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Abstract
We investigate efficient enumeration of answers to MSO-definable

queries over trees which are subject to local updates. We exhibit an

algorithm that uses an O(n) preprocessing phase and enumerates

answers with O(log(n)) delay between them. When the tree is

updated, the algorithm can avoid repeating expensive preprocessing

and restart the enumeration phase within O(log(n)) time. This

improves over previous results that require O(log2(n)) time after

updates and have O(log2(n)) delay. Our algorithms and complexity

results in the paper are presented in terms of node-selecting tree

automata representing the MSO queries. To present our algorithm,

we introduce a balancing scheme for parse trees of forest algebra

formulas that is of its own interest to lift results from strings to

trees.
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1 Introduction
Efficient query evaluation is one of the most central problems in

databases. Given a query Q and a database D, we are asked to

compute the set Q(D) of tuples of Q on D. In general, the number

of tuples inQ(D) can be extremely large: whenQ has arity k and D

has size n, then Q(D) can contain up to nk tuples. Since databases

are typically very large, it may be unfeasible to compute Q(D) in
its entirety.

A straightforward solution to this problem is top-k query an-

swering, where one is interested in the k most relevant answers

according to some metric. Another way to deal with this problem

is to produce the answers one by one without repetition. This is

known as query enumeration (see, e.g., [4, 17, 19, 22, 23, 31]). More

precisely, query enumeration aims at producing a small number of

answers first and then, on demand, producing further small batches

of answers as long as the user desires or until all answers are de-

pleted. Most existing algorithms for query enumeration consist of
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two phases: the preprocessing phase, which lasts until the first an-

swer is produced, and the enumeration phase in which next answers

are produced without repetition. It is natural to try to optimize two

kinds of time intervals in this procedure: the time of the prepro-

cessing phase and the delay between answers, which is the time

required between two answers in the enumeration phase. Thus,

when one can answer Q(D) with preprocessing time p and delay d ,
one can compute Q(D) in time p + d · |Q(D)|, where |Q(D)| is the
number of answers.

Much attention has been given to finding algorithms that answer

queries with a linear-time preprocessing phase and constant-time

delay between answers[31]. The preprocessing phase is usually

used to build an index that allows for efficient enumeration. Since

databases can be subjected to frequent updates and preprocessing

typically costs linear time, it is usually not an option to recompute

the index after every update. We want to address this concern and

investigate what can be done if one wants to deal with such updates

more efficiently than simply re-starting the preprocessing phase.

We study the enumeration problem for MSO queries with free

node variables over trees. Furthermore, the trees can be subjected

to local updates. We consider updates that relabel a node or in-

sert/delete a leaf. Our aim is to provide an index structure that

can be efficiently updated, when the underlying tree changes. This

makes the enumeration phase insensitive to such updates: when our

algorithm is producing answers with a small delay in the enumera-

tion phase and the underlying data D is updated, we can update the

index and re-start enumerating on the new data within the same

delay.

There are algorithms that can enumerate certain classes of con-

junctive queries with constant delay and sublinear update time [7,

8]. Similarly, there are algorithms that can enumerate FO+MOD

queries with constant delay and constant update time on bounded

degree databases [9]. However, to the best of our knowledge, there

are no such algorithms for enumeration of MSO queries. That is

all existing constant delay solutions for MSO query enumeration

on strings and trees have the drawback that they are static: When-

ever the underlying data D changes, one needs to restart the pre-

processing phase before answers can be enumerated again. Only

very recently, there was a solution, that allowed for relabeling up-

dates [3]. It is yet unclear, whether this approach can be extended

to structural updates of the tree.

The complexity results in this article are presented in terms of

the size of the tree; the arity k of the query; and the number |Q | of
states of a non-deterministic node-selecting finite tree automaton

for the query. The connection between run-based node-selecting

automata and MSO-queries is well known, see, e.g. [28, 33].

When measuring complexity in terms of query size, we have to

keep in mind that MSO queries can be non-elementarily smaller

than their equivalent non-deterministic node-selecting tree au-

tomata. Therefore, our enumeration algorithm is non-elementary

in terms of the MSO formula, which cannot be avoided unless P =
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Update Delay Remarks Reference

O(log2(n)) — only Boolean queries; O(log(n)) on strings; uses heavy path decomp. [5] Balmin et al. 2004

O(log2(n)) — Boolean XPath queries [10] Björklund et al. 2010

— O(1) updates in O(n) by recomputation [4] Bagan 2006

— O(1) different proof using decomposition forests [23] Kazana and Segoufin 2013

— O(1) different proof using circuits [2] Amarilli et al. 2017

O(log2(n)) O(log2(n)) complexities drop to O(log(n)) on strings; uses heavy path decomp. [24] Losemann and Martens 2014

O(log(n)) O(1) only works on strings; huge constants [29] Niewerth and Segoufin 2018

O(log(n)) O(1) only relabel updates; uses circuits and tree decompositions [3] Amarilli et al. 2018

O(log(n)) O(log(n)) uses forest algebras this work

Table 1. Data complexity of existing solutions. Preprocessing time is always in O(n).

NP [20]. For this reason, MSO is usually not used as a query lan-

guage in practice; although it is widely regarded as a good yardstick

for expressiveness.

Our complexities are exponential in the arity k of the queries.

However for practical scenarios, k is usually very small. We note

that k = 2 suffices for modelling XPath queries, which are central

in XML querying.

Although we do not obtain constant-delay algorithms as in pre-

vious work on static trees, we can prove that, in the dynamic setting

O(log(n)) delay is possible. This means that, after receiving an up-

date, we do not need to restart the O(n) preprocessing phase but
only require O(log(n)) time to produce the first answer on the up-

dated tree and continue enumerating from there. We allow updates

to arrive at any time: If an update arrives during the enumeration

phase, we immediately start the enumeration phase for the new

structure.

Previous Results on MSO Queries on Trees We have collected

previous results on evaluation and enumeration of MSO queries on

strings and trees in Table 1.

