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Abstract

In a recent paper [11], Herbelin developed dPA
ω
, a calculus in

which constructive proofs for the axioms of countable and depen-

dent choices could be derived via the encoding of a proof of count-

able universal quantification as a stream of it components. However,

the property of normalization (and therefore the one of soundness)

was only conjectured. The difficulty for the proof of normalization

is due to the simultaneous presence of dependent types (for the

constructive part of the choice), of control operators (for classical

logic), of coinductive objects (to encode functions of type N→ A
into streams (a0,a1, . . .)) and of lazy evaluation with sharing (for

these coinductive objects).

Elaborating on previous works, we introduce in this paper a vari-

ant of dPA
ω
presented as a sequent calculus. On the one hand, we

take advantage of a variant of Krivine classical realizability that we

developed to prove the normalization of classical call-by-need [20].

On the other hand, we benefit from dLt̂p, a classical sequent calcu-

lus with dependent types in which type safety is ensured by using

delimited continuations together with a syntactic restriction [19].

By combining the techniques developed in these papers, we manage

to define a realizability interpretation à la Krivine of our calculus
that allows us to prove normalization and soundness.

Keywords Curry-Howard, dependent choice, classical arithmetic,

side effects, dependent types, classical realizability, sequent calculus

1 Introduction

1.1 Realizing ACN and DC in presence of classical logic

Dependent types are one of the key features of Martin-Löf’s type

theory [17], allowing formulas to refer to terms. Notably, the exis-

tential quantification rule is defined so that a proof term of type

∃xA.B is a pair (t ,p)where t—the witness—is of typeA, while p—the
proof—is of type B[t/x]. Dually, the theory enjoys two elimination

rules: one with a destructor wit to extract the witness, the second

one with a destructor prf to extract the proof. This allows for a

simple and constructive proof of the full axiom of choice [17]:

ACA := λH .(λx . wit (Hx), λx . prf (Hx))

: (∀xA.∃yB.P(x ,y)) → ∃f A→B.∀xA.P(x , f (x))
This term is nothing more that an implementation of Brouwer-

Heyting-Kolomogoroff interpretation of the axiom of choice [12]:
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given a proof H of ∀xA.∃yB.P(x ,y), it constructs a choice function
which simply maps any x to the witness ofHx , while the proof that
this function is sound w.r.t. P returns the corresponding certificate.

Yet, this approach deeply relies on the constructivity of the the-

ory. We present here a continuation of Herbelin’s works [11], who

proposed a way of scaling up Martin-Löf’s proof to classical logic.

The first idea is to restrict the dependent types to the fragment

of negative-elimination-free proofs (nef) which somewhat only

contains constructive proofs behaving as values. The second idea

is to represent a countable universal quantification as an infinite

conjunction. This allows us to internalize into a formal system

(called dPA
ω
) the realizability approach [2, 9] as a direct proofs-as-

programs interpretation.

Informally, let us imagine that given a proofH : ∀xN.∃yB.P(x ,y),
we could create the infinite sequenceH∞ = (H0,H1, . . .) and select

its nth-element with some function nth. Then, one might wish that:

λH .(λn. wit (nth n H∞), λn. prf (nth n H∞))

could stand for a proof forACN. One problem is that even if we were

effectively able to build such a term, H∞ might still contain some

classical proofs. Therefore, two copies ofHnmight end up behaving

differently according to the contexts in which they are executed,

and thus returning two different witnesses (which is known to lead

to logical inconsistencies [10]). This problem can be fixed by using

a shared version of H∞, that is to say:

λH . leta = H∞ in (λn. wit (nth n a), λn. prf (nth n a) .

In words, the term H∞ is now shared between all the places which

may require some of its components.

It only remains to formalize the intuition of H∞, which is done

by means of a stream cofix0

f n [(Hn, f (S(n)))] iterated on f with

parameter n, starting with 0:

ACN := λH .leta = cofix0

f n [(Hn, f (S(n))]

in (λn. wit (nth n a), λn. prf (nth n a) .

The stream is, at the level of formulas, an inhabitant of a coinduc-

tively defined infinite conjunction ν0

Xn (∃y.P(n,y))∧X (n+1). Since

we cannot afford to pre-evaluate each of its components, and we

thus have to use a lazy call-by-value evaluation discipline. However,
it still might be responsible for some non-terminating reductions,

all the more as classical proofs may contain backtrack.

1.2 Normalization of dPA
ω

In [11], the property of normalization (on which relies the one of

consistency) was only conjectured, and the proof sketch that was

given turned out to be hard to formalize properly. Our first attempt

to prove the normalization of dPA
ω
was to derive a continuation-

passing style translation (CPS), but translations appeared to be hard

to obtain for dPA
ω
as such. In addition to the difficulties caused

by control operators and co-fixpoints, dPA
ω
reduction system is

defined in a natural deduction fashion, with contextual rules where

1
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the contexts involved can be of arbitrary depth. This kind of rules

are indeed difficult to faithfully translate through a CPS.

Rather than directly proving the normalization of dPA
ω
, we

choose to first give an alternative presentation of the system under

the form of a sequent calculus, which we call dLPA
ω
. Indeed, se-

quent calculus presentations of a calculus usually provides good

intermediate steps for CPS translations [8, 21, 22] since they en-

force a decomposition of the reduction system into finer-grain rules.

To this aim, we first handled separately the difficulties peculiar to

the definition of such a calculus: on the one hand, we proved with

Herbelin the normalization of a calculus with control operators

and lazy evaluation [20]; on the other hand, we defined a classi-

cal sequent calculus with dependent types [19]. By combining the

techniques developed in these frameworks, we finally manage to

define dLPA
ω
, which we present here and prove to be normalizing.

1.3 Realizability interpretation of classical call-by-need

In the call-by-need evaluation strategy, the substitution of a vari-

able is delayed until knowing whether the argument is needed. To

this end, Ariola et al. [1] proposed the λ[lvτ⋆]-calculus, a variant
of Curien-Herbelin’s λµµ̃-calculus [6] in which substitutions are

stored in an explicit environment. Thanks to Danvy’s methodology

of semantics artifacts [7], which consists in successively refining

the reduction system until getting context-free reduction rules
1
,

they obtained an untyped CPS translation for the λ[lvτ⋆]-calculus.
By pushing one step further this methodology, we showed with

Herbelin how to obtain a realizability interpretation à la Krivine
for this framework [20]. The main idea, in contrast to usual models

of Krivine realizability [14], is that realizers are defined as pairs of a

term and a substitution. The adequacy of the interpretation directly

provided us with a proof of normalization, and we shall follow here

the same methodology to prove the normalization of dLPA
ω
.

1.4 A sequent calculus with dependent types

While sequent calculi are naturally tailored to smoothly support

CPS interpretations, there was no such presentation of language

with dependent types compatible with a CPS. In addition to the prob-

lem of safely combining control operators and dependent types [10],

the presentation of a dependently typed language under the form

of a sequent calculus is a challenge in itself. In [19], we introduced

such a system, called dLt̂p, which is a call-by-value sequent cal-

culus with classical control and dependent types. In comparison

with usual type systems, we decorated typing derivations with a

list of dependencies to ensure subject reduction. Besides, the sound-

ness of the calculus was justified by means of a CPS translation

taking the dependencies into account. The very definition of the

translation constrained us to use delimited continuations in the

calculus when reducing dependently typed terms. At the same time,

this unveiled the need for the syntactic restriction of dependencies

to the negative-elimination-free fragment as in [11]. Additionally,

we showed how to relate our calculus to a similar system by Lepi-

gre [16], whose consistency is proved by means of a realizability

interpretation. In the present paper, we use the same techniques,

namely a list of dependencies and delimited continuations, to ensure

the soundness of dLPA
ω
, and we follow Lepigre’s interpretation of

dependent types for the definition of our realizability model.

1
That is to say reduction rules in an abstract machine for which only the term or the

context needs to be analyzed in order to decide whether the rule can be applied.

1.5 Contributions of the paper

The main contributions of this paper can be stated as follows. First,

we define dLPA
ω

(Section 2), a sequent calculus with classical

control, dependent types, inductive and coinductive fixpoints and

lazy evaluation made available thanks to the presence of stores.

