is Dedekind

complete.

Proposition 5.8. Every (R,^) ∈DAURiesz^ can be extended to a

DAURiesz
P
^
space (R,^, P) in a unique way.

Example 5.5. Let (X , τ ) be a Markov chain. Then (X → R)b is

a Dedekind complete Riesz space and the interpretations of the

Riesz modal logic operations, from Section 2.2, make the structure

((X → R)b , J^Kτ , JPKτ ) a DAURieszP^ space.

The following theorem is the most important contribution of

this paper and states that every AURiesz
P
^
space can be embedded

in a DAURieszP
^
space.

Theorem 5.9 (Main Extension Theorem). Let R = (R,^, P) be in

AURiesz
P
^
. ThenR can be embedded into aDedekind completeDAURieszP

^

space R= (R,^, P) such that:

1. R ⊆ R and R is the Dedekind completion of R,

2. The operators ^ and P extends P and ^, respectively.

Proof. We already know, from Theorem 5.5, that (R,^) can be ex-

tended to (R,^). By proposition 5.8, the DAURiesz^ space (R,^)

can be extended uniquely to a DAURiesz
B
^

space (R,^, P). It re-

mains to show that for all f ∈ R it holds that P(f ) = P(f ).

Let us fix an arbitrary f ∈ R. By assumption, both P(f ) and P(f )

are prefixed–points of the mapping д 7→ [f + д], with P(f ) being

the least prefixed–point among those in R ⊆ R and P(f ) the least

among all prefixed–points in R. Thus, clearly P(f ) ≤ P(f ).

Assume, towards a contradiction, that P(f ) � P(f ). Let us fix

an intermediary function д such that P(f ) � д � P(f ) (e.g., д =
1
2P(f )+

1
2P(f )). In fact, since R is dense in R (due to the properties

of the Dedekind completion) we can pick д∈R. We now claim that

д ≥ [f +д], i.e., д is prefixed–point. Sinceд ∈ R andд � P(f ) this is

a contradiction with the assumption that Pf is the least prefixed–

point in R.

Proof of claim: д ≥ [f + д]. It is useful to apply Yosida theorem

and identify R = C(X ) for some compact Hausdorff space X . Thus

we need to show thatд(x) ≥ [f (x)+д(x)] for all x ∈ X . It is enough

to show that д possesses the two properties of Lemma 3.5:

• д(x) ≥ 0, and

• if f (x) > 0 then д(x) ≥ 1.

Both properties follow immediately from the assumption that P(f ) �

д since P(f ) is itself a prefixed–point and thus, by Lemma 3.5, sat-

isfies the two properties. �

We thus get the following corollary.

Corollary 5.10. The equational theories of the classes AURieszP
^

and DAURieszP
^
coincide.

By adopting the same proof method used in [11] to prove The-

orem 5.6, we can now show that on closed terms (i.e., formulas of

the R {P} logic), the equational theory ofAURiesz
P
^
coincides with

that of the full variety of RieszP
^
algebras. This in turn proves that

an equation between closed terms holds in (D)AURieszP
^

if and

only if it is derivable by the axioms of Figure 1 and Figure 2.

Theorem 5.11 (Algebraic Completeness). Let ϕ and ψ be closed

terms over the signature of RieszP
^
algebras. The following are equiv-

alent:

• ϕ=ψ holds in all models of the variety RieszP
^
,

• ⊢ ϕ = ψ , i.e., the equality is derivable (by the rules of equa-

tional logic) from the axioms of Figure 1 and 2,

• ϕ=ψ holds in all AURieszP
^
spaces,

• ϕ=ψ holds in all DAURieszP
^
spaces.

Proof. It is a standard result of universal algebra that ⊢ ϕ = ψ if

and only if ψ = ψ holds in the free algebra on the empty set of

generators, which following the notation [11, VI.A] we denote by

I. This algebra is obtained by quotienting the set of closed terms

by the equivalence relation ϕ ∼ ψ ⇔ ⊢ ϕ = ψ and defining the

operations on equivalence classes in the expected way (see, e.g.,

Section VI.A in [11]).

We then show that I is Archimedean and unital. The proof of

latter property is identical to the proof of Theorem VI.3 [11] since

Pϕ ≤ 1. To show that I has the Archimedean property we adapt

the proof of Theorem VI.4 in [11] by extending the function д :

Form → R as:

д(Pϕ) =
{ 1 if д(ϕ) > 0

0 otherwise

Thus I is both Archimedean and unital, i.e., I ∈ AURiesz
P
^
. Hence

if 0 ϕ = ψ then the equality fails in some model of AURieszP
^

and this proves the third point. Lastly, if an equation fails in some

AURiesz
P
^
space then, by Theorem 5.9, it fails in someDAURieszP

^

space and this proves the fourth point. �

6 Model Semantics and Completeness

The completeness result (Theorem 5.11) of the previous section is

with respect to a class of algebras. In this section we make use of

the duality theory developed in [11] and reformulate it as a com-

pleteness result with respect to a class of Markov processes, i.e.,

topologicalMarkov chains. We first recall the definition of Markov

process from [11, §II].