For MSO sentences, this problem has been studied by Balmin,

Papakonstantinou, and Vianu [5]. Balmin et al. show how one can

efficiently maintain satisfaction of a finite tree automaton (and

therefore, an MSO property) on a tree t which is subjected to up-

dates. More precisely, when an update transforms t to t ′, they want
to be able to decide very quickly after the update whether t ′ is
accepted by the automaton. Taking n as the size of t , they show

that, using a one-time preprocessing phase of time O(n) to con-

struct an auxiliary data structure, one can always decide within

time O(log2(n)) after the update whether t ′ is accepted. The delay
between answers is irrelevant in the setting of Balmin et al. since

their queries always have a Boolean answer. Björklund et al. show

a similar result for XPath queries, which are less expressive than

MSO but can be exponentially more succint than tree automata,

which leads to better constants. Losemann and Martens [24] ex-

tended the work of Balmin et al. to enumeration of k-ary queries

under updates with O(log2(n)) delay and update time. Our goal is

to improve the delay and update time to O(log(n)).
The enumeration problem of static treeswas studied by Bagan [4],

who showed that (fixed) monadic second-order (MSO) queries can

be evaluated with linear time preprocessing and constant delay over

structures of bounded tree-width. Independently, another constant

delay algorithm (but with O(n log(n)) preprocessing time) was ob-

tained by Courcelle et al. [17]. Recently, Kazana and Segoufin [23]

provided an alternative proof of Bagan’s result based on a determin-

istic factorization forest theorem by Colcombet [16], which is itself

based on a result of Simon [32]. Such (deterministic) factorization

forests provide a good divide-and-conquer strategy for words and

trees, but it is unclear how they can be maintained under updates.

It seems that they would have to be recomputed entirely after an

update which is too expensive for our purposes.

With exception of [4], which presents an algorithm that is cubic

in terms of the tree automaton, these papers present complexities

in terms of the size of the trees only, that is, they consider the MSO

formula to be constant. To the best of our knowledge, the data

structures in these approaches cannot be updated efficiently if the

underlying tree is updated. An overview of enumeration algorithms

with constant delay was given in [31].

Heavy Path Decomposition vs. Forest Algebras A main idea

in [5] is a decomposition of trees into heavy paths which allows

one to decompose the problem for trees into O(log(n)) similar

problems on words, for which a solution was given by Patnaik and

Immerman in [30]. This allows to solve the incremental evaluation

problem with O(n) preprocessing time and O(log2(n)) update time,

where one log factor stems from the heavy path decomposition and

the other from solving the problem over strings using monoids of

finite string automata.

The approach of [5] was later extended to enumeration of MSO

queries by Losemann and Martens [24]. They tweaked the monoid

to contain additional information needed to find the symbols that

appear in query results, which allows logarithmic delay and update

time. Just as Balmin et al., Losemann and Martens use heavy path

decomposition to lift the algorithm from words to trees resulting

again in an additional logarithmic factor in the delay and update

time.

We adapt the algorithm of Losemann and Martens from monoids

to forest algebras to avoid the heavy path decomposition. This saves

us a logarithmic factor compared to their results. We believe that

the framework we introduce in Section 3 to compute and maintain

forest algebra formulas with logarithmic height can be applied in

other areas to lift results from strings to trees.

Tree Decomposition vs. Forest Algebras In [3], Amarilli et al.

use tree decompositions [12] to convert arbitrary trees to trees

with logarithmic height. Having a tree of logarithmic height is

central in their algorithm to allow enumeration of MSO queries over

trees under relabeling updates. Amarilli et al. say that the biggest

obstacle in generalizing their work to allow structural updates
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(insertion/deletion of nodes) of the tree is the unability to update

the tree decomposition when the input tree changes. Replacing

tree decompositions with the framework we develop in Section 3

solves this key problem. It is an easy exercise to rewrite existing

MSO queries over trees to equivalent queries that take parse trees

of forest algebra formulas as input.

Thus, the present paper could be an important step towards

reaching the goal and combining the best results on enumeration

(constant delay) with the best results on maintaining answers under

updates (logarithmic update time).

Further RelatedWork There are implementations for and exper-

imental results on incremental evaluation of XML documents wrt.

DTDs [6] and regular expressions with counters on strings [11].

The query evaluation problem has also been studied from a de-

scriptive complexity point of view, e.g., for conjunctive queries [34]

and the reachability query on graphs [18].

Structure of the Paper In the next section, we provide the formal

background, trees, tree automata, and forest algebras. In Section 3,

we give a framework that allows the representation of trees by for-

est algebra formulas whose parse trees have logarithmic height. We

show how to update these formulas while maintaining the height

bound in a similar way as AVL trees do. In Section 4, we show how

the framework of Section 3 can be applied to incremental evalu-

ation. This section features the description of transition algebras

for stepwise tree automata that might be of its own value. In Sec-

tions 5 and 6 we present a highlevel description and the technical

details of our enumeration algorithm. The datastructure described

in Section 6 uses an extension of transition algebras as described

in Section 4. We conclude in Section 7.

2 Definitions
Trees, Forests, Contexts Trees in this paper are labeled and rooted

and the children of each node are ordered. For every tree t , we
denote the set of nodes of t by Nodes(t) and the number of nodes

(or the size) of t by |t |. Nodes in trees which have no children are

called leaves. The (unique) Σ-label of node v is denoted by lab(v).
A forest is an ordered list of trees. A context is like a forest, with

the difference that exactly one leaf is a hole, denoted by the special

label □ < Σ. The height of a forest or context is the length of the

longest path from a root to a leaf.

Given a context c and a forest f , we denote by c d f the context

application of c on f . The resulting forest c d f is derived from c
by replacing the hole with all roots of f . Context application of c
on another context c ′ is defined likewise, with the difference, that

the result is a context, as c d c ′ has a hole, that results from the

hole in c ′.
We depict an example for the context application of a context

on a forest in Figure 1.

Stepwise Automata and Runs Stepwise tree automata were

first described in [15] using a curry encoding of unranked trees. For

convenience, we use the definition from [25] that directly works

on unranked trees.

A stepwise nondeterministic tree automaton or NFTA is a tuple

N = (Q, Σ,δ , Init, F ) where Q is the finite set of states, Σ is a finite

alphabet, F ⊆ Q is the set of accepting states, Init : Σ→ 2
Q
assigns

a set of initial states to every symbol of Σ, and δ : Q ×Q → 2
Q

is a

a

b □ c

d

context

e

f д

h

i

forest

a

b e

f д

h

i

c

d

result

Figure 1. Example for context application

transition function. By δ∗ : Q ×Q∗ → 2
Q
we denote the extension

of δ to strings of states.

Intuitively, a stepwise tree automaton computes a run bottom-up.

After assigning states q1, . . . ,qn to the n children of some node v ,
it assigns a state to v , by starting in some initial state (determined

by the label of v) and reading the string q1 . . .qn . Whether a run is

accepting is determined by the state of the root.