This calculus can be seen as a sound combination of dLt̂p [19] and

the λ[lvτ⋆]-calculus [1, 20] extended with the expressive power

of dPA
ω
[11]. Second, we prove the properties of normalization

and soundness for dLPA
ω
thanks to a realizability interpretation à

la Krivine, which we obtain by applying Danvy’s methodology of

semantic artifacts (Sections 3 and 4). Lastly, dLPA
ω
incidentally pro-

vides us with a direct proofs-as-programs interpretation of classical

arithmetic with dependent choice, as sketched in [11].

This paper is partially taken from the Chapter 8 of the author’s PhD
thesis [18]. For more detailed proofs, we refer the reader to the appen-
dices of the version available at: https://hal.inria.fr/hal-01703526.

2 A sequent calculus with dependent types for

classical arithmetic

2.1 Syntax

The language of dLPA
ω
is based on the syntax of dLt̂p [19], ex-

tended with the expressive power of dPA
ω
[11] and with explicit

stores as in the λ[lvτ⋆]-calculus [1]. We stick to a stratified pre-

sentation of dependent types, that is to say that we syntactically

distinguish terms—that represent mathematical objects—from proof

terms—that represent mathematical proofs. In particular, types and

formulas are separated as well, matching the syntax of dPA
ω
’s for-

mulas. Types are defined as finite types with the set of natural num-

bers as the sole ground type, while formulas are inductively built on

atomic equalities of terms, by means of conjunctions, disjunctions,

first-order quantifications, dependent products and co-inductive

formulas:

Types T ,U ::= N | T → U
Formulas A,B ::= ⊤ | ⊥ | t = u | A ∧ B | A ∨ B

| Πa : A.B | ∀xT .A | ∃xT .A | ν tx,f A

The syntax of terms is identical to the one in dPA
ω
, including

functions λx .t and applications tu, as well as a recursion operator

rectxy [t0 | tS ], so that terms represent objects in arithmetic of finite

types. As for proof terms (and contexts, commands), they are now

defined with all the expressiveness of dPA
ω
. Each constructor in

the syntax of formulas is reflected by a constructor in the syntax of

proofs and by the dual co-proof (i.e. destructor) in the syntax of eval-
uation contexts. Amongst other things, the syntax includes pairs

(t ,p) where t is a term and p a proof, which inhabit the dependent

sum type ∃xT.A; dual co-pairs µ̃(x ,a).c which bind the (term and

proof) variables x and a in the command c; functions λx .p inhabit-

ing the type ∀xT.A together with their dual, stacks t · e where e is a
context whose type might be dependent in t ; functions λa.p which

inhabit the dependent product type Πa : A.B, and, dually, stacks
q · e , where e is a context whose type might be dependent in q; a
proof term refl which is the proof of atomic equalities t = t and a

destructor µ̃=.c which allows us to type the command c modulo an

equality of terms; operators fixtax [p0 | pS ] and cofixtbx [p], as in

dPA
ω
, for inductive and coinductive reasoning; delimited continu-

ations through proofs µt̂p.ctp and the context t̂p; a distinguished
context [] of type ⊥, which allows us to reason ex-falso.

2
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Closures

Commands

Proof terms

Proof values

Terms

Terms values

l ::= cτ
c ::= ⟨p ||e⟩

p,q ::= a | ιi (p) | (p,q) | (t ,p) | λx .p | λa.p | refl
| fixtax [p0 | pS ] | cofix

t
bx [p] | µα .c | µt̂p.ct̂p

V ::= a | ιi (V ) | (V ,V ) | (Vt ,V ) | λx .p | λa.p | refl

t ,u ::= x | 0 | S(t) | rectxy [t0 | tS ] | λx .t | t u | wit p

Vt ::= x | Sn (0) | λx .t

Stores

Storables

Contexts

Forcing

contexts

Delimited

continuations

τ ::= ε | τ [a := pτ ] | τ [α := e]

pτ ::= V | fixVtax [p0 | pS ] | cofix
Vt
bx [p]

e ::= f | α | µ̃a.cτ
f ::= [] | µ̃[a1.c1 | a2.c2] | µ̃(a1,a2).c

| µ̃(x ,a).c | t · e | p · e | µ̃=.c

ct̂p ::= ⟨pN ||et̂p⟩ | ⟨p ||t̂p⟩

et̂p ::= µ̃a.ct̂pτ | µ̃[a1.ct̂p | a2.c
′

t̂p
]

| µ̃(a1,a2).ct̂p | µ̃(x ,a).ct̂p
nef cN ::= ⟨pN ||eN ⟩ eN ::= ⋆ | µ̃[a1.cN | a2.c

′
N ] | µ̃a.cN τ | µ̃(a1,a2).cN | µ̃(x ,a).cN

pN ,qN ::= a | ιi (pN ) | (pN ,qN ) | (t ,pN ) | λx .p | λa.p | refl | fixtax [pN | qN ] | cofixtbx [pN ] | µ⋆.cN | µt̂p.ct̂p

Figure 1. The language of dLPA
ω

As in dLt̂p, the syntax of nef proofs, contexts and commands is

defined as a restriction of the previous syntax. Technically, they are

defined (modulo α-conversion) with only one distinguished context
variable ⋆ (and consequently only one binder µ⋆.c), and without

stacks of the shape t ·e or q ·e (to avoid applications). Intuitively, one
can understand nef proofs as the proofs that cannot drop their con-

tinuation
2
. The commands ct̂p within delimited continuations are

defined as commands of the shape ⟨p ||t̂p⟩ or formed by a nef proof

and a context of the shape µ̃a.ct̂pτ , µ̃[a1.ct̂p |a2.c
′

t̂p
], µ̃(a1,a2).ct̂p or

µ̃(x ,a).ct̂p.

We adopt a call-by-value evaluation strategy except for fixpoint

operators
3
, which are evaluated in a lazy way. To this purpose, we

use stores4 in the spirit of the λ[lvτ⋆]-calculus, which are defined

as lists of bindings of the shape [a := p] where p is a value or

a (co-)fixpoint, and of bindings of the shape [α := e] where e is

any context. We assume that each variable occurs at most once

in a store τ , we thus reason up to α-reduction and we assume

the capability of generating fresh names. Apart from evaluation

contexts of the shape µ̃a.c and co-variables α , all the contexts are
forcing contexts which eagerly require a value to be reduced and

trigger the evaluation of lazily stored terms. The resulting language

is given in Figure 1.

2.2 Reduction rules

The reduction system of dLPA
ω
is given in Figure 2. The basic rules

are those of the call-by-value λµµ̃-calculus and of dLt̂p. The rules

for delimited continuations are exactly the same as in dLt̂p, except

that we have to prevent t̂p from being caught and stored by a proof

µα .c . We thus distinguish two rules for commands of the shape

⟨µα .c ||e⟩, depending on whether e is of the shape et̂p or not. In the

former case, we perform the substitution [et̂p/α], which is linear

since µα .c is necessarily nef. We should also mention in passing

that we abuse the syntax in every other rules, since e should actually
refer to e or etp (or the reduction of delimited continuations would

be stuck). Elimination rules correspond to commands where the

proof is a constructor (say of pairs) applied to values, and where the

2
See [19] for further details.

3
To highlight the duality between inductive and coinductive fixpoints, we evaluate

both in a lazy way. Even though this is not indispensable for inductive fixpoints, we

find this approach more natural in that we can treat both in a similar way in the

small-step reduction system and thus through the realizability interpretation.

4
Our so-called stores somewhat behave like lazy explicit substitutions or mutable

environments. See [20] for a discussion on this point.

context is the matching destructor. Call-by-value rules correspond

to (ς) rule of Wadler’s sequent calculus [25]. The next rules express

the fact that (co-)fixpoints are lazily stored, and reduced only if

their value is eagerly demanded by a forcing context. Lastly, terms

are reduced according to the usual β-reduction, with the operator

rec computing with the usual recursion rules. It is worth noting

that the stratified presentation allows to define the reduction of

terms as external: within proofs and contexts, terms are reduced

in place. Consequently, as in dLt̂p the very same happen for nef

proofs embedded within terms. Computationally speaking, this

corresponds indeed to the intuition that terms are reduced on an

external device.

