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Abstract
Infinite types and formulas are known to have really curious and
unsound behaviors. For instance, they allow to type Ω, the auto-
autoapplication and they thus do not ensure any form of normal-
ization/productivity. Moreover, in most infinitary frameworks, it
is not difficult to define a type R that can be assigned to every λ-
term. However, these observations do not say much about what
coinductive (i.e. infinitary) type grammars are able to provide: it is
for instance very difficult to know what types (besides R) can be
assigned to a given term in this setting. We begin with a discussion
on the expressivity of different forms of infinite types. Then, using
the resource-awareness of sequential intersection types (system S)
and tracking, we prove that infinite types are able to characterize
the arity of every λ-terms and that, in the infinitary extension of
the relational model, every term has a “meaning” i.e. a non-empty
denotation. From the technical point of view, we must deal with
the total lack of guarantee of productivity for typable terms: we do
so by importing methods inspired by first order model theory.

Keywords Curry-Howard, coinductive types, sequence types, or-
der, relational model, non-productive reduction

1 Introduction (Infinite types)
1.1 Some semantical aspects of infinite types
It is well-known that the mere fact of allowing infinite formulas
gives birth to unsound/contradictory proof systems. For instance,
let A be any formula. We then define the infinite formula FA by
FA := (((. . .) → A) → A) → A i.e. FA = FA → A (the letter “F”
stands for “fixpoint”). The formula FA gives rise both to a proof of
A and—via the Curry-Howard correspondence—to the typing of a
term withA, this term being no other than the auto-autoapplication
Ω := ∆∆ (with ∆ = λx .x x ). This is given by Fig. 1.

Thus, every type A is inhabited by Ω. But given a λ-term t , what
types A does t inhabit? A first observation is that every λ-term
can easily be typed: let us just define R (standing for “reflexive”)
by R = R → R. Thus, R = (R → R) → (R → R) = . . . Then, it is
very easy to type every term with R. In the inductive steps below,
Γ denotes a context that assigns R to every variable of its domain:

Γ;x :R ⊢ x :R

Γ;x :R ⊢ t :R
Γ ⊢ λx .t :R→R (= R)

Γ ⊢ t :R (=R→R) Γ ⊢ u:R
Γ ⊢ t u : R

Therefore, every λ-term inhabits the type R. Yet, this does not
answer the former question: what types does a term t inhabit? As
we will see, this question has no simple answer and we will chiefly
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ax
x :FA ⊢x :FA

ax
x :FA ⊢x :FA

app
x : FA ⊢ x x : A

abs
⊢ λx .x x : FA → A

ax
x :FA ⊢x :FA

ax
x :FA ⊢x :FA

app
x : FA ⊢ x x : A

abs
⊢ λx .x x : FA

app
⊢ Ω : A

Figure 1. Typing Ω,inferring A

focus on one aspect of this problem, namely, the typing constraints
caused by the arity of the λ-terms. Intuitively, the arity of a λ-term
t (sometimes called its order e.g., in [4]) is the supremal n such that
t →∗β λx1 . . . xn .u (for some term u) i.e. the number of abstractions
that one can output from t . For instance, the arity Ω of 0 (it is a zero
term), the arity of the head normal form (HNF) λx1x2.x u1 u2 u3
(with u1,u2,u3 terms) is 2 and the term Yλ := (λx .λy.xx)λx .λy.xx
has an infinite arity, because Yλ →n

β λy1 . . . λyn .Yλ .
The arity of a type is the number of its top-level arrows e.g., if

o1,o2 are type atoms (or type variables), o1 → o1, o1, o1 → o2 → o1
and (o1 → o2) → o1 are of respective arities 1, 0, 2, 1. Via Curry-
Howard, the constructor λx corresponds to the introduction of an
implication, and so, in most type systems, a typed term of the form
λx1 . . . xn .u is typed with an arrow of arity ⩾ n. For instance, if
λx .λy.u is typed, then it is so with a type of the form A→ B → C .

Moreover, if a type system satisfies subject reduction, meaning
that typing is stable under reduction, the above observation entails
that, if a typable term is of arity n, then it is typable only with types
of arity ⩾ n (the arity of a term is a lower bound for the arity of its
possible types). Equivalently, if t is typed with B, then the arity of
B statically gives an upper bound to the arity of t (static meaning
without reduction). A finite type has a finite arity (whereas the
finite term Yλ has an infinite arity). Yet, unsurprisingly, an infinite
type may have an infinite arity e.g., R defined by R = R → R above.
This confirms that the typing of any term t with R is trivial and
does not bring any information, since the arity of a term is of course
⩽ ∞. However, the facts that, by allowing infinite types, (1) one
can type every term with R = R → R and (2) one can type Ω with
any typeA, do not mean that finding the types that can be assigned
to a given term t is an easy problem in this setting.

1.2 Intersection Types and Arity
We have just seen that subject reduction naturally ensures that
simple typing provides an upper bound to the arity of a typed term.
Intersection type systems (i.t.s.), introduced by Coppo-Dezani [8],
generally satisfy subject expansion, meaning that typing is stable
under anti-reduction. Those systems feature a type constructor ∧
(intersection) and are designed to ensure equivalences of the form
“t is typable iff t is normalizing” and also provide semantical proofs
of non-type-theoretic properties such as “t is weakly normalizing
iff the leftmost-outermost reduction strategy terminates on t” [16].
From subject expansion and the typing of normal forms (NF) i.e.
terminal states, i.t.s. are actually able to capture the arity of some
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∅ → . . . ∅︸      ︷︷      ︸
q

→ o
x t1

@
tq

@
o

λx1 . . .→ . . .→ . . .︸               ︷︷               ︸
p

→ o

Figure 2. Typing a Head Normal Form in an i.t.s.
λ-terms. For instance, if an i.t.s. characterizes head normalization
(HN), then, every HN term t of arity p is typable with a type whose
arity is also equal to p (and not only bounded below by p).

Let us informally explain why and how the arity of the typable
terms is usually captured by i.t.s. For instance, i.t.s. characterizing
HN usually feature arrow types having an empty source1 (that we
generically denote by ∅), meaning that the underlying functions do
not look at their argument. Namely, if t : ∅ → B, then t u is typable
with B for any term u. This allows us to easily type any HNF while
capturing its arity: in Fig. 2, one just assigns ∅ → . . . → ∅ → o
(arity q) to the head variable x , so that x t1 . . . tq is typed with the
type atom o and the HNF λx1 . . . xp .x t1 . . . tq , whose arity is p, is
typed with an arrow type of arity p. Then, by subject expansion,
one concludes that every HN term of arity p is typable with a type
of arity p. The same argument can be adapted to i.t.s. characterizing
weak (including infinitary weak) or strong normalization, which
also usually capture the arity of their typable terms.

1.3 In Search for Infinite Denotations
Independently from normalization properties, another important
facet of i.t.s. is that they also provide denotational models for
the λ-calculus i.e. they associate to each λ-term a denotation [[t]]
(usually, [[t]] is a morphism in a category), meaning that [[t]] is
invariant under β-conversion (i.e. t1 =β t2 implies [[t1]] = [[t2]]). For
instance, the typing judgments of Gardner-de Carvalho’s system
R0 (that we will shortly discuss in § 2.1) correspond to the points
of the relational model [5]: indeed, {�R0Γ ⊢ t : τ | Γ,τ } = [[t]]rel
for any term t , where the left-hand side corresponds to the set of
derivable judgments of system R0 typing t and the right-hand side,
the denotation of t in the relational model. Thus, infinite types are
a mean to study the infinitary extension of the relational model.

The (finitary) relational model only gives a (non-empty) denota-
tion to HN terms. This reflects the fact that non-HN (equivalently,
unsolvable) terms have an infinitary behavior w.r.t. head reduc-
tion. In this regard, it is natural to seek whether such terms have
an infinitary semantics, since infinitary models bring information
on asymptotic aspects of terms e.g., in the recent work of Grellois-
Melliès [12, 13]. The first main contribution of this article is to prove
that every term has a non-empty interpretation in the infinitary
relational modelMrel. This furthers the approach of Curry, aiming
at finding more and more “meanings” to λ-terms (see e.g., [8] or
§ 5.4. on “illative systems” in [7]). One may thus consider that, in
Mrel, every λ-term is meaningful (although we do not have yet a
deep understanding of this model, beyond arity-related aspects).