A run of N on a labeled tree t is an assignment of nodes to

states λ : Nodes(t) → Q such that for every node v with chil-

dren v1, . . . ,vk , we have λ(v) ∈ δ
∗(q, λ(v1) . . . λ(vk )), where q ∈

Init(lab(v)). A run is accepting if λ(r ) ∈ F , where r is the root of t .
A tree t is accepted if there exists an accepting run on t . The set of
all accepted trees is denoted by L(N ). By states(λ) we denote the
image of λ, i.e., the set of states visited by the run.

Convention 1. Given any NFTA N , we will assume w.l.o.g. that

there are special states q0,qF ∈ Q , such that the transitions using q0
and qF are exactly {(q0,q,qF ) | q ∈ F }.

Convention 1 is equivalent to change the mode of acceptance

as follows: A run is accepting, if and only if qF ∈ δ
∗(q0, λ(root(t))).

This mode of acceptance is more similar to string automata and

simplifies definitions of transition algebras later on. The convention

can be easily enforced on a given NFTA by adding q0, qF and

transitions {(q0,q,qF ) | q ∈ F }.
Runs over forests and contexts f are defined like runs over trees

with the exception that no state is assigned to the hole and the

parent v of the hole can have any state q such that there exists a

forest f ′ and run λ′ over f d f ′ such that λ′(v) = q.

Signatures of Runs A signature of a run λ over a forest with

roots v1, . . . ,vk is a pair of states (q1,q2) such that

q2 ∈ δ
∗(q1, λ(v1)λ(v2) · · · λ(vk )) .

If the run λ is over a context, then a signature is a pair of pairs

of states ((q1,q2), (q3,q4)) satisfying the following conditions that
stem from the intuition that replacing the hole with a forest that

has a run with signature (q3,q4) yields a run over the resulting

forest with signature (q1,q2).
If the hole ui is not a root, we let u1, . . . ,uk ′ be the children of

Parent(ui ). The signature has to satisfy

q2 ∈ δ
∗
(
q1, λ(v1) · · · λ(vk )

)
q3 ∈ δ

∗
(
p, λ(u1) · · · λ(ui−1)

)
λ(Parent(ui )) ∈ δ

∗
(
q4, λ(ui+1) · · · λ(uk ′)

)
for some p with p ∈ Init(lab(Parent(ui )))

If the hole vi is a root, the signature has to satisfy

q3 ∈ δ
∗
(
q1, λ(v1) · · · λ(vi−1)

)
q2 ∈ δ

∗
(
q4, λ(vi+1) · · · λ(vk )

)
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q0a

q3a q4

q1b q2

q1,q3

q1,q3,q4

q0,q2

q1,q3

q1,q3,q4

q2

q1,q3

b

a

b

b

a a

b

q1

q4

q2

q2

q0 q3

q1

Figure 2. 2-NFSTA M with S = {(q0,q4)} (left) and tree with ac-

cepting run (right).

While a run over a forest can have different signatures only if the

automaton is non-deterministic, a run over a context usually has

many different signatures, even if the automaton is deterministic,

as the pair of states that is the “signature of the hole” is not fixed.

We denote the set of all possible signatures over the states Q
with SIGQ = Q

2∪(Q2)2. Whenever a run λ has signature x ∈ SIGQ
in the automaton N , we denote this by λ |=N x .

Selecting Automata We use (node- and tuple-) selecting finite

tree automata (see, e.g., [21, 27]) as formalism for queries. It is well-

known that these can express MSO queries with free node variables

over unranked trees [28, Theorem 7].

For k ∈ N, a k-ary non-deterministic finite selecting tree automa-

ton (k-NFSTA) M is a pair (N , S), where N is a NFTA over Σ with

states Q and S ⊆ Qk
is a set of selecting tuples. The size of M is

defined as |Q | + |S |. When M reads a tree t , it computes a set of

tuples in Nodes(t)k . More precisely, we define

M(t) =
{
(v1, . . . ,vk ) |

there is an accepting run λ of N on t

and a tuple (p1, . . . ,pk ) ∈ S such that

λ(vℓ) = pℓ for ℓ ∈ {1, . . . ,k}
}
.

Notice that, if t < L(N ) thenM(t) = ∅.

Example 1. Figure 2 illustrates a 2-NFSTAM over Σ = {a,b} that
outputs each pair of a-labeled nodes that are connected by a path

of b-labeled nodes. The automaton consists of three parts. The

first part guesses the start node of some ab+a-path. The second
part checks for each b-node whether it is—directly or by a b-path—
connected to this a-node. The third part checks whether some

a-node is the end of such a path. The automaton has two initial

states for a-nodes and one initial state for b-nodes. We note that all

parts check—by lack ofq0-,q2-, andq4-transitions—that at most one

a-node uses the first part of the automaton. All states are accepting,

because a lack of ab+a-paths is already detected by not being able

to create a run which contains a q4-state and thus the only selecting
tuple would not be matched.

Next to the automaton we depict a tree with some accepting

run that returns the a-node below the root and the left a-leaf. A
symmetric run returns a pair of nodes with the other a-leaf.

Forest Algebras Here, we introduce forest algebras that were

first described by Bojańczyk and Walukiewicz [14]. We prefer the

syntax used in the Handbook of Automata Theory [13] that also

provides a nice introduction.

A forest algebra

(H ,V ,dVH ,‘HV ,‘VH )

consists of two monoids, H = (H ,‘HH , ε) and V = (V ,dVV ,□)
along with three monodial actions: ‘HV : H ×V → V , ‘VH : V ×
H → V , and dVH : V × H → H .

Intuitively, each element of H represents a forest and each ele-

ment inV represents a context. The monoid operations correspond

to concatenation of forests and context application (on a context),

respectively. The neutral elements of H and V correspond to the

empty forest and empty context. The monodial actions correspond

to concatenation of a forest and a context (or the other way round)

and context application of a context on a forest.

As ‘HV , ‘VH , and dVH are monodial actions, the following

hold for any f1, f2 ∈ H and c1, c2 ∈ V .