2.3 Typing rules

As often in Martin-Löf’s intensional type theory, formulas are con-

sidered up to equational theory on terms. We denote by A ≡ B the

reflexive-transitive-symmetric closure of the relation ▷ induced by

the reduction of terms and nef proofs as follows:

A[t] ▷ A[t ′] whenever t →β t ′

A[p] ▷ A[q] whenever ∀α (⟨p ||α⟩ → ⟨q ||α⟩)

in addition to the reduction rules for equality and for coinductive

formulas:

0 = S(t) ▷ ⊥

S(t) = 0 ▷ ⊥

S(t) = S(u) ▷ t = u

ν tf xA ▷ A[t/x][ν
y
f xA/f (y) = 0]

We work with one-sided sequents where typing contexts are

defined by:

Γ, Γ′ ::= ε | Γ,x : T | Γ,a : A | Γ,α : A⊥⊥ | Γ, t̂p : A⊥⊥.

using the notation α : A⊥⊥
for an assumption of the refutation of A.

This allows us to mix hypotheses over terms, proofs and contexts

while keeping track of the order in which they are added (which is

necessary because of the dependencies). We assume that a variable

occurs at most once in a typing context.

We define nine syntactic kinds of typing judgments: six
5
in

regular mode, that we write Γ ⊢σ J , and three
6
more for the de-

pendent mode, that we write Γ ⊢d J ;σ . In each case, σ is a list of

dependencies—we explain the presence of a list of dependencies

in each case thereafter—, which are defined from the following

5
For terms, proofs, contexts, commands, closures and stores.

6
For contexts, commands and closures.

3
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Basic rules

⟨λx .p ||Vt · e⟩τ → ⟨p[Vt /x]||e⟩τ
(q ∈ nef) ⟨λa.p ||q · e⟩τ → ⟨µt̂p.⟨q ||µ̃a.⟨p ||t̂p⟩⟩||e⟩τ
(q < nef) ⟨λa.p ||q · e⟩τ → ⟨q ||µ̃a.⟨p ||e⟩⟩τ
(e , et̂p) ⟨µα .c ||e⟩τ → cτ [α := e]

⟨V ||µ̃a.cτ ′⟩τ → cτ [a := V ]τ ′

Elimination rules

⟨ιi (V )||µ̃[a1.c1 | a2.c2]⟩τ → ciτ [ai := V ]

⟨(V1,V2)||µ̃(a1,a2).c⟩τ → cτ [a1 := V1][a2 := V2]

⟨(Vt ,V )||µ̃(x ,a).c⟩τ → (c[t/x])τ [a := V ]

⟨refl||µ̃=.c⟩τ → cτ

Delimited continuations

(if cτ → cτ ′) ⟨µt̂p.c ||e⟩τ → ⟨µt̂p.c ||e⟩τ ′

⟨µα .c ||et̂p⟩τ → c[et̂p/α]τ

⟨µt̂p.⟨p ||t̂p⟩||e⟩τ → ⟨p ||e⟩τ

Call-by-value

(a fresh) ⟨ιi (p)||e⟩τ → ⟨p ||µ̃a.⟨ιi (a)||e⟩⟩τ
(a1,a2 fresh) ⟨(p1,p2)||e⟩τ → ⟨p1 ||µ̃a1.⟨p2 ||µ̃a2.⟨(a1,a2)||e⟩⟩⟩τ
(a fresh) ⟨(Vt ,p)||e⟩τ → ⟨p ||µ̃a.⟨(Vt ,a)||e⟩⟩τ

Laziness

(a fresh) ⟨cofixVtbx [p]||e⟩τ → ⟨a ||e⟩τ [a := cofixVtbx [p]]

(a fresh)⟨fixVtbx [p0 | pS ]||e⟩τ → ⟨a ||e⟩τ [a := fixVtbx [p0 | pS ]]

Lookup

⟨V ||α⟩τ [α := e]τ ′ → ⟨V ||e⟩τ [α := e]τ ′

⟨a || f ⟩τ [a := V ]τ ′ → ⟨V ||a⟩τ [a := V ]τ ′

(b ′ fresh) ⟨a || f ⟩τ [a := cofixVtbx [p]]τ
′ → ⟨p[Vt /x][b

′/b]||µ̃a.⟨a || f ⟩τ ′⟩τ [b ′ := λy.cofix
y
bx [p]]

⟨a || f ⟩τ [a := fix0

bx [p0 | pS ]]τ
′ → ⟨p0 ||µ̃a.⟨a || f ⟩τ

′⟩τ

(b ′ fresh) ⟨a || f ⟩τ [a := fix
S (t )
bx [p0 | pS ]]τ

′ → ⟨pS [t/x][b
′/b]||µ̃a.⟨a || f ⟩τ ′⟩τ [b ′ := fixtbx [p0 | pS ]]

Terms

(if t −→β t ′) T [t]τ → T [t ′]τ

(∀α , ⟨p ||α⟩τ → ⟨(t ,p′)||α⟩τ ) T [wit p]τ −→β T [t]

(λx .t)Vt −→β t[Vt /x]

rec0

xy [t0 | tS ] −→β t0

rec
S (u)
xy [t0 | tS ] −→β tS [u/x][rec

u
xy [t0 | tS ]/y]

where:

Ct [ ] ::= ⟨([ ],p)||e⟩ | ⟨fix
[ ]
ax [p0 | pS ]||e⟩

| ⟨cofix
[ ]

bx [p]||e⟩ | ⟨λx .p ||[ ] · e⟩

T [ ] ::= Ct [ ] | T [[ ]u] | T [rec
[ ]
xy [t0 | tS ]]

Figure 2. Reduction rules of dLPA
ω

grammar:

σ ::= ε | σ {p |q}

The substitution on formulas according to a list of dependencies σ
is defined by:

ε(A) ≜ {A} σ {p |q}(A) ≜

{
σ (A[q/p]) if q ∈ nef

σ (A) otherwise

Because the language of proof terms include constructors for pairs,

injections, etc, the notation A[q/p] does not refer to usual substitu-

tions properly speaking: p can be a pattern (for instance (a1,a2))

and not only a variable.

We shall attract the reader’s attention to the fact that all typing

judgments include a list of dependencies. Indeed, as in the λ[lvτ⋆]-
calculus, when a proof or a context is caught by a binder, say V
and µ̃a, the substitution [V /a] is not performed but rather put in

the store: τ [a := V ]. Now, consider for instance the reduction of a

dependent function λa.p (of type Πa : A.B) applied to a stackV · e7:

⟨λa.p ||V · e⟩τ → ⟨µt̂p.⟨V ||µ̃a.⟨p ||t̂p⟩⟩||e⟩τ

→ ⟨µt̂p.⟨p ||t̂p⟩||e⟩τ [a := V ] → ⟨p ||e⟩τ [a := V ]

Since p still contains the variable a, whence his type is still B[a],
whereas the type of e is B[V ]. We thus need to compensate the

missing substitution
8
.

7
We refer the reader to [19] for detailed explanations on this rule.

8
On the contrary, the reduced command in dLt̂p would have been ⟨p[V /a] ||e ⟩, which
is typable with the (Cut) rule over the formula B[V /a].

We are mostly left with two choices. Either we mimic the substi-

tution in the type system, which would amount to the following

typing rule:

Γ, Γ′ ⊢ τ (c) Γ ⊢ τ : Γ′

Γ ⊢ cτ

where:

τ [α := e](c) ≜ τ (c)
τ [a := pN ](c) ≜ τ (c[pN /a]) (p ∈ nef)

τ [a := p](c) ≜ τ (c) (p < nef)

Or we type stores in the spirit of the λ[lvτ⋆]-calculus, and we carry
along the derivations all the bindings liable to be used in types,

which constitutes again a list of dependencies.

The former solution has the advantage of solving the problem

before typing the command, but it has the flaw of performing

computations which would not occur in the reduction system. For

instance, the substitution τ (c) could duplicate co-fixpoints (and their
typing derivations), whichwould never happen in the calculus. That

is the reason why we favor the other solution, which is closer to the

calculus in our opinion. Yet, it has the drawback that it forces us to

carry a list of dependencies even in regular mode. Since this list is

fixed (it does not evolve in the derivation except when stores occur),

we differentiate the denotation of regular typing judgments, written

Γ ⊢σ J , from the one of judgments in dependent mode, which we

write Γ ⊢d J ;σ to highlight that σ grows along derivations. The

type system we obtain is given in Figure 3.