An interesting aspect of models is that they allow us to statically
discriminate terms from one another, meaning that if [[t1]] , [[t2]]
then t1 ̸=β t2 i.e. two terms that do not have the same denotation do
1In this article, we put aside non-strict types systems (e.g., system DΩ [8, 16]), in
which types are less constrained by the arity of terms.

not represent two different states of a same program. For instance,
the i.t.s. that are able to assign a type of arity n to any (e.g., HN)
term of arity n (but not to one of arity n + 1) can be regarded as
arity-discriminating for HN terms. This holds for system R0. We
prove that the infinitary extension of system R0, that we denote
R, is arity-discriminating for all λ-terms (not just the HN ones).
This second main contribution of the paper (Theorem. 2) extends a
feature of system R0 concerning HN terms to the whole λ-calculus.

1.4 Stability and the Difficulty of Infinitary Typing
We saw above how i.t.s. capture the arity of the typed terms in
finite/productive case (productive cases include infinitary normal-
izing terms). Let us now understand why the method of § 1.2 fails
while studying full infinitary typing. Fig. 2 shows well that typing
in a given i.t.s. (and in particular, capturing the arity) reduces to
typing the “partial” normal forms (e.g., HNF or β-NF). Intuitively,
the nodes corresponding to the normalized parts of a term cannot
be affected by reduction e.g., the nodes labelled with λxi , @ and x in
Fig. 2 (the “spine” of the HNF). Such nodes are stable. In contrast,
some terms (the so-calledmute terms [3]) do not ever give rise to
stable positions and are thus totally unproductive e.g., the term Ω.

Thus, there is no clear way to capture the arity of any typable
term: the example of Ω shows that the case of totally unstabilizable
term must be handled when considering infinite types. Note that
Ω is just an example of a mute term, that happens to satisfy the
nice fixpoint equation Ω →β Ω and has a simple parsing tree. This
partially explains why Ω was easily typable. In general, there is no
method to type generic mute terms that do not satisfy an equation.

1.5 Infinitary Typing and Klop’s Problem
Let us say a few words about the questions raised by infinitary
typing in the non-idempotent intersection type framework i.e. by
the interpretation of terms in the infinitary relational model.
• One of the fundamental interests of non-idempotent intersec-
tion (A ∧A , A) is that, in this setting, a type is a resource
that cannot be duplicated or merged/contracted and that is
possibly consumed under reduction.
• Moreover, non-idempotent i.t.s. are often relevant, meaning
that weakening is not allowed.

An i.t.s. that forbids duplication and weakening can be qualified
as linear, which is the case of system R0 that we hinted at in
§ 1.3, and its infinitary version R. As we will see in § 2.1, relevance
disables the argument proving that every term is typable with ρ,
the non-idempotent counterpart of the type R considered above.
However, while trying to characterize a form of infinitary weak
normalization, we noticed in [17] that Ω is also typable in R. We
recovered soundness by defining a validity criterion, discarding
degenerate typing derivations, which was possible by introducing
a rigid variant of system R, namely system S. System S has many
nice features e.g., tracking (motivated in § 2.2).

Still, these observations raise the problem of characterizing the
set of typable terms (without validity criterion) in the coinduc-
tive relevant and non-idempotent framework. In particular, is every
termR-typable? Or is there a term t that is notR-typable? Observe
that such a term t would not be linearizable, even in an infinite way
(since a R/S-derivation typing t induces a linear representation
of t ). The existence of non-linearizable terms would be very sur-
prising. Therefore, it must be investigated. Since our main theorem
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(Theorem 1) states that system R actually types every term, we
actually prove that every term is linearizable, as expected.

Note again that the method described at the end of § 1.2 does
not work for non-normal terms: naively, when x u occurs in t , we
would like to assign to x a type of the form A→ B, where A is the
type ofu, and proceed by induction. However, x may be substituted
in the course of a reduction sequence, and so, typing constraints
on x are not easily readable. Thus, in the productive case, in the
purpose of proving that the terms of a given set (e.g., the set of HN
terms above) are typable, we escape this problem by typing normal
forms (e.g., HNF) and then proceeding by expansion. But, by § 1.4,
this cannot work when we want to type every term.

To sum up, due to full resource-awareness (including relevance),
typing in the coinductive systems R and S is intrinsically non-
trivial. But the same reason (full resource-awareness) make linear
intersection type systems the good framework to study the expres-
sive power of infinite types and to capture the arity of every λ-term.
Thus, besides our first goal. . .

Goal 1. Capturing the arity of every λ-term with infinite types.

. . .we have now a second one, narrowly related to the first:

Goal 2. Proving that every term is R-typable.

1.6 A Technical Contribution
Wehave not addressed yet thewaywe can study unproductive/mute
terms, despite the fact that all the known techniques of intersection
type theory fail: we propose a solution to overcome this difficulty,
inspired by (a simplified form of) first order model theory, that we
mix with techniques specific to the λ-calculus. This is our main
technical innovation, since it enables the study of unproductive re-
duction. Thus, beyond the relational model, this work proposes the
first use of first order model theory to study an infinitary extension
of a finitary model of the λ-calculus and to generalize properties
coming from the finite model to every λ-term (e.g., capturing their
arity). The proof that every term isR-typable has three main stages:
(1) reducing the problem to a set of stability relations (§ 3) (2) de-
scribing the possible interactions between these relations (§ 4.2)
(3) describing a procedure of partial (but more importantly finite)
normalization (§ 5). The same ingredients allow us to capture the
arity. The italicized words, as well as the tools of the proof and
how they arise, are gradually explained in the paper but we refer
to § 3.1, 3.2 and the introduction of § 4 for some high-level input.

1.7 Outline
To sum up, our main contributions in this article consist of (1)
proving that every term has a non-empty denotation in the in-
finitary relational model (2) the arity of terms can be captured by
infinitary type systems (3) introducing a method giving rise to
semantic descriptions of λ-terms, whether they normalize or not.

In § 2, we present two non-idempotent i.t.s. and the notions of
relevance and tracking. In § 3, we explain why describing the “form”
of the derivations in system S (presented in § 2.2) may help us to
prove that every term is S-typable and we characterize these forms.
The key notion of thread is defined. In § 4, we define, for a given
term t , anihilating chain as a proof that t is not S-typable. Proving
that every term is typable reduces to proving that nihilating chains
do not exist (Prop. 2). We prove that, under a positivity condition
involving threads, nihilating chains indeed do not exist (Prop. 3). In

§ 5, we prove that the positivity condition can be assumed without
loss of generality, by means of a finite normalization procedure.
Thus, no proof of untypability exists and every term is typable. We
conclude in § 6 by notably sketching the adaptation of the previous
steps giving the expected type-theoretic arity-capture.

2 Infinitary Relevant and Non-Idempotent
Intersection

2.1 System R

We now define more formally system R, the coinductive version of
the finite system R0, independently introduced by Gardner and de
Carvalho [10, 11]. See [6] for a general presentation of R0. System
R is of good help to understand relevant intersectionbut, as we shall
see in § 2.2 and 3.1, it is unfit to express the techniques yielding
Theorems 1 and 2, and we refer to it only for heuristic purposes.

The set of R-types is coinductively defined by.

σ , τ ::= o ∈ O | [σi ]i ∈I → τ

We call I := [σi ]i ∈I amultiset type. The multiset types represent
intersection in system R0 and the intersection operator ∧ is the
multiset-theoretic sum: ∧i ∈IIi = +i ∈IIi (i.e. ∧i ∈I [σ ij ]j ∈J (i) :=
+i ∈I [σ

i
j ]j ∈J (i)). We assume I to be countable, the empty multiset

type is denoted by [ ] and [σ ]ω := [σi ]i ∈ω with ∀i ∈ ω, σi = σ .
An R-context (metavariables Γ,∆) is a total function from V

(the set of term variables) to the set of multiset types. The domain
of Γ is given by {x | Γ(x) , [ ]}. The intersection of contexts +i ∈I Γi
is defined point-wise. We may write Γ;∆ instead of Γ + ∆ when
dom(Γ) ∩ dom(∆) = ∅. Given a multiset type [σi ]i ∈I , we write x :
[σi ]i ∈I for the context Γ s.t. Γ(x) = [σi ]i ∈I and Γ(y) = [ ] for all
y , x . AnR-judgment is a triple Γ ⊢ t : σ where Γ is anR-context,
t a term and σ an R-type.