Definition 6.1. AMarkov process is a pair (X , τ )whereX is a com-

pact Hausdorff space and τ : X → R≤1(X ) is a continuous map

from X to the space of Radon sub–probability measures on X .

HenceMarkov processes are a topological generalization ofMarkov

chains with a continuous transition function (i.e., Markov kernel).

The Riesz modal logic can be interpreted over Markov process in a

natural way by generalizing the semantics of the ^ modality from

Section 2.2 using the Lebesgue integral:

J^ϕKτ (x) =
∫

X
JϕKτ dτ (x).

We refer to [11, §III] for a detailed presentation of this topological

semantics. Under this interpretation, any formula ϕ of the Riesz

modal logic is interpreted as a real–valued continuous bounded

function f ∈ C(X ).

It turns out that, for every Markov process (X , τ ), the structure

(C(X ), J^Kτ ) is a AURiesz^ space which is universally complete

(see Definition [11, II.17]). One of the key results of [11] states that,

in fact, all universally–complete AURiesz^ spaces are of the form

above, for some (essentially) unique Markov process (X , τ ). This

correspondence between objects extends also to morphisms in the

form of a duality between the categories CAURiesz^ (of univer-

sally complete AURiesz^ spaces with structure preserving homo-

morphisms) and the category Markov (of Markov processes with

7
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coalgebra morphisms). We refer to [11] for a detailed exposition of

this duality.

We now specialize this duality to the subcategory of Markov

processes whose underlying state space X is compact Hausdorff

and extremally disconnected. These spaces are well known since

they are exactly the Stone spaces of complete Boolean algebras.

Definition 6.2. A topological space is extremally disconnected if

the closure of every open set is open.We say that aMarkov process

(X , τ ) is extremally disconnected if X is extremally disconnected.

For the following theorem see, e.g., [2, 9E.7].

Theorem 6.3. For a compact Hausdorff space X , the following are

equivalent:

1. X is extremally disconnected,

2. C(X ) is Dedekind complete, i.e., C(X ) ∈ DAURiesz.

This implies that the duality between CAURiesz^ and Markov

from [11] restricts to a duality between DAURiesz^ and EMarkov,

the subcategory of extremally disconnected Markov processes. As

a consequence, we can formulate the following corollary.

Corollary 6.4. Given two formulas of the Riesz modal logic, the

following assertions are equivalent:

• ϕ = ψ holds in all DAURiesz^ spaces,

• JϕKτ = Jψ Kτ holds, for all extremally disconnected Markov

processes (X , τ ).

Workingwith extremally disconnectedMarkov processes is use-

ful because they allow the interpretation of the P operator of the

logic R {P} . As already observed in Proposition 5.8, such interpre-

tation is uniquely determined.

Proposition 6.5. Let X be a compact Hausdorff extremally discon-

nected and let R = C(X ) be the corresponding Dedekind complete

Riesz space. Then, for every f ∈ R, the least prefixed–point of the

mapping д 7→ [д + f ] is the indicator function of the closure of the

set {x | f (x) > 0}.

Proof. Let u : X → {0, 1} be the least–prefixed point. By the prop-

erties listed in Lemma 3.5 and 3.6, the functionu is the characteris-

tic function of a set K ⊇ {x | f (x) > 0} and, since u is continuous,

the set K is clopen. The closure of {x | f (x) > 0}, which is clopen

since X is extremally disconnected, is the smallest such set K . �

Hence, by defining the interpretation of the P operatoronMarkov

processes as in Definition 6.6 below, we obtain the completeness

Theorem 6.7 as a corollary of Theorem 5.11.

Definition 6.6. Let (X , τ ) be a Markov process. The semantics

JϕKτ of a R {P} formulaϕ is defined by extension of the topological

semantics of the Riesz modal logic R with the following definition:

JPϕKτ (x) =
{
1 if x ∈ {y | JϕKτ (y) > 0}

0 otherwise
.

Theorem 6.7 (Model Completeness). Given two formulas ϕ andψ

of the R {P} logic, the following assertions are equivalent:

• ϕ = ψ is derivable by the axioms of Figure 1 and 2,

• JϕKτ = Jψ Kτ holds, for all extremally disconnected Markov

processes (X , τ ).