4
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Regular types

Γ ⊢σ p : A Γ ⊢σ e : B⊥⊥ σ (A) = σ (B)

Γ ⊢σ ⟨p ||e⟩
(Cut)

Γ, Γ′ ⊢σσ
′

c Γ ⊢σ τ : (Γ′;σ ′)

Γ ⊢ cτ
(l )

Γ ⊢σ τ : (Γ′;σ ′) Γ, Γ′ ⊢σσ
′

p : A

Γ ⊢σ τ [a := p] : (Γ′,a : A;σ ′{a |p})
(τp )

(a : A) ∈ Γ

Γ ⊢σ a : A
(Axr )

(α : A⊥⊥) ∈ Γ

Γ ⊢σ α : A⊥⊥
(Axl )

Γ,α : A⊥⊥ ⊢σ c

Γ ⊢σ µα .c : A
(µ)

Γ ⊢σ τ : (Γ′;σ ′) Γ, Γ′ ⊢σσ
′

α : A⊥⊥

Γ ⊢σ τ [α := e] : (Γ′,α : A⊥⊥
;σ ′)

(τe )

Γ,a : A ⊢σ cτ

Γ ⊢σ µ̃a.cτ : A⊥⊥
(µ̃)

Γ ⊢σ p1 : A Γ ⊢σ p2 : B

Γ ⊢σ (p1,p2) : A ∧ B
(∧r )

Γ,a1 : A1,a2 : A2 ⊢σ c

Γ ⊢σ µ̃(a1,a2).c : (A1 ∧A2)
⊥⊥

(∧l )
Γ ⊢σ p : Ai

Γ ⊢σ ιi (p) : A1 ∨A2

(∨r )

Γ,a1 : A1 ⊢σ c1 Γ,a2 : A2 ⊢σ c2

Γ ⊢σ µ̃[a1.c1 | a2.c2] : (A1 ∨A2)
⊥⊥

(∨l )
Γ ⊢σ p : A[t/x] Γ ⊢σ t : T

Γ ⊢σ (t ,p) : ∃xT .A (∃r ) Γ,x : T ,a : A ⊢σ c

Γ ⊢σ µ̃(x ,a).c : (∃xT .A)⊥⊥ (∃l )

Γ,x : T ⊢σ p : A

Γ ⊢σ λx .p : ∀xT .A (∀r )
Γ ⊢σ t : T Γ ⊢σ e : A[t/x]⊥⊥

Γ ⊢σ t · e : (∀xT .A)⊥⊥ (∀l ) Γ ⊢σ t : N
Γ ⊢σ refl : t = t

refl
Γ ⊢σ p : A Γ ⊢σ e : A[u/t]

Γ ⊢σ µ̃=.⟨p ||e⟩ : (t = u)⊥⊥
(=l )

Γ,a : A ⊢σ p : B

Γ ⊢σ λa.p : Πa : A.B
(→r )

Γ ⊢σ q : A Γ ⊢σ e : B[q/a]⊥⊥ if q < nef then a < A

Γ ⊢σ q · e : (Πa : A.B)⊥⊥
(→l )

Γ ⊢σ p : A A ≡ B

Γ ⊢σ p : B
(≡r )

Γ ⊢σ e : A⊥⊥ A ≡ B

Γ ⊢σ e : B⊥⊥
(≡l )

Γ ⊢σ t : N Γ ⊢σ p0 : A[0/x] Γ,x : T ,a : A ⊢σ pS : A[S(x)/x]

Γ ⊢σ fixtax [p0 | pS ] : A[t/x]
(fix)

Γ ⊢σ [] : ⊥⊥⊥
⊥

Γ ⊢σ t : T Γ, f : T → N,x : T ,b : ∀yT. f (y) = 0 ⊢σ p : A f positive in A

Γ ⊢σ cofixtbx [p] : ν tf xA
(cofix)

Dependent mode Γ, Γ′ ⊢d ct̂p;σσ ′ Γ ⊢σ τ : (Γ′;σ ′)

Γ ⊢d ct̂pτ ;σ
(ld )

Γ, Γ′ ⊢σ p : A Γ, t̂p : B⊥⊥, Γ′ ⊢d e : A⊥⊥
;σ {·|p}

Γ, t̂p : B⊥⊥, Γ′ ⊢d ⟨p ||e⟩;σ
(Cutd )

Γ, t̂p : A⊥⊥ ⊢d ct̂p;σ

Γ ⊢σ µt̂p.ct̂p : A
(µ t̂p)

σ (A) = σ (B)

Γ, t̂p : A⊥⊥, Γ′ ⊢d t̂p : B⊥⊥;σ {·|p}
(t̂p)

Γ,ai : Ai ⊢d ci
t̂p

;σ {ιi (ai )|pN }) ∀i ∈ {1, 2}

Γ ⊢d µ̃[a1.c
1

t̂p
| a2.c

2

t̂p
] : (A1 ∨A2)

⊥⊥
;σ {·|pN }

(∨dl )

Γ,a : A ⊢d ct̂pτ
′
;σ {a |pN }

Γ ⊢d µ̃a.ct̂pτ
′

: A⊥⊥
;σ {·|pN }

(µ̃d )
Γ,x : T ,a : A ⊢d ct̂p;σ {(x ,a)|pN }

Γ ⊢d µ̃(x ,a).ct̂p : (∃xTA)⊥⊥;σ {·|pN }
(∃dl )

Γ,a1 : A1,a2 : A2 ⊢d ct̂p;σ {(a1,a2)|pN }

Γ ⊢d µ̃(a1,a2).ct̂p : (A1 ∧A2)
⊥⊥

;σ {·|pN }
(∧dl )

Terms

Γ ⊢σ 0 : N
(0)

Γ ⊢σ t : N
Γ ⊢σ S(t) : N

(S )
(x : T ) ∈ Γ

Γ ⊢σ x : T
(Axt )

Γ,x : U ⊢σ t : T

Γ ⊢σ λx .t : U → T
(λ)

Γ ⊢σ t : U → T Γ ⊢σ u : U
Γ ⊢σ t u : T

(@)
Γ ⊢σ t : N Γ ⊢σ t0 : U Γ,x : N,y : U ⊢σ tS : U

Γ ⊢σ rectxy [t0 | tS ] : U
(rec)

Γ ⊢σ p : ∃xT.A p nef

Γ ⊢σ wit p : T
(wit )

Figure 3. Type system for dLPA
ω

2.4 Subject reduction

We shall now prove that typing is preserved along reduction. As

for the λ[lvτ⋆]-calculus, the proof is simplified by the fact that

substitutions are not performed (except for terms), which keeps us

from proving the safety of the corresponding substitutions. Yet, we

first need to prove some technical lemmas about dependencies. To

this aim, we define a relation σ ⇛ σ ′
between lists of dependencies,

which expresses the fact that any typing derivation obtained with

σ could be obtained as well as with σ ′
:

σ ⇛ σ ′ ≜ σ (A) = σ (B) ⇒ σ ′(A) = σ ′(B) (for any A,B)

Proposition 2.1 (Dependencies weakening). If σ ,σ ′ are two lists
of dependencies such that σ ⇛ σ ′, then any derivation using σ
can be done using σ ′ instead. In other words, the following rules are

admissible:

Γ ⊢σ J

Γ ⊢σ
′

J
(w )

Γ ⊢d J ;σ

Γ ⊢d J ;σ ′ (wd )

We can prove the safety of reduction with respect to typing:

Theorem 2.2 (Subject reduction). For any context Γ and any clo-
sures cτ and c ′τ ′ such that cτ → c ′τ ′, we have:

1. If Γ ⊢ cτ then Γ ⊢ c ′τ ′. 2. If Γ ⊢d cτ ; ε then Γ ⊢d c ′τ ′; ε .

Proof. The proof follows the usual proof of subject reduction, by
induction on the reduction cτ → c ′τ ′. □

5
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Γ ⊢ p : ∃xT .A Γ,x : T ,a : A ⊢ q : B[(x ,a)/•] p < nef ⇒ • < B

Γ ⊢ dest p as (x ,a) in q : B[p/•]
(dest)

Γ ⊢ p : ⊥

Γ ⊢ exfalso p : B
(⊥)

Γ,a : A ⊢ q : B[a/•] p < nef ⇒ • < B

Γ ⊢ leta = p inq : B[p/•]
(let)