(f1 ‘HH f2)‘HV c1 = f1 ‘HV (f2 ‘HV c1)

c1 ‘VH (f1 ‘HH f2) = (c1 ‘VH f1)‘VH f2

(c1 dVV c2)dVH f1 = c1 dVH (c2 dVH f1)

(f1 ‘HV c1)‘VH f2 = f1 ‘HV (c1 ‘VH f2)

ε ‘HV c1 = c1

c1 ‘VH ε = c1

□dVH f1 = f1

We use f and c (possibly with indices), to denote forests and

contexts, respectively. Whenever it is not clear whether we refer

to a forest or a context, we use d , which is between c and f . We

use v and w to denote nodes of either a given tree t , or a parse

tree of a forest algebra formula Ψ. To keep the notation clean, we

identify leaves of Ψ with nodes of t , whenever we have a formula

Ψ describing a tree t . Given a node v of the parse tree of Ψ, we use
Ψv to denote the subformula of Ψ rooted at v and tv to denote the

forest or context described by Ψv .
We will often drop the indices of the monoid operations and

monodial actions, i.e., we will just use ‘ and d. Which operation

is needed is clear from the operands. In some cases, we do not even

specify, whether we refer to concatenation or context application.

In this case, we use l. Given a formula Ψ and an inner node v of

the parse tree, we denote by lv the operation at node v .
The free forest algebra over an alphabet Σ is defined as TΣ =

(H ,V ), where H are all forests and V are all contexts. The neces-

sary monoid operations and monodial actions are given by forest

concatenation and context application. For every symbol a of Σ, we
denote with at the tree consisting only of an a-labeled root and by

a□ the context consisting of an a-labeled root having the hole as

its only child.

The size of the forest algebra formula is the number of nodes in

its parse tree.

A homomorphism h = (hH , hV ) from a forest algebra T1 =

(H1,V1) to a forest algebra T2 = (H2,V2) is given by two monoid

morphisms hH : H1 → H2, hV : V1 → V2 that additionally satisfy

hH (c d f ) = hV (c)d hH (f )

for all c ∈ V1 and f ∈ H1. To simplify notation, we will omit the

indices H and V and use h for both morphisms.
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Figure 3. Tree t and the parse trees of two different formulas Ψ1
and Ψ2 representing t

A homomorphism h from the free forest algebra to some forest

algebra T = (H ,V ), is uniquely defined by the mappings from the

set {a□ | a ∈ Σ}, as all other mappings are implied, e.g., h(at ) =
h(a□)d ε .

For every forest algebra T = (H ,V ), we will always have an

input homomorphism h from the free forest algebra to T.

The parse tree of a forest algebra formula (over an algebra T =
(V ,H )) is a binary tree with inner nodes marked by ‘ and d and

leaf nodes marked by some element of V ∪ H . Whether a ‘ node

corresponds to the concatenation of two forests or the concatena-

tion of a forest with a context is clear from the operands. Similarly

it is clear, whether a d node corresponds to the context application

between two contexts or between a context and a forest.

The balance factor B(v) of an inner node v of the parse tree is

the height difference of the two trees, rooted at the children of v .
Positive values for B(v) denote that the right subtree is higher than
the left subtree and vice versa.

In this paper, we will never consider parse trees that use nodes

that correspond to the empty forest or empty context. Therefore,

parse trees of forest algebra formulas will have exactly one leaf for

every node of the represented forest or context. As parse trees are

always binary trees, they will have one inner node less than leaves.

Therefore, a parse tree is always of roughly twice the size than the

represented forest or context.

In Figure 3 we depict a tree t , and the parse trees of two different
formulas encoding t .

To simplify notation, we identify forest algebra formulas with

their parse trees and leaves of parse trees with nodes of the rep-

resented forest or context. Whenever we have a parse tree Ψ, we
assume that for any node v , the algebra element h(tv ) is stored
together with the node, where h is the input homomorphism. Es-

pecially we assume that given v , the element h(tv ) is available in
constant time.

Incremental Evaluation and Enumeration LetM be a select-

ing automaton, t the input tree for M , and M(t) be the answer of
M on t . We are interested in efficiently maintaining M(t) under
updates of t . This means that we can have an update u to t , yielding
another tree t ′, and we wish to efficiently computeM(t ′). The latter
cost should be more efficient than computingM(t ′) from scratch.

We consider the following updates on trees: (i) Replace the current

label of a specified node by another label, (ii) insert a new node as

only child of a specified node making all existing children of the

existing node children of the new node, (iii) insert a new leaf node

as left or right sibling of an existing node, and (iv) delete a specified

leaf node

We allow a single preprocessing phase in which we can compute

an auxiliary data structure Aux(t ) that we can use for efficient query

answering. When t is updated to t ′, we therefore want to efficiently

computeM(t ′) and efficiently update Aux(t ) to Aux(t ′).
IfM is simply an NFTA (i.e., a 0-ary NFSTA), then this problem is

known as incremental evaluation and was studied by, e.g., [5]. Here,

we perform incremental enumeration, meaning that we extend the

setting of Balmin et al. from 0-ary queries to k-ary queries. We

measure the complexity of our algorithms in terms of the following

parameters: (i) size of Aux(t ), (ii) time needed to compute Aux(t ),
(iii) time needed to update Aux(t ) to Aux(t ′), and (iv) time delay we

can guarantee between answers ofM(t ′). The underlying model of

computation is a random access machine (RAM) with uniform cost

measure.

In the remainder we use IncEval and IncEnum to refer to the

incremental evaluation and enumeration problems, respectively.

3 Maintaining Parse Trees under Updates
For our evaluation and enumeration algorithms, we need a data

structure that can represent a tree t by a forest algebra formula Ψ
(from some algebraT ). The formula should have a parse tree of log-

arithmic height, updates of the tree should require only logarithmic

time to update the formula, and for each node v of the parse tree,

the corresponding element h(tv ) of the algebra should be available

in constant time.

To keep the parse tree of Ψ shallow, we use similar rotations,

as used in AVL trees [1]. Unfortunately, the well known rotations

used to balance AVL trees only work, if the underlying algebra is

fully associative, which does not hold for forest algebras, as, e.g.,

c d (f1 ‘ f2) , (c d f1) ‘ f2. Therefore, we provide additional

rotations that can be used where the traditional rotations fail.

The main result of this section is:

Proposition 2. Given a tree t and a forest algebra T , it is possible
to compute in time O(c |t |) a forest algebra formula Ψ representing t ,
such that

• the parse tree of Ψ is of height at most 8 log(|t |); and
• each update of t can be translated to an update of Ψ, such that

the new formula can be computed in time O(log(c |t |)) and has
height at most 8 log(|t |),

where c is the worst-case computation time of one forest algebra

operation.

We note that the coefficient c in the running times purely stems

from computing and updating the annotations of the inner nodes.