The set of R-derivations is defined inductively by:

ax
x : [τ ] ⊢ x : τ

Γ;x : [σi ]i ∈I ⊢ t : τ
abs

Γ ⊢ λx .t : [σi ]i ∈I → τ
Γ ⊢ t : [σi ]i ∈I → τ (∆i ⊢ u : σi )i ∈I

app
Γ + (+i ∈I∆i ) ⊢ t u : τ

As announced in § 1.5, system R is not only non-idempotent,
but also relevant. For instance, theK-term λx .y can only be assigned
types of the form [ ] → τ . Indeed, λx .y can only by typed by:

ax
x : [τ ] ⊢ x : τ

abs
x : [τ ] ⊢ λy.x : [ ] → τ

This comes from the fact that y does not occur in x , and thus, by
relevance, the constructor λy cannot invoke a (non-empty) type on
the left-hand side of the arrow type.

Fig. 1 can adapted and we can type Ω with τ for all R-types
τ , by just defining ϕτ by ϕτ = [ϕτ ]ω → τ . However, defining ρ
by ρ = [ρ]ω → ρ does not allow us to type every term with ρ in
system R. To understand why, note first that relevance can be
disabled, by replacing ax par axw:

i0 ∈ I
axw

Γ;x : [σi ]i ∈I ⊢ x : σi0
We call Rw the type system thus obtained. Then, the proof on
p. 1 can be adapted to Rw, by considering only contexts Γ, Γt , Γu
assigning [ρ]ω to all the variables in their domains:
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ax
x :[ρ]ω ⊢ x :ρ

Γ;x : [ρ]ω ⊢ t :ρ
abs

Γ ⊢ λx .t : ρ
Γt ⊢ t :ρ (Γu ⊢ u:ρ)ω

app
Γt + Γu ⊢ t u : ρ

Thus, every term is Rw-typable. But note that, by relevance, this
proof by induction on the structure of t fails for R. For instance,
if x is not in t , Γ ⊢ t : ρ yields Γ ⊢ λx .t : [ ] → ρ (, ρ!) and
since the empty multiset type may occur in unpredictable places in
a term, finding an R-typing of any term t is non-trivial. In some
sense,R-typability is about capturing the way relevance constrains
emptiness to occur! But since a variable x can be substituted under
reduction as observed in § 1.5, [ ]may occur in unpredictable places.

2.2 Towards Tracking and Sequential Intersection
Unfortunately, resource-awareness of system R is not enough to
process the proof techniques to be developed here: we also need
tracking. Let us just give an example to show what the impossibil-
ity of tracking means:

ax
x : [[σ ,σ ]→τ ]⊢ x : [σ ,σ ]→τ

ax
x : [σ ]⊢ x :σ

ax
x : [σ ]⊢ x :σ

app
x : [[σ ,σ ] → τ ,σ ,σ ] ⊢ x x : τ

In this derivation, in the context x : [[σ ] → τ ,σ ,σ ] of the con-
clusion, one cannot know which particular axiom rule, each red
occurrence of σ comes from: there is no possible notion of pointer
with multiset intersections, which is one thing that we absolutely
need to capture the key notion of support candidate in § 3.1.

Tracking can be retrieved while keeping most of system R0’s
nice features (e.g., syntax-direction) by considering system S, that
we introduced in [17]. System S uses sequence types instead of
multiset types to represent intersection. For instance, instead
of having a cardinal 3 intersection [o,o′,o], system S considers a
cardinal 3 sequence (2 · o, 5 · o′, 8 · o). Sequences come along with
a disjoint union operator e.g., (2 · o, 5 · o′, 8 · o) = (2 · o, 5 · o′) ⊎
(8 · o): in this equality, the occurrence of o in the left-hand side
annotated with 2 unambiguously comes from that which is also
annotated with 2 in the right-hand side. We call these annotations
tracks. In contrast, [o,o′,o] = [o,o′] + [o], but there is no way to
unambiguously associate to an occurrence of o in the left-hand side
the one of [o,o′] or the one of [o] in the right-hand side.

Formally, the set of S-types is defined coinductively by:
T , Sk ::= o ∥ F → T
F ::= (k · Sk )k ∈K (K ⊆ N \ {0, 1})

The empty sequence type is denoted ( ) and we often write (Sk )k ∈K
instead of (k ·Sk )k ∈K . The set of top-level tracks of a sequence type
is called its set of roots and we write e.g., Rt(F ) = {2, 5, 8} when
F = (2 ·S, 5 ·S ′, 8 ·S). Note that the disjoint union operator can lead
to track conflict e.g., , if F1 = (2 · o, 3 · o′) and F2 = (3 · o′, 8 · o),
the union F1 ⊎ F2 is not defined, since Rt(F1) ∩ Rt(F2) = {3} , ∅.

An S-context C (or D) is a total function from V to the set of
S-types. The operator ⊎ is extended point-wise. An S-judgment is
a triple C ⊢ t : T , where C , t and T are respectively an S-context,
a term and T an S-type. A sequence judgment is a family of
judgments (k · (Dk ⊢ u : Sk ))k ∈K (with K ⊆ N \ {0, 1}) that all type
the same term u, often just written (Dk ⊢ u : Sk )k ∈K . For instance,
if 5 ∈ K , then the judgment on track 5 is C5 ⊢ u : S5.

The set of S-derivations is defined inductively by:

x : (k ·T ) ⊢ x : T ax
C;x : (Sk )k ∈K ⊢ t : T

C ⊢ λx .t : (Sk )k ∈K → T
abs

C ⊢ t : (Sk )k ∈K → T (Dk ⊢ u : Sk )k ∈K
C ⊎ (⊎k ∈KDk ) ⊢ t u : T

app

The app-rule can be applied only if there is no track conflict in the
contextC⊎(⊎k ∈KDk ). In an ax-rule concluding with x : (k ·T ) ⊢ x :
T , the track k is called the axiom track of this axiom rule. We refer
to § III and IV of [17] for additional examples and figures for all
what concerns the basics of system S sketched here and thereafter.

Let Sex = (2 · o, 7 · o′) → o′′. To gain space, we write k ⊢ x : T
(with k ⩾ 2, x ∈ V , T S-type) instead of x : (k · T ) ⊢ x : T in ax-
rules. We also indicate the track of argument derivations between
square brackets e.g., x : (3 ·o) [5]means that the argument judgment
x : (3 · o) ⊢ x : o is on track 5):

ax
3 ⊢ y : Sex

ax
3 ⊢ x : o [5]

ax
9 ⊢ x : o′ [6]

app
x : (3 · o, 9 · o′), y : (3·Sex) ⊢ y x : o′′

ax
y : (3 · (2 · o, 7 · o′) → o′′) ⊢ λx .y x : (3 · o, 9 · o′) → o′′

As expected:

Property 1. Systems S andR enjoy subject reduction and expansion

If tracks are erased, a sequence becomes amultiset and S-derivations
collapse on R-derivations (e.g., Pex on Pex), so that an S-typable
term is also R-typable. We may thus replace Goal 2 by Goal 3.

Goal 3. Proving that every term is S-typable.

We reduce the problem (i.e. proving that a term t is typable in
system S) into a first order theory, that we call Tt . We actually prove
that Tt indeed captures the problem, by means of a proposition
that can be interpreted as a (simplified) completeness theorem (see
Corollary 1): we show that ifTt is coherent, then t is S-typable. Then
we prove that Tt is coherent for all terms t . Go to the introduction
of § 3.2 and 4 to have a closer descriptions of the proof of the
coherence of Tt and of its main stages.

2.3 Parsing, Pointing
In this technical section, we explain how we may point inside an S-
type or an S-derivation, thanks to tracking.We define the support of
an S-type and an S-derivation, and also the key notions of biposition
and bisupports. Let N∗ denote the set of the finite words on N, the
operator · denotes concatenation, ε the empty word and⩽ the prefix
order e.g., 2 · 1 · 3 · 7 ∈ N∗, 2 · 1 ⩽ 2 · 1 · 3 · 7. Moreover, the collapse
k of a track k is defined by k = min(k, 2). This notation is extended
letter-wise on N∗ e.g., 0·5·1·3·2 = 0·2·1·2·2. The support of term
is defined by induction as expected: supp(x) = {ε}, supp(λx .t) =
{ε} ∪ 0 · supp(t) and supp(t u) = {ε} ∪ 1 · supp(t) ∪ 2 · supp(u). If
a ∈ N∗ and a ∈ supp(t), we denote by t |a the subterm of t rooted
at position a whereas t(a) is the constructor (@, x or λx) of t at
position a e.g., t |0 = y x and t(0 · 1) = y with t = λx .y x .