Γ ⊢ p : A1 ∧A2 Γ,a1 : A1,a2 : A2 ⊢ q : B[(a1,a2)/•] p < nef ⇒ • < B

Γ ⊢ split p as (a1,a2) in q : B[p/•]
(split)

Γ ⊢ p : A1 ∧A2

Γ ⊢ πi (p) : Ai
(∧iE )

Γ,α : A⊥⊥ ⊢ p : A

Γ,α : A⊥⊥ ⊢ throw α p : B
(throw)

Γ ⊢ p : A1 ∨A2 Γ,ai : Ai ⊢ q : B[ιi (a)i/•] for i = 1, 2 p < nef ⇒ • < B

Γ ⊢ case p of [a1.p1 | a2.p2] : B[p/•]
(case)

Γ,α : A⊥⊥ ⊢ p : A

Γ ⊢ catchα p : A
(catch)

Γ ⊢ p : ∃xT .A(x)
Γ ⊢ prf p : A(wit p)

(prf )

Figure 4. Typing rules of dPA
ω

2.5 Natural deduction as macros

We can recover the usual proof terms for elimination rules in natural

deduction systems, and in particular the ones from dPA
ω
, by defin-

ing them as macros in our language. The definitions are straight-

forward, using delimited continuations for let . . . in and the con-

structors over nef proofs which might be dependently typed:

leta = p inq ≜ µαp .⟨p ||µ̃a.⟨q ||αp ⟩⟩

split p as (a1,a2) in q ≜ µαp .⟨p ||µ̃(a1,a2).⟨q ||αp ⟩⟩

case p of [a1.p1 | a2.p2] ≜ µαp .⟨p ||µ̃[a1.⟨p1 ||αp ⟩|a2.⟨p2 ||αp ⟩]⟩

dest p as (a,x) in q ≜ µαp .⟨p ||µ̃(x ,a).⟨q ||αp ⟩⟩

prf p ≜ µt̂p.⟨p ||µ̃(x ,a).⟨a ||t̂p⟩⟩

subst p q ≜ µα .⟨p ||µ̃=.⟨q ||α⟩⟩

exfalso p ≜ µα .⟨p ||[]⟩

catchα p ≜ µα .⟨p ||α⟩

throw α p ≜ µ_.⟨p ||α⟩

where αp = t̂p if p is nef and αp = α otherwise.

It is then straightforward to check that the macros match the

expected typing rules:

Proposition 2.3 (Natural deduction). The typing rules from dPAω ,
given in Figure 4, are admissible.

One can even check that the reduction rules in dLPA
ω
for these

proofs almost mimic the ones of dPA
ω
. To be more precise, the

rules of dLPA
ω
do not allow to simulate each rule of dPA

ω
, due to

the head-reduction strategy amongst other things. Nonetheless, up

to a few details the reduction of a command in dLPA
ω
follows one

particular reduction path of the corresponding proof in dPA
ω
, or

in other words, one reduction strategy.

The main result is that using the macros, the same proof terms

are suitable for countable and dependent choice [11]. We do not

state it here, but following the approach of [11], we could also

extend dLPA
ω
to obtain a proof for the axiom of bar induction.

Theorem 2.4 (Countable choice [11]). We have:

ACN := λH .leta = cofix0

bn [(Hn,b(S(n))]

in (λn. wit (nthn a), λn. prf (nthn a)

: ∀xN∃yT P(x ,y) → ∃f N→T ∀xNP(x , f (x))
where nthn a := π1(fix

n
x,c [a | π2(c)]).

Theorem 2.5 (Dependent choice [11]). We have:

DC := λH .λx0. let a = (x0, cofix
0

bn [dn ])f six

in (λn. wit (nthn a), (refl, λn.π1(prf (prf (nthn a)))))
: ∀xT.∃yT.P(x ,y) →

∀xT
0
.∃f ∈ TN.(f (0) = x0 ∧ ∀nN.P(f (n), f (s(n))))

where dn := dest Hn as (y, c) in (y, (c,b y)))
and nthn a := fixnx,d [a | (wit (prf d),π2(prf (prf (d))))].

3 Small-step calculus

As for the λ[lvτ⋆]-calculus [1, 20], we follow here Danvy’s method-

ology of semantic artifacts [1, 7] to obtain a realizability interpre-

tation. We first decompose the reduction system of dLPA
ω
into

small-step reduction rules, that we denote by⇝s . This requires

a refinement and an extension of the syntax, that we shall now

present. To keep us from boring the reader stiff with new (huge)

tables for the syntax, typing rules and so forth, we will introduce

them step by step. We hope it will help the reader to convince

herself of the necessity and of the somewhat naturality of these

extensions.

3.1 Values

First of all, we need to refine the syntax to distinguish between

strong and weak values in the syntax of proof terms. As in the

λ[lvτ⋆]-calculus, this refinement is induced by the computational

behavior of the calculus: weak values are the ones which are stored

by µ̃ binders, but which are not values enough to be eliminated

in front of a forcing context, that is to say variables. Indeed, if

we observe the reduction system, we see that in front of a forcing

context f , a variable leads a search through the store for a “stronger”
value, which could incidentally provoke the evaluation of some

fixpoints. On the other hand, strong values are the ones which can

be reduced in front of the matching forcing context, that is to say

functions, refl, pairs of values, injections or dependent pairs:

Weak values V ::= a | v
Strong values v ::= ιi (V ) | (V ,V ) | (Vt ,V ) | λx .p | λa.p | refl

This allows us to distinguish commands of the shape ⟨v || f ⟩τ , where
the forcing context (and next the strong value) are examined to

determine whether the command reduces or not; from commands

of the shape ⟨a || f ⟩τ where the focus is put on the variable a, which
leads to a lookup for the associated proof in the store.

3.2 Terms

Next, we need to explicit the reduction of terms. To this purpose,

we include a machinery to evaluate terms in a way which resemble

the evaluation of proofs. In particular, we define new commands

which we write ⟨t ||π ⟩ where t is a term and π is a context for terms

(or co-term). Co-terms are either of the shape µ̃x .c or stacks of

the shape u · π . These constructions are the usual ones of the λµµ̃-
calculus (which are also the ones for proofs). We also extend the

definitions of commands with delimited continuations to include

the corresponding commands for terms:

Commands

Co-terms

c ::= ⟨p ||e⟩ | ⟨t ||π ⟩
π ::= t · π | µ̃x .c

ct̂p ::= · · · | ⟨t ||πt̂p⟩

πt̂p ::= t · πt̂p | µ̃x .ct̂p
6
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We give typing rules for these new constructions, which are the

usual rules for typing contexts in the λµµ̃-calculus:

Γ ⊢ t : T Γ ⊢ π : U⊥⊥

Γ ⊢ t · π : (T → U )⊥⊥
(→l )

c : (Γ,x : T )

Γ ⊢ µ̃x .c : T⊥⊥
(µ̃x )

Γ ⊢σ t : T Γ ⊢σ π : T⊥⊥

Γ ⊢σ ⟨t ||π ⟩
(cutt )

It is worth noting that the syntax as well as the typing and reduc-

tion rules for terms now match exactly the ones for proofs
9
. In

other words, with these definitions, we could abandon the stratified

presentation without any trouble, since reduction rules for terms

will naturally collapse to the ones for proofs.