6.1 Extending the Completeness Theorem to other

models

The completeness result of Theorem 6.7 may be considered, at

a first glance, as slightly artificial. This is because, in computer

science, we are most often interested in interpreting probabilistic

logics such as pCTL or R {P} on (discrete or continuous) Markov

chains whose state space is not a compact Hausdorff space, let

alone extremally disconnected.

Example 6.1. Let (X , τ ) be a Markov chain in the sense of Defi-

nition 2.3 with X infinite. Then X (when viewed as a topological

space with the discrete topology) is not a compact space. We have

already discussed in Section 2.3 how to interpret the logic R {P}

over discreteMarkov chains and, under this semantics, the formula

ϕ is interpreted as a bounded function JϕKτ : X → R.

Example 6.2. Let τ : X → R≤1(X ) be a Borel measurable Markov

kernel on a standard Borel space (e.g., the Euclidean spaceX = R2).

This is a very natural model to consider in many applications. Yet,

it does not fit the definition of Markov process of Definition 6.1 for

two reasons: R2 is not compact and τ is not continuous. Yet we can

naturally interpret the logic R {P} over these models with:

J^ϕKτ (x) =
∫

X
JϕKτ dτ (x) JPϕKτ (x) =

{ 1 if JϕKτ (x)> 0
0 otherwise

With this interpretation, it is possible to show by induction on the

structure of ϕ that the semantics JϕKτ of very formula ϕ is a Borel

measurable bounded function JϕKτ : X → R.

Several other examples can be found in the literature: for ex-

ample Markov processes defined on analytic spaces [13] or even

measurable spaces [6].

However, as we now explain, the completeness result still holds

if all the models of the examples above (and arguably most other

models in the literature) were considered in addition to extremally

disconnected Markov processes. To be more precise, by denoting

with C1 and C2 the classes of models of the two examples above,

we can prove the following theorem:

Theorem 6.8 (Extended Model Completeness). Given two formu-

las ϕ andψ of the R {P} logic, the following assertions are equivalent:

• ϕ=ψ is derivable by the axioms of Figure 1 and 2,

• JϕKτ =Jψ Kτ holds in all models in EMarkov ∪ C1 ∪ C2.

Proof. We need to show that if ϕ , ψ in some model (X , τ ) ∈ C1 ∪

C2 then there is some (Y ,σ ) ∈ EMarkov such that JϕKσ , Jψ Kτ .
Assume first that (X , τ ) is in C1. Then we already observed in

Example 5.5 that ((X → R)b , J^Kτ , JPKτ ) is a Dedekind complete

space. Hence, by the duality between EMarkov and DAURiesz^ , it

is isomorphic to (C(Y ), J^Kσ , JPKσ ) for some (Y ,σ ) ∈ EMarkov. If

fact one can show that Y = SC(X ) where SC(X ) is the Stone–Cech

compactification of X (see, e.g., [2, 9E.8]).

Suppose now that (X , τ ) is in C2. Let us denote withB(X ,R) the

collection of bounded Borel measurable functions of type X →

R. The space (B(X ,R), J^Kτ , JPKτ ) is a AURiesz
P
^

space but, in

general, it is not Dedekind complete. However, using the extension

Theorem 5.9, we can embed this space into a Dedekind complete

space (A,^, P) and thus ϕ , ψ in (A,^, P). By duality, this space is

isomorphic to (C(Y ), J^Kσ , JPKσ ) for some (Y ,σ ) ∈ EMarkov, and

this concludes the proof. �

8



Riesz Modal Logic with Threshold Operators LICS ’18, July 9–12, 2018, Oxford, United Kingdom

The proof of the above theorem shows that, as long as we deal

with reasonable models of Markov chains (X , τ ), the denotation of

R {P} formulas belong to some AURieszP
^
subspace of (X → R)b

and thus, using the extension Theorem 5.9 and duality between

EMarkov and DAURiesz
P
^
, it can be also be equally interpreted in

some EMarkov process in the sense of Definition 6.1.

7 Possible variants of this work

In this work we have modeled discrete (continuous) probabilistic

systems with Markov chains (Markov processes) based on sub–

probability distributions (sub–probability measures). This choice

was made, in agreement with the work in [11], for mathematical

convenience: the axiomatization of the ^ operator of the Riesz

modal logic is simple and intelligible.

In this section we explain how several variants can be consid-

ered.

7.1 Labeled Markov chains

LabeledMarkov chains, still based on sub–probability distributions,

can be defined as follows:

Definition 7.1. Let L be a set of labels. A labeled Markov chain is

a pair (X , {τl }l ∈L) where X is the (possibly infinite) set of states

and τl : X → D≤1(X ) is the l-labeled transition function which

maps each state to a subprobability distribution over states.