The support of a type (resp. a sequence type), which is a tree
of N∗ (resp. a forest), is defined by mutual coinduction: supp(o) =
{ε}, supp(F → T ) = {ε}∪supp(F )∪1·supp(T ) and supp((Tk )k ∈K ) =
∪k ∈Kk · supp(Tk ) e.g., supp(Sex) = {ε, 1, 2, 7}. We can define the
support of a derivation P �C ⊢ t : T : supp(P) = ε if P is an axiom
rule, supp(P) = {ε} ∪ 0 · supp(P0) if t = λx .t0 and P0 is the sub-
derivation typing t0, supp(P) = {ε}∪1 ·supp(P1)∪k ∈K k ·supp(Pk )
if t = t1 t2, P1 is the left subderivation typing t1 and Pk the sub-
derivation typing t2 on track k . The Pk (k ∈ K) are called argu-
ment derivations. For instance, supp(Pex) = {ε, 0, 0·1, 0·5, 0·6},
P(0 · 1) = y : (3·Sex) ⊢ y : Sex and P(0·6) = x : (9·o′) ⊢ x : o′.

4
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Choice function for axiom tracks: Note that, to define an S-
derivation typing a term t (thus fulfilling Goal 3), one must one
choose an axiom track in every axiom rule so that no conflict arise.
In this short article, let us just say that we can escape this problem
by resorting to an arbitrary injection from N∗ to N \ {0, 1}, that
chooses axiom tracks for us: we say that an S-derivation P is a
⌊·⌋-derivation if P(a) = (x : (k ·T ) ⊢ x : T ) (i.e. a is the position of
an ax-rule typing x in P ), then k = ⌊a⌋. If t is ⌊·⌋-typable, then t is
in particular S-typable, so that we now replace Goal 3 with Goal 4:

Goal 4. Given an injection ⌊·⌋ : N∗ → N \ {0, 1}, proving that every
term is ⌊·⌋-typable.

The injectivity hypothesis allows us to stop bothering about track
conflict any further while achieving Goal 4. It is also w.r.t. the func-
tion ⌊·⌋ that we will capture where emptiness occurs (see § 3.2).

We explain now how to point inside types nested in S-derivations,
or to axioms typing a given variable, and formalize the associated
pointers. If P is an S-derivation and a ∈ supp(P), then the judgment
at positiona is denoted CP (a) ⊢ t |a : TP (a) e.g., CPex (0·6) = x : (9·o′)
and TPex (0 · 6) = o′. Let P be an S-derivation. A right biposition is
a pair of the form (a, c), where a ∈ supp(P) and c ∈ supp(TP (a)), we
write bisupp(P) for the (right) bisupport of P i.e. its set of (right)
bipositions. If (a, c) ∈ bisupp(P), then P(a, c) denotes TP (a, c) e.g.,
Pex(0·6, ε) = o′ and Pex(0 ·1, ε) = o, Pex(0 ·1, 1) = o′′ and Pex(ε, 9) =
o′. Note that, contrary to [17], we only consider right bipositions.
For this article, we think a biposition as type symbol (o ∈ O or→)
nested in a given S-derivation P and we often use this heuristic
identification implicitly, most notably when describing Fig. 4.

Assume that P types t . We set A = supp(P) and B = bisupp(P).
If x ∈ V , a ∈ A, we set AxPa (x) = {a0 ∈ A | a ⩽ a0, t(a) =
x ,∄a′0, a ⩽ a′0 ⩽ a0, t(a′0) = λx} (occurrences of x in P above
a, that are not bound w.r.t. a) e.g., AxPexε (x) = ∅ (x is bound at
the root), but AxPex0 (x) = {0 · 5, 0 · 6} (x is not bound at position
0). Technically, this notation is crucial to harness relevance (see
polar inversion, § 3.3) but the important thing to remember is that,
thanks to tracking, in system S, one can unambiguously designate
the axiom rules typing the variable of a λx .

2.4 Typing some Notable Terms in System R

We now use system R to type a few terms satisfying fixpoint
equations. Some of them are not head normalizing. Let ∆f =
λx . f (x x), Y = λf .∆f ∆f (Y is Curry fixpoint combinator). Moreover,
if I = λx .x and K = λxy.x , then Y I → Ω (satisfying Ω →β Ω),
Y f → Yf := ∆f ∆f (satisfying Yf →β f (Yf )) and YK →β Yλ :=
(λx .λy.xx)λx .λy.xx (satisfying Yλ →β λy.Yλ ).

Iterating reduction on Yf and Yλ infinitely many times, we see
that Yf (resp. Yλ ) strongly converges to the infinitary term f ω :=
f (f (...)) (resp. λy.λy....) in the sense of [9, 15]. Thus, Ω and Yf are
both zero terms (§ 1.1) and Yλ a term of infinite arity. The term Ω
is actually a mute term (see § 1.4) and Yf is a term whose Böhm
tree (see [1], chapter 10) f ω does not contain ⊥.

Because of rule abs and subject reduction, a term of arity n may
only be typed with a type of arity ⩾ n, as explained in § 1.1. But
some R-derivations can capture more precisely the arity of terms:
for each R-type τ , we define coinductively ϕτ by ϕτ = [ϕτ ]ω → τ
and we consider the following typing of Y (omitting left-hand sides
of ax-rules):

Π∆f =

ax
f : [τ ] → τ

ax
x : ϕτ

( ax
x : ϕτ

)
ω
app

x : [ϕτ ]ω ⊢ x x : τ
app

f : [[τ ] → τ ];x : [ϕτ ]ω ⊢ f (x x) : τ
abs

f : [[τ ] → τ ] ⊢ ∆f : ϕτ (= [ϕτ ]ω → τ )

ΠY =

Π∆f (Π∆f )ω
app

f : [[τ ] → τ ]ω ⊢ ∆f ∆f : τ
abs

⊢ Y : [[τ ] → τ ]ω → τ

Thus, Y is R-typable with [[τ ] → τ ]ω → τ for any type τ .
Using suitable instances or variants of ΠY, we can build ΠΩ� ⊢

Ω : τ (for any τ ) and Πλ� ⊢ Yλ : [ ] → [ ] → . . . By instantiating
τ with a type variable o, we get ⊢ Ω : o and ⊢ Yf : o. Thus, the
zero terms Ω and Yf are typed with types of arity 0 whereas Yλ
(whose arity is infinite) is typed with a type of infinite arity, as it
was constrained to be.

We will generalize this result (not only for terms built from a
fixpoint combinator like Ω or λx .Ω) and show that, for all pure
terms t of arity n, there is an R-derivation typing t with a type of
arity n (Theorem 2).

3 Bisupport Candidates
In this section, we characterize, for a given term t , its bisupport
candidates i.e. the (potential) forms of the derivations typing t . By
“form”, we intuitively mean a set of unlabelled positions (that must
be stable under some suitable relations). We make explicit that idea
by studying first the possible forms of an S-type in § 3.1. The notion
of unlabelled position has a meaning only because tracks of S allow
us to define suitable pointers. It would be impossible in system R.

3.1 A Toy Example: Support Candidates for Types
In this section, we explain how the notion of “form” of a support
can be formalized by giving a characterization of the supports of
S-types in terms of stability conditions.

The definition of a particular S-type T can be understood as a
two-step process: first, we choose the support C := supp(T ), next,
we choose the type labelsT (c) (in the signature O ∪ {→}) given to
the positions c ∈ C . However, not all the subsets C ⊆ N∗ are fit to
be the support of a type, and not all the possible decorations of a
suitable set C yield a correct type.

For instance, let us consider the two sets of positions C1 and C2
below. Do they define the supports of some types T1 and T2?

14

138

C1 = {ε, 1, 4, 4·1, 4·3, 4·8}

14

3

C2 = {ε, 1, 4, 4·3}
As it turns out, C1 is the support of a type e.g., (4 · (8 · o3, 3 ·
o1) → o2) → o1 (figure below). By contrast, no type T may satisfy
supp(T ) = C2, because a non-terminal node of a type (necessar-
ily an arrow) should have a child on track 1 (by convention, its
right-hand side), but 4 ∈ C2 and 4 · 1 < C2.