The remainder of the section is devoted to prove the proposition.

A node v in Ψ is balanced if B(v) ∈ {−1, 0, 1}. Otherwise, v is

unbalanced. A path going from v to a leafw is called a long path of

v , if it is a maximal length path among all paths leaving v .
The proof of Proposition 2 now goes as follows: We introduce

rotations that can be used to balance parse trees (Figure 4), show

that the rotations are sound, i.e., they preserve equivalence of the

formula (Lemma 3), and that each formula where none of the ro-

tations can be applied has at most logarithmic height (Lemmas 5

and 6). At last we show that formulas can be updated in logarithmic

time (Lemma 7) and preprocessed in linear time.
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1a ≥ +2 ≥ 0

1b ≤ −2 ≤ 0

1b ≤ −2 l = d

2a ≤ −2 > 0

2b ≥ +2 < 0

3a ≤ −2 ≥ 0 2 is a forest

3b ≤ −2 1 is a context

3c ≤ −2 2 is a context

3d ≥ +2 ≥ 0 1 is a forest

Figure 4. Rotations of Forest Algebra Formulas

We depict all rotations
1
needed to balance parse trees of forest

algebra formulas in Figure 4. Embedded in the figure is a table

that lists the preconditions of each rotation. For the classic AVL

rotations (i.e. rotations 1a, 1b, 2a, and 2b) to work, all l-nodes need

to be of the same kind, i.e., either all of them are ‘-nodes or all

of them are d-nodes. To which exact operations these nodes refer

(e.g., whether a d-node refers to dVV or dVH ), does not matter,

as operations of the same kind are associative in forest algebras.

Conditions over balance factors are given to ensure that appli-

cation of a rotation increases balancedness, while conditions that

enforce that a subformula describes a forest/context are necessary

to ensure that the rotation can be applied, as, e.g., it is not possible

to concatenate two contexts.

The rotation 1b is special, when applied to a d-node. Likewise

are the rotations 3b and 3c. All these rotations have in common that

they can change the balance factor of the node at the top from −2

to +2, which at the first sight does not help to balance the formula.

However, as the context application is not symmetric, we have a

problem of balancing d-nodes that have a negative balance factor.

Therefore, we strictly prefer positive balance factors over negative

ones for d-nodes.

All other rotations strictly decrease the absolute value of the

balance factor of the top node, due to the requirement on the balance

factor ofw . The same holds true for rotation 1b, when applied to a

‘-node.

Lemma 3. The rotations depicted in Figure 4 are sound, i.e., applying

one operation, whose preconditions are satisfied, to some subformula

Ψv yields an equivalent formula.

Proof sketch. It is tedious but straightforward to verify the state-

ment for all operations using the axioms of forest algebras, includ-

ing associativity of the two monoids. Care must be taken to take

into account that ‘ and d refer to different operations according

to the operands. □

1
Technically not all rewritings in the figure are rotations. We stick with this term, as

it is established for rewritings that rebalance a tree.

We now define balanced formulas. We note that we cannot avoid

unbalanced nodes altogether, as e.g., we have no rotation that we

can apply if some node v with B(v) ≥ 2 is a d node with the

right child being a ‘-node. The definition of a balanced formula

is reverse engineered from the proof of Lemma 6, while ensuring

logarithmic height at the same time.

Definition 4 (Balanced Formula). A formula Ψ is balanced, if for

each unbalanced node v of Ψ it holds that there is a balanced node

w at most 6 levels below v on a long path of v .

The following height bound of balanced formulas can be shown

using recurrence equations in a similar way as height bounds for

AVL trees can be shown.

Lemma 5. A balanced formula Ψ with n nodes has a parse tree of

height at most 8 log(n).

Lemma 6. Let Ψ be a forest algebra formula, such that no rotation

from Figure 4 can be applied. Then the parse tree of Ψ is balanced.

Proof. Assume in contradiction that no rotation can be applied and

there is a long path v1, . . . ,v7, . . . , such that the nodes v1 to v7 are
unbalanced.

2

We will now show the following properties of such a path:

(a) Every d-node vi has B(vi ) ≥ 2.

(b) There are no two consecutive d-nodes.

(c) There are no three consecutive ‘-nodes.

(d) There is at most one ‘-node followed directly by a d-node.

The lemma statement then follows from (b) to (d), as the longest

possible path (d–‘–‘–d–‘–‘) fulfilling (b) to (d) has 6 nodes.

It remains to show (a) to (d).

If (a) does not hold, we can apply either 1b, 3b, or 3c, as the left

child is either a d-node or a ‘-node. In the latter case, one of the

children of the ‘-node needs to describe a context, because vi is a
d-node.

If (b) does not hold, we can apply 1a, as by (a) all d-nodes on the

path have B(vi ) ≥ 2, i.e, the second consecutive d-node is right

2
In this case, every long path of v1 uses the nodes v2, . . . , v7 , as the next node on a

long path is always in the direction indicated by the balance factor and we assume all

nodes vi to be unbalanced.
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child of the first one and satisfies the condition on B(w) to apply 1a.
Similarly, if (c) does not hold, we can apply one of 1a, 1b, 2a and 2b.

It remains to show (d). Ifvi is a ‘-node andvi+1 is a d-node, we

can conclude that tvi is a context and tvi+1 is a forest. Otherwise
3a or 3d could be applied. We remind that at most one child of a

‘-node can be a context. However, if tvi+1 is a forest, then all tvj
with j > i are forests, as the path always goes to the right child of

each d-node by (a). Therefore, there can be no other ‘-node that

has a d-child. We can conclude (d) and the proof. □

Towards Proposition 2, it remains to show two things, how to

maintain balancedness under updates and how to compute a bal-

anced parse tree in the first place.

Lemma 7. There exists an algorithm that takes as input a balanced

forest algebra formula Ψ for a tree t and an update of the kinds (i) to

(iv) with the following properties:

• The runtime is O(c · height(t)).
• The resulting formula represents the updated tree t ′ and has
height at most 8 log(|t ′ |).
• The height bound is maintained under repeated updates.

Proof sketch. Our update algorithm works as follows:

1. Do the actual update by some local change at some leaf u of Ψ.
2. Do a bottom up pass from u to the root and for each node v
• if a rotation is possible

3
at v : do the rotation

• if a rotation is possible at the sibling of v : do the rotation

3. Recompute the node annotations by a bottom up pass from u to

the root. Also recompute the node annotations for nodes that

were changed in step 2.