The Riesz modal logicR and its extension R {P} can naturally be

adapted to be interpreted over labeled Markov chains by replacing

the single modality ^ with a L-indexed family of modalities 〈l〉

whose interpretation is:

J〈l〉ϕK(x) = E(JϕK, τl (x))

And similarly for labeled Markov processes.

The multimodal variant of the Riesz modal logic and of its ex-

tension R {P} can be axiomatized by duplicating the axioms of ^

for each 〈l〉 and l ∈ L. For example, if L = {a,b}, the axiomatiza-

tion is obtained by replacing the equations 1d from Figure 1 with

the equations 1da and 1db of Figure 3.

1da) modal axioms for 〈a〉

(Linearity) 〈a〉(f +д) = 〈a〉(f )+ 〈a〉(д) and 〈a〉(r f ) =

r (〈a〉 f ), for all r ∈R,

(Positivity) 〈a〉(f ⊔ 0) ≥ 0,

(1-decreasing) 〈a〉(1) ≤ 1.

1db) modal axioms for 〈b〉

(Linearity) 〈b〉(f +д) = 〈b〉(f )+ 〈b〉(д) and 〈b〉(r f ) =

r (〈b〉 f ), for all r ∈R,

(Positivity) 〈b〉(f ⊔ 0) ≥ 0,

(1-decreasing) 〈b〉(1) ≤ 1.

Figure 3. Axioms of the multimodal Riesz Modal Logic.

7.2 Full Markov Chains

One of the most widespread variants of Markov chains is based on

full probability distributions and on predicates defined on the set

of states. This is also the definition mostly used for interpreting

the logic pCTL (see, e.g., [1]).

Definition 7.2. A full Markov chain is a tuple (X , τ ,Q0, . . . ,Qn )

where X is the (possibly infinite) set of states, τ : X → D=1(X )

is the transition function mapping each state to a full probability

distribution, and Qi ⊆ X for all 0 ≤ i ≤ n.

Let us fix the alphabet L = {a,q0, . . . ,qn}. We now show how

to view any labeled Markov chain (X , {τl }l ∈L) such that τa ∈ D=1

(i.e., τa(x) is a full probability distribution for all x) as a full Markov

chain (X , τ ,Q0, . . . ,Qn ).

• the set X of states of the full Markov chain coincides with

the set of states of the labeled Markov chain,

• τ = τa , i.e., the a-transition function of the labeled Markov

chain is the transition function of the full Markov chain,

• x ∈ Qi (x) ⇔ τqi (x) has positive mass:
∑
y∈X d(y) > 0where

d = τqi (x).

Clearly any full Markov chain is represented by some labelled

Markov chain.

Now note that that the requirement “τa is a full probability dis-

tribution” can be expressed in the logic R {P} by the axiom:

〈a〉1 = 1

Hence the axiomatisation of themultimodal logicR {P} interpreted

over labeled Markov chain (X , {τl }l ∈L) such that τa is full, can

be obtained by adding the axiom 〈a〉1 = 1 to the axiomatisation

described in the previous subsection.

Finally, note that the (characteristic function of the) set of states

satisfying the predicate Qi is definable in the R {P} logic by the

formula: P(〈bi 〉1). This gives an axiomatisation of a variant of the

R {P} logic, and thus of bounded pCTL (see Theorem 2.11), inter-

preted over full Markov chains.

7.3 Conclusions and Future Work

Wehave introduced theR {P} logic, an extension of the Rieszmodal

logic which can be interpreted over discrete Markov chains as well

as on a wide range of continuous Markov processes. The logic

R {P} is sufficiently expressive to interpret the bounded fragment

of pCTL. Our main result is Theorem 6.7 (see also Theorem 6.8)

which states that the set of equations of Figure 1 and Figure 2 gives

a sound and complete axiomatisation of R {P} .

The research program outlined in the introduction is not yet

completed since the logic R {P} , while quite expressive, cannot in-

terpret the full logic pCTL and, more specifically, cannot interpret

its unbounded until operator P≥p (F U G) (see Section 2.1 for de-

tails). One natural idea is to consider the following inductively de-

fined binary operator

U(ϕ,ψ )
µ
= P(ψ ) ⊔ (P(ϕ) ⊓ ^

(
U(ϕ,ψ )

)
)

which intuitively denotes the least upper bound of the formulas

θn
F ,G

defined in the statement of Proposition 2.11. It is not difficult

to prove the analogous of Proposition 2.11 and show that R {P}+U

can interpret full pCTL on Markov chains. However it does not

seem straightforward to adapt the techniques of the present work

to prove the analogous of Theorem 5.9, which is the key technical

result to obtain a complete axiomatisation. We consider the study

the U operator and its axiomatisation as an interesting next step

in this line of research.
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