→
1
o1

4
→

1
o2

3
o1o3

8

Type (4·(8·o3, 3·o1) → o2) → o1

o
1
o1

4
→

1
→o3

3
o3

8

Wrong decoration
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This motivates the following notion: a support candidate of type
is a subset C ⊆ N∗ such that there exists a type T satisfying C =
supp(T ). Given a support candidate C , it is easy to define a correct
type whose support is C:
• The label of non-terminal nodes of C should be arrows.
• the leaves of C should be decorated with type atoms o ∈ O .

So was done for the decoration on the left-hand side, representing
the type (4 · (8 · o3, 3 · o1) → o2) → o1. In contrast, the decoration
on the right-hand side is incorrect: ε (non-terminal) is labelled with
o ∈ O and 4 · 1 (leaf) with→.

The observations about C1 and C2 above suggest considering
two relations→t1 and→t2 defined by:
• For all c ∈ N∗, k ∈ N, c · k→t1 c .
• For all c ∈ N∗, k ⩾ 2, c · k→t2 c · 1.

A set of positions C is closed under→t1 (i.e. c1 ∈ C and c1→t1 c2
entails c2 ∈ C) iff it is a tree. Stability under condition→t2means
that if a node c is not terminal, then it has a child on track 1.

Lemma 1. LetC ⊆ N∗. ThenC is a type support candidate (i.e. there
exists a type T s.t. C = supp(T )) iff C is non-empty and is closed
under→t1 and→t2.

Thus, relations→t1 and→t2 are enough to characterize support
candidates. We call them stability relations e.g., the good candi-
date support C1 is stable under→t1 and→t2, whereas 4 · 3 ∈ C2,
4 · 3→t2 4 · 1 but 4 · 1 < C2, so that the bad candidate supportC2 is
not stable under→t2.

When c1 →t1 c2 or c1 →t2 c2, we say that c1 subjugates c2,
because c1 demands c2 to ensure a correct formation of the support.

3.2 Toward the Characterization of Bisupport Candidates
For the remainder of this paper, we fix an injection ⌊·⌋ : N∗ →
N \ {0, 1}. By Goal 4, we want to prove that every term t is ⌊·⌋-
typable. By analogy with the notion of candidate supports for
types (previous section), the idea is to characterize the bisupport
candidates for the ⌊·⌋-derivations typing a given term t i.e. sets
B ⊆ N∗ × N∗ s.t. there exists a ⌊·⌋-derivation P typing t satisfying
B = bisupp(P) (Prop. 1 to come). We proceed by defining in § 3:
• Bt , the set of the potential bipositions of a derivation typing
a term t (in this Section 3.2).
• On Bt , we define a relation→• (which is actually the union
of 7 stability relations). More precisely:
– There is a special constant symbol p⊥ in Bt , that roughly
indicates “untypability” or “emptiness”.

– The term t is typable iff there is a non-empty subset B of
Bt , such that B is stable under→•and does not contain p⊥
(compare this statement with Lemma 1). Such a B is the
support of a derivation typing t . This equivalence is given
by the “completeness-like” statement of Corollary 1.

Let us now define Bt by first noticing that not every position
a ∈ N∗ (or biposition (a, c) ∈ N∗×N∗) may be in a derivation typing
a given term t . For instance, we have supp(λx .y x) = {ε, 0, 0·1, 0·2},
so, if P types λx .x x , then a ∈ supp(P) implies a = ε, 0, 0 · 1 or
0 · 2 i.e. supp(P) ⊆ {ε, 0, 0 · 1, 0 · 2}. For instance, supp(Pex) =
{ε, 0, 0 · 1, 0 · 2, 0 · 5, 0 · 6}. More generally, if t is a term, we set
At = {a ∈ N∗ | a ∈ supp(t)} and Bt = (At ×N∗)∪ {p⊥} (where p⊥
is an “empty biposition” constant), so that, if P is a ⌊·⌋-derivation
typing t , then a position (resp. a biposition) of P must be in At
(resp. in Bt \ {p⊥}) i.e. supp(t) ⊆ At and bisupp(P) ⊂ Bt \ {p⊥}.

The constant p⊥ roughly materializes emptiness and will be used to
describe how “relevance-related emptiness” is constrained to occur
in ⌊·⌋-derivations (see polar inversion in § 3.3).

We omit P and t from some notations. We set Aa (x) = {a0 ∈
A | a ⩽ a0, t(a0) = x , ∄a′0, a ⩽ a′0 < a0, t(a′0) = λx}. Thus, with
the notation AxPa of § 2.3, if P is a ⌊·⌋-derivation, then AxPa (x) ⊂
Aa (x) for all a ∈ supp(P), x ∈ V and Aa (x) may be considered as
the set of position candidates for ax-rules typing x above a.

Now, remember that the function ⌊·⌋ has been fixed to choose
axiom tracks for us (§ 2.3): if x a variable and a0 an axiom position
candidate for x (i.e. t(a0) = x), then a potential ⌊·⌋-derivation P
containing a0 has an axiom of the form P(a0) = x : (k ·T ) ⊢ x : T
with k = ⌊a0⌋. Thus, if t(a) = λx and we set Trλ(a) = {⌊a0⌋ | a0 ∈
Aa ·0(x)}, then Trλ(a) is the set of axiom tracks dedicated to x above
the abs-rule at position a by the function ⌊·⌋. It is interesting in that,
e.g., if t(a) = λx and 8 < Trλ(a), then we can assert that, if there
exists a ⌊·⌋-derivation P and a ∈ supp(P), then P(a) = (Sk )k ∈K →
T with 8 < K . Indeed, by definition of Trλ(a), there is no axiom
position candidate a0 for x above a whose axiom track is 8.

Thus, when a variable x is not at some places in t , ⌊·⌋ constrains
emptiness to “occur” at some particular tracks if we perform an
abstraction λx , and then, we informally say e.g., that emptiness
occurs on track 8 w.r.t. position a under the above assumption.
This give us more fine-grained information about occurrences of
emptiness in a derivation typing t : system S (enriched with ⌊·⌋)
will provide us information about emptiness track by track. This is
precisely what we need to understand typability in the relevant and
non-idempotent framework (remember § 1.5) in that, we have to
ensure that emptiness does not compromise typability: intuitively,
emptiness must not propagate everywhere in the derivations typing
a given term t . If it did, a derivation typing t would be empty (i.e.
t would not be typable) and we want to show that this does not
happen, in the purpose of proving that every term is typable in S

3.3 Tracking a Type in a Derivation
Let us now express the stability conditions (as in § 3.1) that a ⌊·⌋-
bisupport candidate for a derivation typing t should satisfy. We will
need to ensure the points below:
• Identification of the components (i.e. the bipositions) of a
same type T in a derivation from bottom to top (see Fig. 3):
relation of ascendance→asc.
• Identification of the components of type given in an ax-rule
to a variable x (S5 in Fig. 3) and its occurrence called by the
abstraction λx : relation of polar inversion→pi.
• Identification of the matching components of the types of u
and v in the app-rule typing u v (types Sk in the app-rule of
Fig. 3): relation of consumption→.
• Correct type formation, as in Sec. 3.1: extensions of relations
→t1 and→t2.
• The type of a subterm of the form λx .u is an arrow type (and
not a type variable): relation→abs.

By lack of space, most of the proofs are omitted for the remainder
of the paper and we can only give a few details on the concepts
that we use. We refer to the webpage of the author, or Chapters 11
and 12 of [18] for all the details and more examples and heuristics.

In Fig. 3, we indicate the position of a judgment between angle
(,square) brackets e.g., C;x : (Sk)k∈K ⊢ t : T ⟨a · 0⟩ means that
judgmentC ;x : (Sk)k∈K ⊢ t : T is at position a · 0. We denote by pos
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Abstraction rule

ax
x : (5·S5) ⊢ x : S5 ⟨pos(5)⟩

C; x : (Sk )k ∈K ⊢ u : T ⟨a·0⟩
(with 5 ∈ K, 8 < K )abs

C ⊢ λx .u : (Sk )k ∈K → T ⟨a⟩

Application rule

C ⊢ u : (Sk )k ∈K→T ⟨a·1⟩ (Dk ⊢ v : Sk ⟨a·k⟩)k ∈K
app

C ⊎ (⊎k ∈KDk ) ⊢ u v : T ⟨a⟩

Figure 3. Ascendance, Polar Inversion and Consumption

the (partial) converse of ⌊·⌋ e.g., if a0 := pos(7) exists, then a0 is
the axiom position candidate whose axiom track is 7: concretely,
this just means that, if there exists a ⌊·⌋-derivation P typing t s.t.
a0 ∈ supp(P), then P(A) = x : (7·S) ⊢ x : S for some type S and x .