It is straightforward to verify, that each of the updates (i) to (iv)

can indeed be achieved by a local change at some leaf of the formula,

e.g., adding a new leaf with label a as a sibling of some existing

node v can be done by replacing v with at ‘v . The correctness of
the algorithm follows from Lemma 3.

The runtime follows from the fact that each rotation takes con-

stant time, each algebra computation takes time c , and there are at

most two rotations in each level of the parse tree.

The trickiest part is to show that the algorithm maintains an

upper bound of 8 log(|Ψ|) on the height of Ψ. This can be achieved

by adding some invariants and doing induction over the update

sequence. □

One might wonder why we do not always apply all possible

rotations after an update. This would trivially maintain the height

bound by Lemma 5. Unfortunately, there are some bad update

sequences, where one update allows for logsquare many rotations

afterwards. The underlying reason is that there might be some

unbalanced nodes v in the parse tree with |B(v)| ≈ height(Ψ).
After an update it might be possible to apply logarithmically many

rotations atv . This could happen on several nodes on the bottom up

pass. Therefore we only apply at most two rotations at each level,

which keeps the update time low and still is enough to maintain

the 8 log(height(Ψ)) height bound.
The data structure can be initialized in linear time by starting

with the formula representing the root of a given tree t and suc-

cessively inserting the nodes of t . While the naïve analysis yields

runtime O(n · log(n)), a more involved amortized analysis yields

3
The conditions in Figure 4 are satisfied.

linear time, as the amortized cost of an insertion is O(1) not count-

ing navigation, especially the amortized number of rotations after

each update is constant. We note, that we need i rebalancing op-

erations approximately every 2
i
insertion operations. Navigation

is in O(1) for each insertion operation if we keep a pointer to the

last inserted node. The amortized cost of insertions for AVL trees

has been analyzed in [26]. Compared to an AVL tree, we need less

rotations, as we do not require every node to be balanced.

4 Incremental Evaluation
Towards incremental evaluation, we first define the transition al-

gebra of a stepwise tree automaton. It is the generalization of the

transition monoid of a finite string automaton. Intuitively, each

element of the transition algebra captures the signatures of all pos-

sible runs over a forest or context. Our auxiliary data structure

for incremental evaluation will be a balanced transition algebra

formula representing the given tree.

Formally, the transition algebra of a given a stepwise tree automa-

tonN = (Σ,Q,δ , Init, F ) is defined asT = (H ,V ,dVH ,‘HV ,‘VH )

using H = (2Q
2

,‘HH , idQ ) as the horizontal monoid and V =

(2(Q
2)2 ,dVV , idQ2 ) as the vertical monoid. Here, idX is the identity

function over X . Both monoid operations are given by

d1 l d2 = {(x1,x3) | (x1,x2) ∈ d1, (x2,x3) ∈ d2} ,

where x1,x2,x3 are states in the case of the horizontal multiplica-

tion and pairs of states in the case of the vertical multiplication.

The actions are defined by

c dVH f = {(q1,q2) | ((q1,q2), (q3,q4)) ∈ c, (q3,q4) ∈ f }

f ‘HV c = {((q1,q3), (q4,q5)) |

(q1,q2) ∈ f , ((q2,q3), (q4,q5)) ∈ c}

c ‘VH f = {((q1,q5), (q3,q4)) |

((q1,q2), (q3,q4)) ∈ c, (q2,q5) ∈ f }

We define the input homomorphism by

h(a□) = {((q1,q2), (q3,q4)) | q3 ∈ Init(a),q2 ∈ δ (q1,q4)}

for all symbols a ∈ Σ. It is straightforward to verify that T is indeed

a forest algebra. Furthermore, we have the following observation:

Observation 8. All operations in T can be performed in at most

O(|Q |6) time using join operations, where the costliest operation is

the multiplication in the vertical monoid.

We note that the horizontal monoid of the transition algebra is

defined just like the transition monoid for a string automaton over

the alphabetQ . The intuition about the vertical monoid can be best

seen by the definition of the action dVH . If ((q1,q2), (q3,q4)) ∈ h(c)
for some context c , then applying c to some forest f with (q3,q4) ∈
h(f ) results in a forest f ′ such that (q1,q2) ∈ h(f

′). This intuition

is formalized in Lemma 9.

Lemma 9. Let d be a forest or context. It holds that x ∈ h(d) if and
only if there exists a run λ of N on d such that λ |=N x .

The lemma can be proven by a straightforward induction. Now

we have all ingredients to show the main result of this section.

Theorem 10. IncEval for an NFTA N = (Σ,Q,δ , Init, F ) and a

tree t can be solved with a preprocessing phase of time O(|Q |6 · |t |),
auxiliary structure of size O(|Q |4 log(|t |)), and with update time

O(|Q |6 log(|t |)) after each new update.



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Matthias Niewerth

Algorithm 1 Enumeration ofM(t)

Input: k-NFSTAM = ((Q, Σ,δ , F ), S), tree t , incomplete answer A
Output: Enumeration of all answers inM(t) that are compatible

with A
1: function Enum(M, t ,A)
2: if |A| = k then Output(A)
3: else
4: A′ ← Complete(A,⊥)
5: while A′ , ⊥ do
6: Enum(M, t ,A′)
7: v ← A′

|A′ |
8: A′ ← Complete(A,v)

Proof. We use the framework of Section 3 to compute and maintain

a balanced representation of t using the transition algebra of N . By

Convention 1 and Lemma 9, the evaluation problem can be solved by

looking whether (q0,qF ) is contained in the forest algebra element

represented at the root of the parse tree. The complexities follow

from Observation 8 and Proposition 2. □

5 Highlevel Enumeration Algorithm
In this Section, we give a highlevel presentation of our enumera-

tion algorithm that is depicted as Algorithm 1. The technical details

including the auxiliary data structure and our main result are pre-

sented in the next section.

We assume a total order ≤ on the nodes of t that can depend

on our auxiliary data structure. The algorithm then enumerates all

answers in lexicographic order. To avoid some case distinctions, we

assume a symbol ⊥ such that ⊥ ≤ v for any node v .
To understand the algorithm, we need the notation of an in-

complete answer: We call a tuple A ∈ Nodes(t)ℓ with ℓ ≤ k an

incomplete answer if it is a prefix of some answer B ∈ M(t). We

assume that the empty tuple () is an incomplete answer, even if

M(t) = ∅ to avoid some corner cases. We write A ⪯ B for two

(in-)complete answers A and B, if A is a prefix of B. By |A| := ℓ we
denote the number of nodes of the incomplete answer A.