3.3 Co-delimited continuations

Finally, in order to maintain typability when reducing dependent

pairs of the strong existential type, we need to add what we call

co-delimited continuations. As observed in [19], the CPS translation

of pairs (t ,p) in dLt̂p is not the expected one, reflecting the need for

a special reduction rule. Indeed, consider such a pair of type ∃xT.A,
the standard way of reducing it would be a rule like:

⟨(t ,p)||e⟩τ ⇝s ⟨t ||µ̃x .⟨p ||µ̃a.⟨(x ,a)||e⟩⟩⟩τ

but such a rule does not satisfy subject reduction. Consider indeed a

typing derivation for the left-hand side command, when typing the

pair (t ,p), p is of typeA[t]. On the command on the right-hand side,

the variable a will then also be of type A[t], while it should be of

typeA[x] for the pair (x ,a) to be typed.We thus need to compensate

this mismatching of types, by reducing t within a context where a
is not linked to p but to a co-reset ťp (dually to reset t̂p), whose type
can be changed from A[x] to A[t] thanks to a list of dependencies:

⟨(t ,p)||e⟩pτ ⇝s ⟨p ||µ̃ťp.⟨t ||µ̃x .⟨ťp||µ̃a.⟨(x ,a)||e⟩⟩⟩⟩pτ

We thus equip the language with new contexts µ̃ťp.cťp, which we

call co-shifts and where cťp is a command whose last cut is of the

shape ⟨ťp||e⟩. This corresponds formally to the following syntactic

sets, which are dual to the ones introduced for delimited continua-

tions:

Contexts

Co-delimited

continuations

nef

e ::= · · · | µ̃ťp.cťp

cťp ::= ⟨pN ||eťp⟩ | ⟨t ||πťp⟩ | ⟨ťp||e⟩

eťp ::= µ̃a.cťp | µ̃[a1.cťp | a2.c
′

ťp
]

| µ̃(a1,a2).cťp | µ̃(x ,a).cťp
πťp ::= t · πťp | µ̃x .cťp

eN ::= · · · | µ̃ťp.cťp

Thismight seem to be a heavy addition to the language, but we insist

on the fact that these artifacts are merely the dual constructions

of delimited continuations introduced in dLt̂p, with a very similar

intuition. In particular, it might be helpful for the reader to think

of the fact that we introduced delimited continuations for type

safety of the evaluation of dependent products in Πa : A.B (which

naturally extends to the case ∀xT.A). Therefore, to maintain type

safety of dependent sums in ∃xT.A, we need to introduce the dual

constructions of co-delimited continuations. We also give typing

9
Except for substitutions of terms, which we could store as well.

rules to these constructions, which are dual to the typing rules for

delimited-continuations:

Γ, ťp : A ⊢d cťp;σ

Γ ⊢σ µ̃ťp.cťp : A⊥⊥
(µ̃ ťp)

Γ, Γ′ ⊢σ e : A⊥⊥ σ (A) = σ (B)

Γ, ťp : B, Γ′ ⊢d ⟨ťp||e⟩;σ
(ťp)

Note that we also need to extend the definition of list of dependen-

cies to include bindings of the shape {x |t} for terms, and that we

have to give the corresponding typing rules to type commands of

terms in dependent mode:

c : (Γ,x : T ;σ {x |t})

Γ ⊢d µ̃x .c : T⊥⊥
;σ {·|t}

(µ̃dx )
Πt Γ, ťp : B, Γ′ ⊢d π : A⊥⊥

;σ {·|t}

Γ, ťp : B, Γ′ ⊢d ⟨t ||π ⟩;σ
(Cutdt )

where Πt ≜ Γ, Γ′ ⊢σ t : T .
Finally, small-step reduction rules are written cιτ ⇝s c

′
oτ

′
where

the annotation ι,p on commands are indices (i.e. c,p, e,V , f , t ,π ,Vt )
indicating which part of the command is in control. As in the

λ[lvτ⋆]-calculus, we observe an alternation of steps descending

from p to f for proofs and from t to Vt for terms. The descent

for proofs can be divided in two main phases. During the first

phase, from p to e we observe the call-by-value process, which

extracts values from proofs, opening recursively the constructors

and computing values. In the second phase, the core computation

takes place fromV to f , with the destruction of constructors and the
application of function to their arguments. The laziness corresponds

precisely to a skip of the first phase, waiting to possibly reach the

second phase before actually going through the first one.

Here again, reduction is safe with respect to the type system:

Proposition 3.1 (Subject reduction). The small-step reduction rules
satisfy subject reduction.

It is also direct to check that the small-step reduction system

simulates the big-step one, and in particular that it preserves the

normalization :

Proposition 3.2. If a closure cτ normalizes for the reduction⇝s ,
then it normalizes for→.

4 A realizability interpretation of dLPA
ω

We shall now present the realizability interpretation of dLPA
ω
,

which will finally give us a proof of its normalization. Here again,

the interpretation combines ideas of the interpretations for the

λ[lvτ⋆]-calculus [20] and for dLt̂p through the embedding in Lepi-

gre’s calculus [16, 19]. Namely, as for the λ[lvτ⋆]-calculus, formulas

will be interpreted by sets of proofs-in-store of the shape (p |τ ), and
the orthogonality will be defined between proofs-in-store (p |τ ) and
contexts-in-store (e |τ ′) such that the stores τ and τ ′ are compatible.

We recall the main definitions necessary to the realizability in-

terpretation:

Definition 4.1 (Proofs-in-store). We call closed proof-in-store (resp.
closed context-in-store, closed term-in-store, etc) the combination of

a proof p (resp. context e , term t , etc) with a closed store τ such that

FV (p) ⊆ dom(τ ). We use the notation (p |τ ) to denote such a pair.

In addition, we denote by Λp (resp. Λe , etc.) the set of all proofs
and by Λτp (resp. Λτe , etc.) the set of all proofs-in-store.

We denote the sets of closed closures by C0, and we identify (c |τ )
with the closure cτ when c is closed in τ .

We now recall the notion of compatible stores [20], which allows

us to define an orthogonality relation between proofs- and contexts-

in-store.

7
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Definition 4.2 (Compatible stores and union). Let τ and τ ′ be
stores, we say that:

• they are independent and note τ#τ ′ if dom(τ ) ∩ dom(τ ′) = ∅.

• they are compatible and note τ ⋄τ ′ if for all variables a (resp.

co-variablesα ) present in both stores:a ∈ dom(τ ) ∩ dom(τ ′);
the corresponding proofs (resp. contexts) in τ and τ ′ coin-
cide.

• τ ′ is an extension of τ and we write τ ◁ τ ′ whenever τ ⋄ τ ′

and dom(τ ) ⊆ dom(τ ′).
• ττ ′ is the compatible union of compatible closed stores τ and

τ ′. It is defined as ττ ′ ≜ join(τ ,τ ′), which itself given by:

join(τ0[a := p]τ1,τ
′
0
[a := p]τ ′

1
) ≜ τ0τ

′
0
[a := p]join(τ1,τ

′
1
)

join(τ0[α := e]τ1,τ
′
0
[α := e]τ ′

1
) ≜ τ0τ

′
0
[α := e]join(τ1,τ

′
1
)

join(τ0,τ
′
0
) ≜ τ0τ

′
0

where τ0#τ ′
0
.

The next lemma (which follows from the previous definition)

states the main property we will use about union of compatible

stores.

Lemma 4.3. If τ and τ ′ are two compatible stores, then τ ◁ ττ ′ and
τ ′ ◁ ττ ′. Besides, if τ is of the form τ0[x := t]τ1, then ττ ′ is of the
form τ0[x := t]τ1 with τ0 ◁ τ0 and τ1 ◁ τ1.

We can now define the notion of pole, which has to satisfy an

extra condition due to the presence of delimited continuations

Definition 4.4 (Pole). A subset ⊥⊥ ∈ C0 is said to be saturated
or closed by anti-reduction whenever for all (c |τ ), (c ′ |τ ′) ∈ C0, we

have:

(c ′τ ′ ∈ ⊥⊥) ∧ (cτ → c ′τ ′) ⇒ (cτ ∈ ⊥⊥)

It is said to be closed by store extension if whenever cτ is in ⊥⊥, for

any store τ ′ extending τ , cτ ′ is also in ⊥⊥:

(cτ ∈ ⊥⊥) ∧ (τ ◁ τ ′) ⇒ (cτ ′ ∈ ⊥⊥)

It is said to be closed under delimited continuations if whenever
c[e/t̂p]τ (resp. c[V /ťp]τ ) is in ⊥⊥, then ⟨µt̂p.c ||e⟩τ (resp .⟨V ||µ̃ťp.c⟩τ )
belongs to ⊥⊥:

(c[e/t̂p]τ ∈ ⊥⊥) ⇒ (⟨µt̂p.c ||e⟩τ ∈ ⊥⊥)

(c[V /ťp]τ ∈ ⊥⊥) ⇒ (⟨V ||µ̃ťp.c⟩τ ∈ ⊥⊥)

A pole is defined as any subset of C0 that is closed by anti-reduction,

by store extension and under delimited continuations.

We verify that the set of normalizing command is indeed a pole:

Proposition 4.5. The set ⊥⊥⇓ = {cτ ∈ C0 : cτ normalizes } is a
pole.

