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We present a full formalization in Martin-Löf’s Constructive Type Theory of the Standardization
Theorem for the Lambda Calculus using first-order syntax with one sort of names for both free and
bound variables and Stoughton’s multiple substitution. Our formalization is based on a proof by Ryo
Kashima, in which a notion of β -reducibility with a standard sequence is captured by an inductive
relation. The proof uses only structural induction over the syntax and the relations defined, which is
possible due to the specific formulation of substitution that we employ. The whole development has
been machine-checked using the system Agda.

1 Introduction

In [3] a formalization of the Lambda Calculus in Martin-Löf’s Constructive Type Theory is presented,
which uses first-order syntax with one sort of names for both free and bound variables that does not
identify α-convertible terms, and a multiple substitution operation introduced by Stoughton in [11]. The
approach enables the authors to prove in a completely formal and quite elegant way significant results
about the metatheory of the Lambda Calculus, namely the Church-Rosser Theorem and Subject Reduction
for the simply typed Lambda Calculus à la Curry. The authors developed a library [2] with definitions
and lemmas for implementing and manipulating substitutions that was key for achieving the mentioned
results, in particular by using only simple standard methods of structural induction on terms and reduction
relations.

In the present work we extend the above mentioned metatheoretical study by proving the Standard-
ization Theorem for β -reduction, which we further use to prove that the leftmost-outermost reduction
strategy always finds the normal form of a term provided that it exists. The Standardization Theorem is a
well-known result in the Lambda Calculus that was first proved by Curry and Feys in [5]. It states that
if a term M β -reduces to a term N, then there exists a standard β -reduction sequence from M to N. A
reduction sequence is considered standard if successive redexes are contracted from left to right (regarding
the linear syntax) possibly with some jumps.

The proof hereby formalized is the one given by Ryo Kashima in [8] where the notion of β -reducibility
with a standard sequence is captured by an inductive relation in very much the same way as minimal
complete developments are captured by the so-called parallel reduction relation in e.g. Tait and Martin-
Löf’s method for proving the Church-Rosser theorem. This allows for an elegant inductive development
as opposed to basing the proofs on notions like residuals and finite developments as in the classical proofs
by Curry-Feys and Barendregt [5, 1].

All the definitions and proofs that appear in this article have been machine-checked with the system
Agda [10]. In the subsequent text we will mix Agda code and (informal) proofs in English with a
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2 Formalization in Constructive Type Theory of the Standardization Theorem

considerable level of detail so that they serve for clarifying their formalization. The complete code is
available at https://github.com/mcopes73/standardization-agda.

In section 2 we present the basic concepts of the Lambda Calculus, together with some definitions
and results from the library produced in [3] on which our work is based, as well as extensions thereof.
In section 3 we present the proof of the Standardization Theorem. In section 4 we present the proof of
the Leftmost Reduction Theorem for β -reduction. In section 5 we compare our development with other
similar efforts in the literature, and present our overall conclusions.

2 Preliminaries

In what follows we will introduce the main definitions and results in [3, 2] that are previous to this work
and are used in our formalization. We present the definitions directly using Agda code along with informal
explanations, while the proofs are written in English to ease their reading. A certain degree of familiarity
with the Agda syntax or at least with that of functional languages like Haskell is assumed.

We shall start by defining λ -terms using the same set of names for both bound and free variables. We
use natural numbers to name variables for sake of concreteness.

V = N
data Λ : Set where

v : V → Λ

_·_ : Λ → Λ → Λ

ň : V → Λ → Λ

Agda is pretty liberal with regard to the naming of functions and the positions of their arguments.
Notice the notation for declaring the infix application constructor, i.e. _·_. This underscore notation is
extended to mixfix operators.

The classical notions of free and fresh (not free) variable in a term, which are denoted by ∗ and #
respectively, are defined as binary relations between variables and terms in the usual way (we omit the
definitions for reasons of space):

data _*_ : V → Λ → Set

data _#_ : V → Λ → Set

Substitutions are identity-almost-everywhere functions associating a term to every variable. We can
generate every concrete substitution by starting up from the empty substitution ι that maps each variable
to itself as a term, and employing the update operation≺+, such that if σ is a substitution, then σ ≺+(x,M)
is the substitution equal to σ everywhere except at x, where it yields M:

Σ = V → Λ

Ì : Σ

Ì = id ◦ v

_≺+_ : Σ → V × Λ → Σ

(σ ≺+ (x , M)) y with x
?
= y

... | yes _ = M

... | no _ = σ y

Notice that in the definition of ≺+ we use the with construct, which allows us to perform pattern
matching on the result of evaluating the expression x

?
= y. This expression decides the equality between
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the variables x and y and has type Dec ≡, whose constructors are yes and no applied to the corresponding
proof objects.