■Assume that, in a ⌊·⌋-derivation P , we find an abs-rule at position
a as in Fig 3: the judgment C;x : (Sk)k∈K ⊢ u : T (pos. a · 0) yields
C ⊢ λx .u : (Sk)k∈K → T below (pos. a). The occurrence of T in
the conclusion of the rule is intuitively the same as that in its
premise: we say the former is the ascendant of the latter, since it
occurs above in the typing derivation. Likewise, in the app-rule,
the occurrence of T in C ⊎k ∈K Dk ⊢ u v : T stems from that of
premise C ⊢ u : (Sk)k∈K → T : the first occurrence of T is also the
ascendant of T in the conclusion of the rule. Ascendance induces a
stability relation→ascon the set of type elements i.e. on Bt , the set
of candidate bipositions of t , that can be formally defined by:
• (a, c)→asc (a · 1, 1 · c) if t(a) = @.
• (a, 1 · c)→asc (a · 0, c) if t(a) = λx .

For instance, in Fig 4, the red (resp. the blue) occurrences of o′
are ascendants of one another. They correspond to bipositions
(ε, 12)→asc (0, 1)→asc (02, ε)→asc (02 · 1, 1) (resp. (ε, 1 · 4 · 1)→asc

(0, 4 · 1)) from bottom to top.

■ Assume that 5 ∈ K in the abs-rule at position a in Fig. 3. Then
the occurrence of S5 in (Sk )k ∈K → T at pos. a stems from an axiom
rule concluding with x : (5 · S5) ⊢ x : S5 at pos. pos(5): we say that
the occurrence S5 (in (Sk )k ∈K → T ) is the polar inverse of the
occurrence of S5 in the axiom rule. Assume on the contrary that
8 < K . So S8 does not exist and there is no ax-rule typing x and
using axiom track 8 above a. Morally, S8 is empty.

More generally, if t(a) = λx and k0 ⩾ 2, the function ⌊·⌋. . .
• . . . either gives a unique axiom position candidate for the
type on track k in (Sk )k ∈K : this happens when ∃a0 ⩾ a · 0
s.t. ⌊a0⌋ = k0 (i.e. , when k0 ∈ Trλ(a) by construction of
Trλ(a)). In that case, a0 = pos(k0).
• . . . or tells us that k0 < K i.e. there cannot be a (top-level) type
on track k0 in (Sk )k ∈K → T . In other words, this indicates
that emptiness on track k0 w.r.t. position a, which formally
happens whenever no a0 ⩾ a · 0 satisfies ⌊a0⌋ (i.e. k0 <
Trλ(a)). In that case, pos(k0) is undefined. We consider the
type Sk0 (that intuitively does not exist) be the polar inverse
of an empty type.

Polar inversion also induces a stability relation→pi on Bt , that can
be formally defined by:

ax
4⊢x : (8·o, 3·o′, 2·o)→o′

ax
9⊢x : o [2]

ax
2⊢x : o′ [3]

ax
5⊢x : o [8]

app
. . . ⊢ x x : o′

abs
⊢ λx .x x : (2 · o′, 4 · (8 · o, 3 · o′, 2 · o) → o′, 5 · o, 9 · o) → o′

abs
⊢ λyx .xx : ( ) → (2 · o′, 4 · (8 · o, 3 · o′, 2 · o) → o′, 5 · o, 9 · o) → o′

Figure 4. Threads, Ascendance and Consumption

• (a,k · c)→pi (pos(k), c) if k ∈ Trλ(a) (first case)
• (a,k · c)→pi p⊥ if k < Trλ(a) (second case)

For instance, in Fig. 4, the top blue occurrence of o′ is the polar
inverse of the top red one: formally, (0, 4 · 1)→pi (02 · 1, 1). Now, we
may understand the use of constant p⊥: it indicates biposition that
cannot be in any potential ⌊·⌋-derivation typing t . More precisely,
p⊥ is here to play the role of the polar inverse of all the bipositions
that cannot exist, because of the choices made by the function ⌊·⌋.

3.4 Type Formation, Type Consumption
In this subsection, we conclude the definitions of the stability re-
lations that characterize the form of S-derivations, yielding the
notion of subjugation (as in § 3.1), between candidate bipositions.

■ The notion of consumption is related to rule app. Assume
t(a) = @, t |a = u v with u : (Sk )k ∈K → T and v : Sk for all
k ∈ K as in Fig. 3 so that u v can be typed with T . Each type Sk
occurs in (Sk )k ∈K → T and v : Sk . However, it is absent in the
type of u v : we say it has been consumed. Formally, we set, for all
(a, c) ∈ Bt , k ⩾ 2 s.t. t(a) = @:
• (a · 1,k · c) →a (a · k, c)

In Fig. 4, the orange and the purple occurrences of o are consumed
in the app-rule: formally, (02 · 1, 8) →02 (02 · 8, ε).

We set →= ∪{→a | a ∈ A, t(a) = @} and write ← for the
symmetric relation.

Let P be a ⌊·⌋-derivation typing a term t . If p1 →asc p2 or
p1→pi p2 or p1 → p2, then p1 ∈ bisupp(P) iff p2 ∈ bisupp(P) (by
construction of those relations).

■ Relations→t1and→t2ensure that the types are correctly defined
and are natural extensions of those of Sec 3.1:
• For all (a, c) ∈ Bt and k ∈ N, (a, c · k)→t1 (a, c).
• For all (a, c) ∈ Bt and k ⩾ 2, (a, c · k)→t2 (a, c · 1).

■ The relation below→abs ensures that, if λx .u is a typed subterm
of t , then its type T is an arrow type.
• if t |a = λx .u, then(a, ε)→abs (a, 1)

■ The “big-step” stability relation→down below roughly states that
the support of a potential derivation is a tree:
• (a′, c)→down (a, ε)
• p⊥→down (a, ε)

Note that Lemma 7 would not hold without considering→down.

■ We set→•=→ ∪ ← ∪→t1 ∪→t2 ∪→abs ∪→down. If p1→•
p2, notice that, by construction, p1 ∈ bisupp(P) implies p2 ∈
bisupp(P). We say then that p1 subjugates p2, generalizing § 3.1.

7
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3.5 Characterizing Bisupport Candidates with Threads
We prove now that the relations above are indeed enough to express
a sufficient condition of typability (Corollary 1).

As we have seen, if P is a ⌊·⌋-derivation, then bisupp(P) is closed
under→asc, asc←,→pi, pi←,→,←,→t1,→t2,→abs and→down. Of
course, p⊥, the empty biposition, cannot be in P . It turns out that it
is enough to characterize candidate bisupports (Prop. 1). Let ≡ be
the reflexive, transitive, symmetric closure of→asc∪→pi. We have:

Proposition 1. Let B ⊆ Bt . Then B is a ⌊·⌋-candidate bisupport
for a derivation typing t (i.e. there exists a ⌊·⌋-derivation s.t. B =
bisupp(P)) iff (1) B is non-empty, (2) B is closed under ≡ and→•, and
(3) B does not contain p⊥.

In other words, a set of real bipositions (i.e. excluding p⊥) is
the bisupport of an actual ⌊·⌋-derivation typing t when it is closed
under the relations ≡ and→•. If such a set exists, then t is typable.

Proof sketch. The necessity of these conditions has been discussed in
§ 3.3 and 3.4. Conversely, assume that ∅ , B ⊂ Bt \ {p⊥} is closed
under ≡ and→•. We want a derivation P s.t. bisupp(P) = B. For
that, we need to suitably decorate the p ∈ B. Mainly, a non-terminal
biposition must be labelled with→ and a terminal one with a fixed
type atom o, in order to get correct types (as in § 3.1). On can check
that P is a correct S-derivation using the definition of ≡ and→•. □

From now on, it will be better to reason modulo ≡ (it may already
be guessed that ≡ should commute with→,→t1, . . ., which is made
explicit in § 4.2) and to focus on subjugation.