To enumerate all answers, Enum has to be called with the empty

answer (). The sub-procedure Complete extends a given incom-

plete answer A with another node according to the following defi-

nition.

Definition 11. Let A = (v1,v2, . . . ,vj ) be an incomplete answer,

then

Complete(A,u) := (v1,v2, . . . ,vj ,v) ,

where v is the smallest node such that u < v and (v1,v2, . . . ,vj ,v)
is an incomplete answer. If no such node exists, then we define

Complete(A,u) := ⊥.

By definition of Complete, the lines 4 to 8 iterate over all incom-

plete answers A′ that result from A by adding one additional node.

Before we show how to efficiently implement Complete, we prove

correctness of the highlevel enumeration algorithm.

Lemma 12. Enum(M, t , ()) enumerates all answers inM(t).

Proof. We show that for every incomplete answer A, the function
call Enum(M, t ,A) outputs exactly the answers B such that A is a

prefix of B. The lemma statement follows, as the empty answer ()

is a prefix of every answer.

The proof is by induction over |A|. The base case is |A| = k . In
this case, the only compatible answer isA, which is output in Line 2

of the algorithm. Let nowA = (v1, . . . ,vℓ) be an incomplete answer

and B = (v1, . . . ,vℓ ,vℓ+1, . . . ,vk ) be some answer compatible with

A. Eventually some call to Complete in Line 4 or 8 will return the

incomplete answer (v1, . . . ,vℓ ,vℓ+1). By the induction hypotheses,

the recursive call in Line 6 will output B. □

6 Technical Core
This section presents our implementation of Complete. Our aux-

iliary data structure is a balanced forest algebra formula Ψ that

represents the tree t . We use the extended transition algebra that

we define below.

Compared to the transition algebra it additionally contains some

information about states visited in a run. Instead of adding (for

each possible run) the set of used states, we only care about those

subsets that are actually needed by some selecting tuple.

Let M = (N , S) be a k-NFSTA. We define S(S) to be the set

S(S) = {Q ′ ⊆ Q | ∃s ∈ S : Q ′ ⊆ s}.
We define the extended transition algebra

T
+ = (H+,V +,‘+HV ,‘

+
VH ,d

+
VH )

using H+ = (2Q
2×S(S ),‘+HH , idQ ×{∅}) as horizontal monoid and

V + = (2(Q
2)2×S(S ),d+VV , idQ2 ×{∅}) as vertical monoid.

We define the monoid operations and monodial actions by

d1 l+ d2 =
{
(x , r ) ∈ SIGQ × S(S) | ∃(y1, r1) ∈ d1, (y2, r2) ∈ d2.

x ∈ {y1} l {y2} and r = r1 ∪ r2
}
,

where l refers to the according operation in the normal transition

algebra. The input homomorphism is given by

h
+(a□) =

{(
((q1,q2), (q3,q4)), r

)
∈ (Q2)2 × S(S) |

((q1,q2), (q3,q4)) ∈ h(a□) and r ⊆ {q4}
}

In the case k = 0, T
+
is isomorphic to T, as S(S) = {∅}. We note

that the horizontal monoid H works exactly, as illustrated by [24]

in the word case. Especially, our definition of ‘ is equivalent to the

definition of ▷◁ in [24].

We call a tuple (x , r ) from SIGQ × S(S) an extended signature.

And use the syntax λ |=M (x , r ) analogously to normal signatures.

Observation 13. Given a k-NFSTA M = (N , S), operations in T
+

can be carried out in time O(|Q |6 · |S | · 2k ) using join operations.

The total order on the nodes of t , that we already introduced in

the last section, is defined as follows: v ≤ w if and only if v occurs

beforew in the parse tree of Ψ, reading the leaves from left to right.

We stress that the order ≤ depends on the formula Ψ. Especially,
the order can change in non-obvious ways during insertion and

deletion updates, as the structure of Ψmay change, due to rotations.

We sketch, how to achieve enumeration in pre- or post-order at the

end of this section.

We already know that elements of T
+
can be interpreted as sets

of extended signatures of possible runs. However, not all runs of

M on tv (and thus not all signatures in h
+(tv )) are actually useful

for completing an incomplete answer A. To be useful, an extended

signature (x , r ) ∈ h+(v) has to satisfy two conditions: It has to be

the signature of a run λ of tv that
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• is compatible with A, i.e., for the nodes in A and some select-

ing tuple s , it visits the correct states; and
• can be extended to some accepting run λ′ over t .

Let now A = (v1, . . . ,vℓ) be an incomplete answer and Qs =

{qs
1
, . . . ,qsk } for each s = (qs

1
, . . . ,qsk ) in S . We write λ |=s A, if

λ(vi ) = q
s
i for i ∈ {1, . . . , ℓ}.

Towards the above conditions, we define sets of relevant tuples

of each node v of Ψ.
The sets R1A,s account for the first condition, and are defined by

R1A,s (v) =


h
+(tv ) ∩ SIGQ × {{q

s
i }} if v = vi

h
+(tv ) ∩ SIGQ × 2

Qs
if v < A is a leaf of Ψ

R1A,s (vl )lv R1A,s (vr ) if v is not a leaf of Ψ

Here, vl and vr refer to the left and right child of v , respectively.
The intersection with SIGQ × 2

Qs
in the second row is just to

optimize the computation, as we are only interested in signatures

that can be used for extending the answer with selecting tuples s .
The sets R2A,s (v) additionally account for the second condition:

R2A,s (v) =


R1A,s (v) ∩ {(q0,qF )} × {Qs }

{x ∈ R1A,s (v) |
(
{x} lu R1A,s (w)

)
∩ R2A,s (u) , ∅}

{x ∈ R1A,s (v) |
(
R1A,s (w)lu {x}

)
∩ R2A,s (u) , ∅}

The first case applies if v is the root, while the second and third

cases apply, when u is the parent ofv andw is the left (second case)

or right (third case) sibling of v .
We note that the definition of R2A,s (v) is very similar to a semi-

join. The following two lemmas are the technical core of the paper.

The proofs are not very difficult but have many case distinctions,

as there are 5 relevant forest algebra operations.

Lemma 14. It holds that (x , r ) ∈ R1A,s (v) if and only if there exists

a run λ on tv such that λ |=M (x , r ), r ⊆ Qs , and λ |=s A.