In general, we shall consider properties concerning the substitutions for the free variables of a term M,
i.e. their restrictions to such variables. The type of restrictions R is defined as: R = Σ × Λ, and we note
in the informal language such a restriction as σ �M. This means that we are restricting the substitution σ

to the free variables of M only. We will also use the following notion: x # (σ �M), which stands for x
fresh in the σ -value of every free variable of M:

_#�_ : V → R → Set

x #� (σ , M) = (y : V) → y * M → x # (σ y)

The application of substitution σ to the term M is noted M • σ , and it is defined by structural recursion
on M. The fact that structural recursion is sufficient for stating this very concrete definition is a (very
welcome) non-trivial consequence of the employment of multiple substitutions.

_•_ : Λ → Σ → Λ

(v x) • σ = σ x

(M · N) • σ = (M • σ) · (N • σ)
(ň x M) • σ = ň y (M • (σ ≺+ (x , v y)))

where y = X (σ , ň x M)

Notice the last line of the definition: when performing a substitution over an abstraction, the bound
variable x is always replaced with a new one. This new variable y is obtained by means of a choice
function χ , such that χ(σ ,M) # (σ �M). In this way, y does not capture any of the names introduced
into its scope by effect of the substitution1. When reasoning with substitutions, this uniform renaming
of bound variables allows us to avoid case analyses; it also has other nice consequences, to be noticed
shortly. For the sake of readability, we define the single substitution of a term N for a variable x in M with
the traditional notation M[x := N].
_[_:=_] : Λ -> V -> Λ -> Λ

M [ x := N ] = M • (Ì ≺+ (x , N))

Alpha-conversion (∼α ) is defined as the following inductive binary relation on terms:

data _∼α_ : Λ → Λ → Set where

∼v : {x : V} → (v x) ∼α (v x)

∼· : {M M’ N N’ : Λ} → M ∼α M’ → N ∼α N’ → M · N ∼α M’ · N’
∼ň : {M M’ : Λ}{x x’ y : V} → y # ň x M → y # ň x’ M’

→ M [x := v y] ∼α M’ [x’ := v y]

→ ň x M ∼α ň x’ M’

Arguments to a function declared between braces { } are optional and in subsequent applications of the
function in question they are inferred by the type-checker. The first two constructors above implement
the classical rules for variables and application. The last constructor states that two abstractions are
α-convertible if and only if their bodies are α-convertible after replacing the bound variables with a
common fresh name. From this definition it follows that ∼α is an equivalence relation, as shown in [3].
As it is the case in [11], α-equivalent terms become identical when submitted to the same substitution.
This is due to the fact that abstractions are uniformly renamed, and that the new name chosen by the χ

function is determined only by the restriction of the substitution to the free variables of the terms, which is
the same one if the terms are α-equivalent. This is proven in [3], and we just mention the corresponding
lemma here:

1In fact, χ is implemented by just finding the first variable not free in the given restriction.
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lemmaM∼M’→Mσ≡M’σ : {M M’ : Λ}{σ : Σ} → M ∼α M’ → M • σ ≡ M’ • σ

From now on we present definitions and results not included in the library [2].
Firstly, we have proven that this definition of alpha equivalence is decidable:

_∼α?_ : ∀ A B -> Dec (A ∼α B)

Given a binary relation , we define its α-reflexive-transitive closure as follows:

data α-star ( : Rel) : Rel where

refl : ∀{M} → α-star  M M

α-step : ∀{M N N’} → α-star  M N’ → N’ ∼α N → α-star  M N

append : ∀ {M N K} → α-star  M K →  K N → α-star  M N

where Rel is the type of binary relations over terms.
This is the kind of closure that will be applied to our one-step reduction relations. It represents sequences
of steps allowing α conversions, which have to be made explicit because we are dealing with concrete
terms, i.e. terms not identified under α conversion. In informal notation we shall write the α-reflexive-
transitive closure of a relation with the classical two-headed arrow. From the definition given we can
easily prove that, for any relation , M N implies M � N, and that � is transitive. The first proof
is straightforward using the constructors append and refl. Transitivity is proven by induction on the
definition of α-star. Therefore we have, in Agda:

α-star-singl : ∀{ M N} ->  M N -> α-star  M N

α-star-trans : ∀{ M N K} -> α-star  M K -> α-star  K N -> α-star  M N

Following Kashima [8], we define β -contraction taking into account the position where the contracted
redex appears in the term relative to the other redexes. We start by defining two auxiliary functions: isAbs
is a predicate that decides whether a term is an abstraction and countRedexes a function that counts the
number of β -redexes in a term.

data isAbs : Λ -> Set where

abs : forall {x M} -> isAbs (ň x M)

We need to prove that isAbs is decidable before being able to define countRedexes, since the
number of redexes for an application depends on whether the left term is an abstraction. The proof is
straightforward:

isAbs? : (M : Λ) -> Dec (isAbs M)

Using this property we can define countRedexes as follows:

countRedexes : Λ -> N
countRedexes (v _) = 0

countRedexes (M · N) with isAbs? M

... | yes _ = suc (countRedexes M + countRedexes N)

... | no _ = countRedexes M + countRedexes N

countRedexes (ň _ M) = countRedexes M

Considering the linear syntax of terms, redexes will be numbered in a left-to-right fashion, starting
from zero. We shall start by defining the contraction of the n-th redex as a relation between terms
depending on the natural number n.
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data _B_@_ : Λ -> Λ -> N -> Set where

outer-redex : ∀ {x A B} -> ((ň x A) · B) B (A [ x := B ]) @ 0

appNoAbsL : ∀ {n A B C} -> A B B @ n -> ¬ isAbs A -> (A · C) B (B · C) @ n

appAbsL : ∀ {n A B C} -> A B B @ n -> isAbs A -> (A · C) B (B · C) @ (suc n)

appNoAbsR : ∀ {n A B C} -> A B B @ n -> ¬ isAbs C

-> (C · A) B (C · B) @ (n + countRedexes C)

appAbsR : ∀ {n A B C} -> A B B @ n -> isAbs C

-> (C · A) B (C · B) @ (suc (n + countRedexes C))

abs : ∀ {n x A B} -> A B B @ n -> (ň x A) B (ň x B) @ n

The outer-redex constructor allows the contraction of the outermost redex, numbered as the one at
position zero. The next four constructors are used to perform contractions inside applications. In order to
determine the number of the redex contracted we need to identify whether the left hand side term of the
application is an abstraction or not (which is necessary to know whether we are stepping over a redex to
reduce an inner one). Finally, the abs constructor allows contractions inside an abstraction.

One-step β -reduction (−→β ) from M to N can now be defined as the existence of a natural number n
such that N can be obtained by contracting the n-th redex from M. We use Agda’s dependent ordered pair
constructor Σ to express existential quantification.

_−→B_ : Λ -> Λ -> Set

M −→B N = Σ N (\n -> M B N @ n)

It is easily proven by structural induction that this definition is equivalent to the compatible (with the
syntactic constructors) closure of ordinary β -contraction.

One interesting result that will be useful in our development is the following α-β compatibility
property:

M

N M′

N′

β ∼α

β∼α

which we state in Agda as the following lemma:

lem-Bα : ∀{M N M’} -> M −→B N -> M ∼α M’-> Σ Λ (ń N’ -> (M’ −→B N’) ∧ (N’ ∼α N))

We finally introduce β -reduction�β as the α-reflexive-transitive closure of the contraction −→β :

_→→B_ : Λ -> Λ -> Set

_→→B_ = α-star (_−→B_)

3 The Standardization Theorem

In the present section we show the formalization of the Standardization Theorem in Constructive Type
Theory that follows the proof given by Kashima in [8]. For the sake of clarity, some lemmas are presented
in a different order than the one proposed by Kashima. Nonetheless, the formalized results and definitions
are the same unless otherwise stated.
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3.1 Standard Reduction Sequences

A reduction sequence is a sequence of terms M0,M1, ...,Mn such that Mi+1 is obtained from Mi by the
contraction of some redex, i.e., (∀ i ∈ 0...n−1) Mi −→β Mi+1. We call a reduction sequence standard if
and only if subsequent steps are non decreasing in the number of the redex contracted. Kashima defines a
standard beta reduction sequence as: If M0

n1−→β M1
n2−→β ...

nk−→β Mk then n1 ≤ n2 ≤ ...≤ nk, where
M n−→β N is the β -contraction of the n-th redex in M, which we note M β N @n in our development.