Definition 1. Let t be a term and ⌊·⌋ : N∗ → N\ {0, 1} an injection,
and→asc,→pi the relations of ascendance and polar inversion in Bt

defined w.r.t. ⌊·⌋.
• An ascendant thread is an equivalence class of relation ≡asc,
the reflexive, transitive, symmetric closure of→asc.
• A thread (metavariable θ ) is an equivalence class of relation
≡ (see Fig. 4 ).
• The quotient set Bt/≡ is denoted Thr.

In Fig. 4, the red occurrences of o′ correspond to an ascendant
thread and the blue one to another. Their union constitutes a (full)
thread, that we denote θa . Likewise, the green and the orange
occurrences of o respectively correspond to the negative and the
positive part of a thread θb . The unique purple occurrence of o
corresponds to a singleton thread θc .

The notation Thr implicitly depends on t and ⌊·⌋. The thread of
(a, c) ∈ B is written thr(a, c) and we set:

θε = thr(ε, ε) θ⊥ = thr(p⊥)
“root thread” “thread of emptiness”

If thr(p) = θ , we say that θ occurs at biposition p, also written
θ : p or p : θ e.g., θa : (ε, 12) or θa : (0, 4·1).

We consider now the extension of every other relation mod-
ulo ≡. Namely, we write θ1→̃aθ2 if ∃p1, p2, θ1 = thr(p1), θ2 =
thr(p2), p1 →a p2. Thus, θ1→̃aθ2 iff θ1 : p1 →a p2 : θ2 for
some p1, p2. In that case, we say that θ1 (resp. θ2) has been left-
consumed (resp. right-consumed) at biposition p1 (resp. p2) e.g.,
in Fig. 4, θb : (02·1, 8)→̃02 (02·8, ε) : θc . We do likewise for→t1,
→t2,→abs,→down,→•, thus defining →̃t1, →̃t2, →̃abs, →̃down, →̃•,
whose reflexive transitive closure of relation →̃• is denoted →̃∗•.

Corollary 1. If θ⊥ is not in the transitive closure of {θε } by →̃•,
then t is typable in S (by means of a ⌊·⌋-derivation).

Proof. Let Bmin = {p ∈ B | θε →̃
∗
• thr(p)} i.e. Bmin is the union of

the reflexive transitive closure of θε under →̃•. If θε→• ∗θ⊥ does
not hold, then Bmin satisfies the hypotheses of Prop. 1. So there is
a derivation P s.t. bisupp(P) = Bmin and thus, t is typable. □

Analogies with first order model theory: given t ∈ Λ and ⌊·⌋
and keeping in mind the intuition of bisupport candidates, let Tt, ⌊ ·⌋
be the first order theory whose set of constants is Thr(P), that fea-
tures one unary predicate symbol inBis (standing for “is in bisup-
port”) and whose set of axioms is {inBis(θ1) ≡ inBis(θ2) | θ1,θ2 ∈
Thr(P), θ1→̃•θ1} ∪ {¬inBis(θ⊥)}. Then Corollary 1 states that
there exists a ⌊·⌋-derivation P typing t iff Tt, ⌊ ·⌋ is not contradictory:
this is a sort of completeness result. Of course, it remains to be
proved that Tt, ⌊ ·⌋ is not contradictory (given any t ). And this will
be done using a technique closely associated to the λ-calculus: a
finite reduction strategy (presented in § 5).

4 Nihilating Chains
We begin § 4 with a global description of the key steps leading to
the fulfillment of Goal 4 (every term is ⌊·⌋-typable) giving the final
result (every term is R-typable) and a presentation of the central
notion of nihilating chain.

For the purpose of proving that every term is typable, we want
to prove that, for each term t and injection ⌊·⌋ : N∗ → N \ {0, 1},
there is a ⌊·⌋-derivation typing t . According to Corollary 1, we must
show that θ⊥ is not in the reflexive transitive closure of θε by →̃•.
A proof of θε→̃∗•θ⊥ would involve a nihilating chain:

Definition 2.
• A chain is a finite sequence of the formθ0→̃•θ1→̃• . . . →̃•θm .
• When θ0 = θε , θm = θ⊥, the chain is said to be nihilating.

In order to apply Corollary 1, we must then prove that there are
no nihilating chains. In other words, this corollary implies:

Proposition 2. If the nihilating chains do not exist, then every term
is ⌊·⌋-typable, and thus, also R-typable.

We proceed ad absurdum and consider θ0→̃•θ1→̃• . . . →̃•θm
with θ0 = θε and θm = θ⊥. However, →̃• can be →̃, ←̃, →̃t1, →̃t2,
→̃abs or →̃down. The structure of the proof is the following:
• We define (Definition 3) the notion of polarity for bipositions:
a biposition is negative when it is created by an abs-rule
(modulo→asc) and positive otherwise.
• The termination of a finite collapsing strategy (Sec. 5.2) guar-
antees that positivity can be assumed to only occur at suit-
able places in the chain without loss of generality. In that
case, we say that the chain is normal (Definition 4).
• In normal chains, the different cases of subjugation interact
well (§ 4.2), so that, from any normal chain, we may build
another that begins with θε→̃•θ1. This is easily shown to be
impossible, which entails that nihilating chains do not exist
and that every term is S-typable.

4.1 Polarity and Threads
In this section, we define the key notion of syntactic polarity.

If p→asc pi (i = 1, 2) then p1 = p2 (→asc is functional) and we
write p1 = p2 = asc(p). We set, for all p ∈ B, Asc(p) = asci (p),
where i is maximal (i.e. asci (p) is defined, but not asci+1(p)). Thus,
Asc(p) is the top ascendant of p e.g., in Fig. 4, the top red (resp.
blue) occurrence of o′ is the top ascendant of the other ones (resp.
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one). A top ascendant is either located in an ax-node (e.g., the top
red ascendant in Fig. 4) or in an abs-node (e.g., the blue ones),
motivating:
Definition 3.
• Let p ∈ Bt \ {p⊥} and (a0, c0) = Asc(p). We define the po-
larity of p as follows: if t(a0) = x for some x ∈ V , then we
set Pol(p) = ⊕ and if t(a0) = λx , then we set Pol(p) = ⊖. We
also set Pol(p⊥) = ⊖.
• If thr(p) = θ and Pol(p) = ⊕/⊖, we say that θ occurs posi-
tively/negatively at biposition p.
• If θ is left/right-consumed at p and Pol(p) = ⊕ (resp. Pol(p) =
⊖), we say that θ is left/right-consumed positively (resp. nega-
tively) at biposition p.

Then, we write for instance θ1⊕→̃a
⊖ θ2 to mean that θ1 is left-

consumed positively and θ2 is right-consumed negatively in the
app-rule at position a. In Fig. 4, the blue occurrences of o′ are
negative, the red ones are positive and θb ⊕→̃12

⊕θc .

4.2 Interactions in Normal Chains
In § 4.2, we present the notion of normal chain and explicit some
interaction properties that allow us to simplify/rewrite them.

As it has been discussed in § 1.5 and 2.1, the possibility for
a variable x (of a redex or of a redex to be created later) to be
substituted in a reduction sequence is problematic. Intuitively, a
biposition is negative when it was “created" in an abstraction λx and
that left-consumption is associated to left-hand sides of application.
Thus, a negative left-consumption hints at the presence of redex
(this intuition will be made more explicit in Sec. 5.2). More precisely,
it indicates the presence of what we will call a redex tower. This
suggests the following notion:
Definition 4. A chain is normal if no thread is left-consumed neg-
atively in it (there is no link of the form θi

⊖→̃θi+1 or θi←̃⊖ θi+1).

Normal chains can be handled! The interaction lemmas below
describe some commutations between stability relations.
Lemma2. Ifθ1→̃t1θ2 andθ2→̃θ4, then,∃θ3, θ1 → θ3 andθ3→̃t1θ4.

Lemma 3. If θ ⊕→̃θ ′, there is no θ0 s.t. θ0→̃absθ or θ0→̃downθ .

Lemma4. Ifθ1→̃t2θ2 andθ2⊕→̃θ4, then,∃θ3, θ1⊕→̃θ3 andθ3→̃t2θ4.

Lemma 5.
• If thr(p) = θ⊥, then Pol(p) = ⊖.
• If θ→̃t1θ⊥ or θ→t2 θ⊥, then θ = θ⊥.
• We cannot have θ→̃absθ⊥ or θ→̃downθ⊥.