Proof sketch. The proof is by induction, and identical to the proof

of Lemma 9 with the exception that some information about states

is carried through the induction. □

Lemma 15. It holds that (x , r ) ∈ R2A,s (v) if and only if there exists

a run λ on t such that λ is accepting, λv |=M (x , r ) and λv |=s A,
where λv is the restriction of λ to tv .

Proof sketch. The proof is by a top-down induction. At the root,

the claim holds by Convention 1 and the definition of R1A,s . The

induction step propagates the condition that the run over tv can

be completed to an accepting run over t that uses all states of some

selecting tuple s down to the leaves. □

The definitions of R1A,s and R2A,s yield straightforward algo-

rithms to compute these sets. The computation of R1A,s can be done

bottom up (just as the computation of T
+
), while the computation

of R2A,s can be done top-down.

We now have all ingredients for an implementation of the pro-

cedure Complete that we depict in Algorithm 2. We first prove

correctness before we give an upper bound on the runtime. We use

states(R2A,s (v)) to denote the set of states that occur in some tuple

of R2A,s (v), i.e.,

states(R2A,s (v)) =
⋃

(x,r )∈R2

A,s (v)

r .

Algorithm 2 Procedure Complete as used in Algorithm 1

Input: incomplete answers A = (v1,v2, . . . ,vj ,⊥, . . . ,⊥), node u
Output: the answer Complete(A, i) from Definition 11

1: function Complete(A,u)
2: return Complete(A,Root(Ψ),u)

3: function Complete(A,v,u)
4: compute R2A,s (v) for s ∈ S

5: if max(Nodes(tv )) ≤ u or qsj+1 < states(R
2

A,s (v))

for every s ∈ S then return ⊥
6: if isLeaf(v) then A′ ← (v1,v2, . . . ,vj ,v)
7: else
8: A′ ← Complete(A, LeftChild(v),u)
9: if A′ = ⊥ then A′ ← Complete(A,RightChild(v),u)

10: if A′ , ⊥ then compute R1A′,s (v) for s ∈ S

11: return A′

Lemma 16. The procedure Complete correctly computes the incom-

plete answer as required by Definition 11.

Proof. The main challenge of the procedure is to find a node vj+1
that can be used to extend the incomplete answer A. As our order
of the nodes of t is induced by the order of the leaves of Ψ, we
have to find the leftmost leaf of Ψ that can be used to extend A. By
the definition of R2A,s , this is the leftmost leaf v with v > u and

qsj+1 ∈ states(R
2

A,s (v)).

The procedure returns in Line 5, only if it is sure that no such

nodevj+1 can be found among the descendants ofv , either because
all nodes below v are smaller or equal than u, or because qj+1 <

states(R2A.s (v)) and therefore also qj+1 < states(R2A,s (w)) for any

w below v by the definition of R2A,s .

Ifv is a leaf, the procedure either returns⊥ in Line 5 or computes

the correct incomplete answer A′. We note that if the algorithm

does not return in Line 5 and v is a leaf, then v is the desired node.

Ifv is not a leaf, the algorithm first descends into the left subtree

and only if no appropriate node was found there descends into the

right subtree. It thus ensures to find the leftmost leaf satisfying the

conditions. □

Lemma 17. The procedure Complete runs in time O(log(|t |) · |Q |6 ·

|S | · 2k ).

Proof sketch. The time spent in each invocation of Complete (ex-

cluding time spent in recursive calls) is dominated by the computa-

tion of R2A,s (v) and R
1

A′,s (v). Both operations can be carried out in

time O(·|Q |6 · |S | · 2k ) using the forest algebra.
It remains to show that the total number of calls is bounded by

O(log(|t |)). It can be shown that there is at most one node at each

level, such that Complete returns ⊥ in Line 11. We can conclude

that the overall number of calls is bounded by O(log(|t |)), as there
are atmost log(|t |) calls that return a value different from⊥ and calls

that return already in Line 5 do not make any recursive calls. □

We now have all ingredients to show our main result.

Theorem 18. IncEnum for a k-NFSTAM and a tree t can be solved

with auxiliary data of size O(|Q4 | · |S | ·2k · |t |)which can be computed

in time O(|Q6 | · |S | · 2k · |t |), maintained within time O(|Q6 | · |S | ·
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k
log(|t |)) per update, and which guarantees delay O(|Q6 | · k · |S | ·

2
k · log(|t |)) between answers.

Proof. The delay follows from Lemma 17 and the fact that we need

at most k calls to Complete to compute the next answer. All other

bounds are by Proposition 2 together with Observation 13. □

There is one unaesthetic detail in our algorithm, that we still

want to fix: Our implementation enumerates the tree in a strange

order that depends on the internal state of our data structure.With a

slightlymore complicated algorithm and forest algebra, it is possible

to enumerate t in pre-order or post-order. Algorithm 2 needs to be

changed so that it makes three recursive calls at each inner node

that represents a context application. One to search for v in the

context among the nodes before the hole, a second that searches

the tree, the context is applied to, and a third searching the context

again, but now on the nodes after the hole. The vertical monoid

of the tree algebra needs to be extended such that it carries the

information which states of S are visited before and after the hole.

7 Concluding Remarks and Further Directions
We depicted an algorithm that allows enumeration with logarithmic

delay and logarithmic updates for MSO queries on trees, making

this the best currently known algorithm that works for relabeling

and structural updates on the tree. Still, the main open question is,

whether there exists an algorithm that allows for constant delay

enumeration and logarithmic updates at the same time. Amarilli

et al. [3] made an important step in this direction by providing an

algorithm that works for relabeling updates. However, in practice,

updates that change the structure of the tree are very common.

In the current work we introduced a balancing schema for forest

algebra formulas that solves a key problem in generalizing the

results of [3] to insertion and deletion updates, which gives hope

that combining both results could lead to such a constant delay,

logarithmic update algorithm.

Towards future work, we want to investigate how far our tech-

niques can be generalized towards graphs with bounded treewidth,

using the generalization in [4]. A straightforward generalization of

our algorithm will only be able to deal with relabelings since node

insertions and deletions can have drastic impact on tree decompo-

sitions. To keep the complexity for relabel operations low, one can

assume w.l.o.g. that the label of each node is only stored in one bag

of a tree decomposition.

Other future work for which our method seems promising is

efficiently computing the difference between answers. That is, after

an update occurred on the tree, we could say which tuples no longer

satisfy the query and which ones are new.
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