We implement this notion in Agda by defining a relation indexed on a natural number that keeps track
of the lower bound allowed for the next redex to be contracted.

data seqB-st (M : Λ) : (N : Λ) -> N -> Set where

nil : seqB-st M M 0

α-step : ∀ {n K N} -> seqB-st M K n -> K ∼α N -> seqB-st M N n

B-step : ∀ {K n n0 N} -> seqB-st M K n -> K B N @ n0 -> n0 ≥ n -> seqB-st M N n0

The relation is reflexive and allows for α-steps, which do not appear explicitly in Kashima’s definition
because the latter relies on the (informal) syntactic identification of α convertible terms. The “three dots”
of Kashimas’s sequence M0,M1, ...,Mk are implemented as follows: we can append a term to the reduction
sequence provided that it can be obtained by the contraction of a redex at a position greater than or equal
to the current lower bound. Using this relation the Standardization Theorem can be precisely stated as the
existence of a standard sequence between two terms among which there is a β -reduction:

standardization : ∀{M N} -> M →→B N -> Σ N (ń n -> seqB-st M N n)

3.2 Two Useful Reduction Relations

The next step is to capture the existence of a standard sequence as an inductively defined reduction relation
between terms. To this end, Kashima introduces two auxiliary one-step reduction relations:
−→l stands for leftmost reduction and corresponds to the contraction of the leftmost redex, i.e. the

one at position zero:

data _−→l_ : Λ -> Λ -> Set

M −→l N = M B N @ 0

−→hap stands for head contraction in application and represents the contraction of the redex in the
head position of a chain of applications, i.e.: (λxM0)M1M2...Mn −→hap M0[x := M1] M2...Mn. We define
this relation in Agda as follows:

data _−→hap_ : Λ -> Λ -> Set where

hap-head : ∀{x A B} -> (ň x A) · B −→hap (A [ x := B ])

hap-chain : ∀{C A B} -> A −→hap B -> (A · C) −→hap (B · C)

Now�l and�hap are defined as the α-reflexive-transitive closures of −→l and −→hap respectively.

_→→hap_ : Λ -> Λ -> Set

_→→hap_ = α-star (_−→hap_)

_→→l_ : Λ -> Λ -> Set

_→→l_ = α-star (_−→l_)

The first two lemmas state that head reduction in application�hap is compatible with application
and substitution respectively.

hap-app-r : ∀{M N P} -> M →→hap N -> M · P →→hap N · P
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Proof. By induction on the definition of M�hap N.

• Case refl: We have to prove (M P)�hap (M P), which follows by refl.

• Case α-step: Assume that M�hap N follows from M�hap N′ and N′ ∼α N. Then, we obtain
M P�hap N′ P from the induction hypothesis, and since N′ P∼α N P, we construct our goal using
st-alpha.

• Case append: Assume M�hap N follows from M�hap K and K −→hap N. Then we can obtain
M P�hap K P from the induction hypothesis and K P−→hap N P from rule hap-chain applied
to K −→hap N. From these, we construct our goal using append.

In order to prove that substitution preserves the head reduction relation, we need two lemmas from
the substitution library [2]. The first one states that substituting y for x and then N for y yields a result α-
equivalent to substituting N for x, provided y is fresh enough. The second one is a form of the substitution
composition lemma:
corollary1SubstLemma : {x y : V} {σ : Σ}{M N : Λ} → y #� (σ , ň x M)

→ ((M • (σ ≺+ (x , v y))) [y := N]) ∼α (M • (σ ≺+ (x , N)))

corollary1Prop7 : {M N : Λ}{σ : Σ}{x : V}

→ M • (σ ≺+ (x , N • σ)) ≡ (M [x := N]) • σ

Now we prove that substitution preserves −→hap up to ∼α :
lem-hap-subst : ∀{σ M N} -> M −→hap N

-> Σ Λ (ń N’ -> ((M • σ) −→hap N’) ∧ (N’ ∼α (N • σ)))

Proof. By induction on the definition of M −→hap N

• Case hap-head: We want to prove that ((ňx A) B) • σ −→hap N ∧ N ∼α (A[x := B]) • σ , for
some term N. Starting from the left hand side:
((ňx A) B) • σ

≡ (Def. • )
(ňy A • (σ ≺+(x,y))) (B • σ) where y = χ(σ , ňx A)
−→hap (hap-head)
(A • (σ ≺+(x,y))) [y := B • σ ]
∼α (corollary1substLemma, y # (σ , ňx A))
A • (σ ≺+(x, B • σ))
≡ (corollary1Prop7)
(A [x := B]) • σ

• Case hap-chain: We need to prove that there exists a term K such that (M P) • σ −→hap
K ∧ K ∼α (N P) • σ , assuming M • σ −→hap N • σ . This follows directly from rule hap-chain
applied to M • σ −→hap N • σ and the definition of • .