We finally recall the definition of the orthogonality relation w.r.t.

a pole, which is identical to the one for the λ[lvτ⋆]-calculus:

Definition 4.6 (Orthogonality). Given a pole ⊥⊥, we say that a

proof-in-store (p |τ ) is orthogonal to a context-in-store (e |τ ′) and

write (p |τ )⊥⊥(e |τ ′) if τ and τ ′ are compatible and ⟨p ||e⟩ττ ′ ∈ ⊥⊥. The

orthogonality between terms and co-terms is defined identically.

We are now equipped to define the realizability interpretation

of dLPA
ω
. Firstly, in order to simplify the treatment of coinductive

formulas, we extend the language of formulas with second-order

variables X ,Y , . . . and we replace ν tf xA by ν tXxA[X (y)/f (y) = 0].

The typing rule for co-fixpoint operators then becomes:

Γ ⊢σ t : T Γ,x : T ,b : ∀yT.X (y) ⊢σ p : A X < FV (Γ)

Γ ⊢σ cofixtbx [p] : ν tXxA
(cofix)

where X has to be positive in A.
Secondly, as in the interpretation of dLt̂p through Lepigre’s cal-

culus, we introduce two new predicates, p ∈ A for nef proofs

and t ∈ T for terms. This allows us to decompose the dependent

products and sums into:

∀xT.A ≜ ∀x .(x ∈ T → A)

∃xT.A ≜ ∃x .(x ∈ T → A)

Πa : A.B ≜ A → B (a < FV (B))

Πa : A.B ≜ ∀a.(a ∈ A → B) (otw.)

This corresponds to the language of formulas and types defined by:

Types

Formulas

T ,U ::= N | T → U | t ∈ T
A,B ::= ⊤ | ⊥ | X (t) | t = u | A ∧ B | A ∨ B

| ∀x .A | ∃x .A | ∀a.A | ν tXxA | a ∈ A

and to the following inference rules:

Γ ⊢σ v : A a < FV (Γ)

Γ ⊢σ v : ∀a.A (∀ar )
Γ ⊢σ e : A[q/a] q nef

Γ ⊢σ e : (∀a.A)⊥⊥ (∀al )

Γ ⊢σ v : A x < FV (Γ)

Γ ⊢σ v : ∀x .A (∀xr )
Γ ⊢σ e : A[t/x]

Γ ⊢σ e : (∀x .A)⊥⊥ (∀xl )

Γ ⊢σ v : A[t/x]

Γ ⊢σ v : ∃x .A (∃xr )
Γ ⊢σ e : A x < FV (Γ)

Γ ⊢σ e : (∃x .A)⊥⊥ (∃xl )

Γ ⊢σ p : A p nef

Γ ⊢σ p : p ∈ A
(∈

p
r )

Γ ⊢σ e : A⊥⊥

Γ ⊢σ e : (q ∈ A)⊥⊥
(∈

p
l )

Γ ⊢σ t : T
Γ ⊢σ t : t ∈ T

(∈tr )
Γ ⊢σ π : T⊥⊥

Γ ⊢σ π : (t ∈ T )⊥⊥
(∈tl )

These rules are exactly the same as in Lepigre’s calculus [16] up to

our stratified presentation in a sequent calculus fashion, andmodulo

our syntactic restriction to nef proofs instead of his semantical

restriction. It is a straightforward verification to check that the

typability is maintained through the decomposition of dependent

products and sums.

Another similarity with Lepigre’s realizability model is that

truth/falsity values will be closed under observational equivalence

of proofs and terms. To this purpose, for each store τ we intro-

duce the relation ≡τ , which we define as the reflexive-transitive-

symmetric closure of the relation ▷τ :

t ▷τ t ′ whenever ∃τ ′,∀π , (⟨t ||π ⟩τ → ⟨t ′ ||π ⟩τ ′

p ▷τ q whenever ∃τ ′,∀f (⟨p || f ⟩τ → ⟨q || f ⟩τ ′)

All this being settled, it only remains to determine how to in-

terpret coinductive formulas. While it would be natural to try to

interpret them by fixpoints in the semantics, this poses difficulties

for the proof of adequacy
10
. We stick to the intuition that since

cofix operators are lazily evaluated, they actually are realizers of

every finite approximation of the (possibly infinite) coinductive

formula. Consider for instance the case of a stream:

str0

∞p ≜ cofix0

bx [(px ,b(S(x)))]

of type ν0

XxA(x) ∧ X (S(x)). Such stream will produce on demand

any tuple (p0, (p1, ...(pn,□)...)) where □ denotes the fact that it

could be any term, in particular strn+1

∞ p. Therefore, str0

∞p should

be a successful defender of the formula

(A(0) ∧ (A(1) ∧ ...(A(n) ∧ ⊤)...)

10
See [18, Sec. 8.4.2] for a discussion on this matter.
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∥⊥∥f ≜ Λτf
∥⊤∥f ≜ ∅

∥ ÛF (t)∥f ≜ F (t)

∥∃x .A∥f ≜⋂
t ∈Λt ∥A[t/x]∥f

∥∀x .A∥f ≜ (
⋂
t ∈Λt ∥A[t/x]∥

⊥⊥v
f )⊥⊥f

∥∀a.A∥f ≜ (
⋂
t ∈Λp ∥A[p/a]∥⊥⊥vf )⊥⊥f

∥ν tf xA∥f ≜
⋃
n∈N ∥FnA,t ∥f

|A|V ≜ ∥A∥⊥⊥Vf
∥A∥e ≜ |A|⊥⊥eV

|N|Vt ≜ {(Sn (0)|τ ),n ∈ N}

|t ∈ T |Vt ≜ {(Vt |τ ) ∈ |T |Vt : Vt ≡τ t}

|T → U |Vt ≜ {(λx .t |τ ) : ∀Vtτ ′,τ ⋄ τ ′ ∧ (Vt |τ
′) ∈ |T |Vt ⇒ (t[Vt /x]|ττ ′) ∈ |U |t }

∥t = u∥f ≜

{
{(µ̃=.c |τ ) : cτ ∈ ⊥⊥} if t ≡τ u

Λτf otherwise

∥p ∈ A∥f ≜ {(V |τ ) ∈ |A|V : V ≡τ p}⊥⊥f

∥T → B∥f ≜ {(Vt · e |τ ) : (Vt |τ ) ∈ |t ∈ T |Vt ∧ (e |τ ) ∈ ∥B∥e }

∥A → B∥f ≜ {(V · e |τ ) : (V |τ ) ∈ |A|V ∧ (e |τ ) ∈ ∥B∥e }

∥T ∧A∥f ≜ {(µ̃(x ,a).c |τ ) : ∀τ ′,Vt ∈ |T |τ
′

Vt
,V ∈ |A|τ

′

V ,τ ⋄ τ
′ ⇒ c[Vt /x]ττ ′[a := V ] ∈ ⊥⊥}

∥A1 ∧A2∥f ≜ {(µ̃(a1,a2).c |τ ) : ∀τ ′,V1 ∈ |A1 |
τ ′
V ,V2 ∈ |A2 |

τ ′
V ,τ ⋄ τ

′ ⇒ cττ ′[a1 := V1][a2 := V2] ∈⊥⊥}

∥A1 ∨A2∥f ≜ {(µ̃[a1.c1 |a2.c2]|τ ) : ∀τ ′,V ∈ |Ai |
τ ′
V ,τ ⋄ τ

′ ⇒ cττ ′[ai := V ] ∈ ⊥⊥}

|A|p ≜ ∥A∥
⊥⊥p
e

|T |π ≜ |A|⊥⊥π
Vt

|T |t ≜ |A|⊥⊥tπ

where:

• p ∈ Sτ (resp. e ,V ,etc.) denotes (p |τ ) ∈ S
(resp. (e |τ ), (V |τ ), etc.),

• F is a function from Λt to P(Λτf )/≡τ .

Figure 5. Realizability interpretation for dLPA
ω

Since cofix operators only reduce when they are bound to a vari-

able in front of a forcing context, it suggests interpreting the coin-

ductive formula ν0

XxA(x) ∧ X (S(x)) at level f as the union of all

the opponents to a finite approximation.