Goal 4 (almost) at Hand Using Lemmas 2, 3, 4, 5, it is not diffi-
cult to define an algorithm taking a normal nihilating chain as
input (if one exists) and outputting a chain of the form θε =
θ0⊕→̃θ1⊕→̃...⊕→̃θℓ = θ⊥. See § 12.3.3 in [18] for details.
Then, one proves that there is no θ such that θε ⊕→̃θ . This implies
that there is no chain of the form θε = θ0⊕→̃θ1⊕→̃...⊕→̃θℓ = θ⊥,
and then, that there is no normal nihilating chain:
Proposition 3. There is no normal nihilating chain.

Proposition 3 almost proves that every term is ⌊·⌋-typable (by
Proposition 2). Almost, because only the non-existence of normal
nihilating chains is ensured for now (and not that of nihilating
chains in general). The only point that will remain to be verified
is that normal nihilating chains can be considered without loss of
generality (which is the object of § 5).

u
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Figure 5. Collapsing a Redex Tower

5 Normalizing Nihilating Chains
5.1 Residuation and Subjugation
In this section, we explain why negative left-consumption in a
nihilating chain can be avoided (without loss of generality). By
Prop. 2 and 3, this will allow us to prove that every term is typable.
The fact that system S is relevant, non-idempotent, rigid and syntax-
directed entails that if P � C ⊢ t : T and t

b
→β t ′, then, there is

a unique derivation P ′ � C ⊢ t ′ : T obtained from P by subject
reduction (thus, subject reduction is deterministic in system S).
Moreover, intuitively, every part of P ′ comes from a part of P and
so, every position and right biposition of P ′ can be thought as
the (quasi-)residual of position or (right) biposition of P ′. We
do not give details (that can be found in § IV and Fig. 1 in [17]),
but this induces a function QResb from the right bisupport of P
to that of P ′. The function QResb turns out to be compatible with
thread-membership:

Lemma 6. If p1 ≡ p2 in P , then QResb (p1) ≡ QResb (p2) in P ′.

This Lemma allows us to define (quasi-)residuals for threads. We
set Resb (θ ) = thr′(QResb (p)) for any p : θ (where thr′(·) denotes
threads in Bt ′ ). By case analysis, we have:

Lemma 7. Let θ1,θ2 ∈ Thr. We set θ ′i = Resb (θi ) (i = 1, 2).
• If θ1→̃θ2, then θ ′1→̃θ2 or θ ′1 = θ

′
2.

• If θ1→̃t1θ2, then θ ′1→̃t1θ
′
2 or θ

′
1 = θ

′
2.

• If θ1→̃t2θ2, then θ ′1→̃t2θ
′
2, θ
′
1→̃downθ

′
2 or θ

′
1 = θ

′
2.

• If θ1→̃absθ2, then θ ′1→̃absθ
′
2 or θ

′
1 = θ

′
2.

• If θ1→̃downθ2, then θ ′1→̃downθ
′
2 or θ

′
1 = θ

′
2.

See § 12.4.1 in [18] for the proofs of Lemmas 6 and 7.
Finally, Resb (θε ) = θε and Resb (θ⊥) = θ⊥ as expected, so

Lemma 7 implies that, if there is a nihilating chain for t of length
m, then there is one for t ′ of length ⩽m (whenever t →∗ t ′).

5.2 The Collapsing Strategy
We explain now how to normalize a chain i.e. discard negative
left-consumption. This will allow us to use Proposition 3 to finally
conclude that nihilating chains do not exist.

9
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The idea is that if θL⊖→̃aθR, then either t |a is a redex and we
have Resb (θL) = Resb (θR) (i.e. θ1 and θ2 are collapsed by the re-
duction step) or θL passes through a redex. When we reduce this
redex, the “height” of θL will decrease. More precisely, the 2nd
case is associated with the notion of redex tower, which is more
or less a finite nesting of redexes, that can – more importantly –
be collapsed in a finite number of steps. A case of negative left-
consumption of a sequence type (Sk )k ∈K (which is the domain of
the abstraction λx .u), coming along with a redex tower, is repre-
sented in Fig. 5 (we write λi instead of λxi and (∗) for matterless
sequence types). The sequence type (Sk )k ∈K of negative polarity
is “called” by the node λx at the top of the figure and consumed at
the bottom app-rule. The initial redex tower is reduced in 4 steps,
so that its height decreases and finally, the types Sk , that were
left-consumed negatively, are destroyed in the final term u3[v/x]. .

Lemma 8. If θ1⊖→̃θ2, then there is a reduction path rs such that
Resrs(θ1) = Resrs(θ2) (residuation naturally extends along with rs).

This Lemma, along with the conclusion of § 5.1, yields:

Proposition 4. There is a reduction strategy (the “collapsing strat-
egy”) producing a normal nihilating chain from any nihilating chain.

6 Applications
We can now prove that every term is ⌊·⌋-typable (and thus, also R-
typable, by Goal 4), using Prop. 2, the residuation of threads (S 5.1),
the collapsing strategy (Prop. 4) and the non-existence of normal
threads (Prop. 3), which is ensured by the Interaction Lemmas.

Theorem1. Every λ-term is typable in the relevant and non-idempotent
intersection type system R.

By the same techniques (the complete proofs are in § 12.4.5 of [18]),
system R discriminates terms w.r.t. their arities, as claimed:

Lemma 9. Let t be a zero term and o a type atom, then there is
context C such that C ⊢ t : o is S-derivable.

Proof sketch. Let t be a term s.t. θε→̃∗•thr(ε, 1) i.e. s.t. (ε, 1) ∈ Bmin
(see Corollary 1), which implies that the type of t cannot be a type
atom by the proof of this same corollary. We prove that t is of arity
⩾ 1, which is enough to conclude.

For that, we consider a λ-chain i.e. a chain of the form θε =
θ0→̃• . . . →̃•θm = thr(ε, 1), of minimal length. The notion of nor-
mal chains extends to λ-chains and by the collapsing strategy, we
can replace t by a reduct t ′ s.t. the considered chain is normal.

Using ad hoc interaction lemmas, we prove that the normality
of the chain entails θε→̃absthr(ε, ε). Collapsing then redex towers,
we may reduce t ′ to an abstraction λx .t ′′. Q.E.D. □

Theorem 2. Let t be a term of arity n. Then there is a context Γ and
a type τ of arity n (see Sec. 2.4) such that Γ ⊢ t : τ is R-derivable.

Proof sketch. When n = ∞, this comes from Theorem 1, subject
reduction and the abs-rule. When n ∈ N, we use Lemma 9 and
(finite) subject expansion (Proposition 1). □

Conclusion:We proved that every term is typable in a reasonable
relevant intersection type system (Theorem 1). If we take the typing
rules of S coinductively (and not only the type grammar), we can
also type every infinitary λ-term [15].

The techniques that we have developed here build, to the best of
our knowledge, the first bridge between first-order model theory

and the study of models of the pure λ-calculus. They are actu-
ally modular: we also use them, in a companion paper, to prove
that every multiset-based derivation is the collapse of a sequential
derivation [19]. This suggests that these techniques could be used
to study the coinductive version of finitary models of the λ-calculus
and extend some of their semantical properties to all λ-terms.

By setting, for each term t , [[t]]rel∞ = {�RΓ ⊢ t : τ | Γ,τ } (cf.
§ 1.3), one defines the infinitary version of the relation model,
in which, by Theorem 1, no term has a trivial denotation, including
the mute terms. This model is thus non-sensible [2] since it does
not equate all the non-head normalizing terms (e.g., Ω and λx .Ω of
respective arities 0 and 1) by Theorem 2.

We presented a first semantical result about this model (Theo-
rem 2), but its equational theory has yet to be studied. According
to the same theorem, this model equates all the closed zero terms.
It then differs both from the non-sensible model of Berarducci trees
and that of Lévy-Longo trees, respectively related to Λ111 and Λ001

in [15]. This work may suggest a new notion of tree, that could
shed some light on Open Problem # 18 of TLCA (the problem of
finding trees related to various contextual equivalences).

The study of infinitary models (beyond infinite tree models) is
at its early stages, but it already provides descriptions of the infini-
tary behaviors of λ-terms (cf. Grellois-Melliès’ infinitary model of
Linear Logic in [12, 13]). The semantical implications of the main
theorem (every term is R-typable) remain to be understood and
the proof techniques presented here can certainly be used to study
infinitary models or coinductive/recursive type systems before they
are endowed with some validity or guard condition, or maybe to
build other models of pure λ-calculus, for instance, to get some
semantical proof of the easiness [14] of sets of mute terms, as in [4].
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