To this end, given a coinductive formula ν0

XxA where X is posi-

tive in A, we define its finite approximations by:

F 0

A,t ≜ ⊤ Fn+1

A,t ≜ A[t/x][FnA,y/X (y)]

Since X is positive in A, we have for any integer n and any term t
that ∥FnA,t ∥f ⊆ ∥Fn+1

A,t ∥f . We can finally define the interpretation

of coinductive formulas by:

∥ν tXxA∥f ≜
⋃
n∈N

∥FnA,t ∥f

The realizability interpretation of closed formulas and types is

defined in Figure 5 by induction on the structure of formulas at

level f , and by orthogonality at levels V , e,p. When S is a subset

of P(Λτp ) (resp. P(Λτe ),P(Λτt ),P(Λτπ )), we use the notation S⊥⊥f

(resp. S⊥⊥V , etc.) to denote its orthogonal set restricted to Λτf :

S⊥⊥f ≜ {(f |τ ) ∈ Λτf : ∀(p |τ ′) ∈ S,τ ⋄ τ ′ ⇒ ⟨p || f ⟩ττ ′ ∈ ⊥⊥}

At level f , closed formulas are interpreted by sets of strong forc-

ing contexts-in-store (f |τ ). As explained earlier, these sets are be-

sides closed under the relation ≡τ along their component τ , we thus
denote them by P(Λτf )/≡τ . Second-order variables X ,Y , . . . are

then interpreted by functions from the set of terms Λt to P(Λτf )/≡τ
and as is usual in Krivine realizability [14], for each such function

F we add a predicate symbol ÛF in the language.

We shall now prove the adequacy of the interpretation with

respect to the type system. To this end, we need to recall a few

definitions and lemmas. Since stores only contain proof terms,

we need to define valuations for term variables in order to close

formulas
11
. These valuations are defined by the usual grammar:

ρ ::= ε | ρ[x 7→ Vt ] | ρ[X 7→ ÛF ]

We denote by (p |τ )ρ (resp.pρ ,Aρ ) the proof-in-store (p |τ )where all
the variables x ∈ dom(ρ) (resp. X ∈ dom(ρ)) have been substituted

by the corresponding term ρ(x) (resp. falsity value ρ(x)).

11
Alternatively, we could have modified the small-step reduction rules to include

substitutions of terms.

Definition 4.7. Given a closed store τ , a valuation ρ and a fixed

pole ⊥⊥, we say that the pair (τ , ρ) realizes Γ, which we write
12

(τ , ρ) ⊩ Γ, if:

1. for any (a : A) ∈ Γ, (a |τ )ρ ∈ |Aρ |V ,

2. for any (α : A⊥⊥
ρ ) ∈ Γ, (α |τ )ρ ∈ ∥Aρ ∥e ,

3. for any {a |p} ∈ σ , a ≡τ p,

4. for any (x : T ) ∈ Γ, x ∈ dom(ρ) and (ρ(x)|τ ) ∈ |Tρ |Vt .

We can check that the interpretation is indeed defined up to the

relations ≡τ :

Proposition 4.8. For any store τ and any valuation ρ, the compo-
nent along τ of the truth and falsity values defined in Figure 5 are
closed under the relation ≡τ :

1. if (f |τ )ρ ∈ ∥Aρ ∥f and Aρ ≡τ Bρ , then (f |τ )ρ ∈ ∥Bρ ∥f ,
2. if (Vt |τ )ρ ∈ |Aρ |Vt and Aρ ≡τ Bρ , then (Vt |τ )ρ ∈ |Bρ |v .

The same applies with |Aρ |p , ∥Aρ ∥e , etc.

We can now prove the main property of our interpretation:

Proposition 4.9 (Adequacy). The typing rules are adequate with
respect to the realizability interpretation, i.e. typed proofs (resp. values,
terms, contexts, etc.) belong to the corresponding truth values.

Proof. By induction on typing derivations such as given in the

system extended for the small-step reduction. □

We can finally deduce that dLPA
ω
is normalizing and sound.

Theorem 4.10 (Normalization). If Γ ⊢σ c , then c is normalizable.

Proof. Direct consequence of Propositions 4.5 and 4.9. □

Theorem 4.11 (Consistency). ⊬dLPAω p : ⊥

Proof. Assume there is such a proof p, by adequacy (p |ε) is in |⊥|p
for any pole. Yet, the set ⊥⊥ ≜ ∅ is a valid pole, and with this pole,

|⊥|p = ∅, which is absurd. □

12
Once again, we should formally write (τ , ρ) ⊩⊥⊥ Γ but we will omit the annotation

by ⊥⊥ as often as possible.
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5 Conclusion and perspectives

Conclusion At the end of the day, we met our main objective,

namely proving the soundness and the normalization of a language

which includes proof terms for dependent and countable choice in

a classical setting. This language, which we called dLPA
ω
, provides

us with the same computational features as dPA
ω
but in a sequent

calculus fashion. These computational features allow dLPA
ω
to

internalize the realizability approach of [2, 9] as a direct proofs-

as-programs interpretation: both proof terms for countable and

dependent choices furnish a lazy witness for the ideal choice func-

tion which is evaluated on demand. This interpretation is in line

with the slogan that with new programing principles—here the

lazy evaluation and the co-inductive objects—come new reasoning

principles—here the axioms ACN and DC .
Interestingly, in our search for a proof of normalization for

dLPA
ω
, we developed novel tools to study these side effects and

dependent types in presence of classical logic. On the one hand, we

set out in [19] the difficulties related to the definition of a sequent

calculus with dependent types. On the other hand, building on [20],

we developed a variant of Krivine realizability adapted to a lazy

calculus where delayed substitutions are stored in an explicit envi-

ronment. The sound combination of both frameworks led us to the

definition of dLPA
ω
together with its realizability interpretation.

Krivine’s interpretations of dependent choice The computa-

tional content we give to the axiom of dependent choice is pretty

different of Krivine’s usual realizer of the same [13]. Indeed, our

proof uses dependent types to get witnesses of existential formu-

las, and we represent choice functions through the lazily evaluated

stream of their values
13
. In turn, Krivine realizes a statement which

is logically equivalent to the axiom of dependent choice thanks to

the instruction quote, which injectively associates a natural num-

ber to each closed λc -term. In a more recent work [15], Krivine

proposes a realizability model which has a bar-recursor and where

the axiom of dependent choice is realized using the bar-recursion.

This realizability model satisfies the continuum hypothesis and

many more properties, in particular the real numbers have the

same properties as in the ground model. However, the very struc-

ture of this model, where Λ is of cardinal ℵ1 (in particular infinite

streams of integer are terms), makes it incompatible with quote.
It is clear that the three approaches are different in terms of

programming languages. Nonetheless, it could be interesting to

compare them from the point of view of the realizability models

they give rise to. In particular, our analysis of the interpretation

of co-inductive formulas may suggest that the interest of lazy co-

fixpoints is precisely to approximate the limit situation where Λ
has infinite objects.

Reduction of the consistency of classical arithmetic in finite
types with dependent choice to the consistency of second-order
arithmetic The standard approach to the computational content

of classical dependent choice in the classical arithmetic in finite

types is via realizability as initiated by Spector [24] in the context of

Gödel’s functional interpretation, and later adapted to the context

of modified realizability by Berardi et al [2]. The aforementioned

works of Krivine [13, 15] in the different settings of PA2 and ZFε
also give realizers of dependent choice. In all these approaches, the

13
A similar idea can be found in NuPrl BITT type theory, where choice sequences are

used in place of functions [5].

correctness of the realizer, which implies consistency of the system,

is itself justified by a use at the meta-level of a principle classically

equivalent to dependent choice (dependent choice itself in [13], bar

induction or update induction [3] in the case of [2, 24].).

Our approach is here different, since we directly interpret proofs

of dependent choice in classical arithmetic computationally. Besides,

the structure of our realizability interpretation for dLPA
ω
suggests

the definition of a typed CPS to an extension of system F [18], but it

is not clear whether its consistency is itself conservative or not over

system F . Ultimately, we would be interested in a computational

reduction of the consistency of dPA
ω
or dLPA

ω
to the one of PA2,

that is to the consistency of second-order arithmetic. While it is

well-known that DC is conservative over second-order arithmetic

with full comprehension (see [23, Theorem VII.6.20]), it would

nevertheless be very interesting to have such a direct computational

reduction. The converse direction has been recently studied by

Valentin Blot, who presented in [4] a translation of System F into a

simply-typed total language with a variant of bar recursion.
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