Kashima originally formulates the previous result just for single substitutions, i.e., of the form [x := P].
Our result using multiple substitutions will allow us to rely only on structural induction in our proofs, as
we shall see later. We can easily extend the previous result to�hap:
hap-subst : ∀{M N σ} -> M →→hap N -> (M • σ) →→hap (N • σ)

Proof. By induction on M�hap N:

• Case refl: Direct using refl.
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• Case α-step: Assume M �hap N′ and N′ ∼α N. Then, we obtain M • σ �hap N′ • σ from
the induction hypothesis, and by lemmaM∼M’→Mσ≡M’σ mentioned in Section 2, we have that
N′ • σ ≡ N • σ , so we construct our goal using the α-step rule, since ∼α is reflexive.

• Case append: Assume M�hap N follows from M�hap K and K −→hap N.
Then we can obtain M • σ �hap K • σ from the induction hypothesis and (∃N′)(K • σ −→hap
N′ ∧ N′∼α N • σ) from the previous lemma (lem-hap-subst) applied to K −→hap N. From this,
using α-star-single we construct K • σ �hap N′ and since N′ ∼α N we obtain K • σ �hap N
from rule α-step. Finally, we prove our goal from the transitivity of�hap.

Finally, notice that head reduction in application implies leftmost reduction:

lem-hap→l : ∀ {M N} -> M −→hap N -> M −→l N

And therefore the same inclusion holds for their α-reflexive-transitive closures:

hap→l : ∀{M N} -> M →→hap N -> M →→l N

3.3 Standard Reduction

Using�hap, Kashima characterizes the existence of a standard sequence as a further reduction relation
�st , which stands for standard reduction, as follows:

data _→→st_ (L : Λ) : Λ -> Set where

st-var : ∀{x} -> L →→hap (v x) -> L →→st (v x)

st-app : ∀{A B C D} -> L →→hap (A · B) -> A →→st C -> B →→st D -> L →→st (C · D)
st-abs : ∀{x A B} -> L →→hap (ň x A) -> A →→st B -> L →→st (ň x B)

st-alpha : ∀{A’ A} -> L →→st A’ -> A’ ∼α A -> L →→st A

The intention behind this relation is to characterize standard reduction sequences inductively. This
definition allows us to perform as many�hap steps as we want. After that, if we reach a variable, then
we are done since we cannot do any more reductions (st-var). If the term is an application A B, then
we can continue performing standard reductions on A and then on B (st-app). Finally, if the term
is an abstraction, we can continue performing standard reductions inside the body of the abstraction
(st-abs). Note that we are not forced to reduce all of the redexes that we encounter; given a redex, we
can still apply st-app while skipping the head reduction. The last constructor (st-alpha) allows us to
perform α-conversion. The preceding explanation may have shown that standard reductions correspond to
standard sequences of reductions, i.e. that the former relation is included in the latter one. This is enough
for proving the standardization theorem, as will be shown in the next subsection. We have further proven
that actually the characterization of standard reduction sequences by the relation of standard reduction is
complete, i.e. that the converse inclusion aldo holds.

The notion of standard reduction can be extended to substitutions. We say that substitution σ

standard-reduces to σ ′ (σ →st σ ′) if and only if for all variables x, σ x�st σ ′ x.

_→st_ : Σ → Σ → Set

σ →st σ’ = (x : V) → σ x →→st σ’ x

Reflexivity of�st is proven by a direct induction on M : Λ.

st-refl : ∀{M} -> M →→st M

Appending head reductions in applications at the beginning of a standard reduction results in a standard
reduction.



M. Copes, N. Szasz and A. Tasistro 9

hap-st→st : ∀{L M N} -> L →→hap M -> M →→st N -> L →→st N

Proof. By induction on the definition of M�st N.

• Case st-var: We know that M �hap x. From this, L�hap M and the transitivity of �hap we
conclude that L�hap x, and then L�st x follows from st-var.

• For the st-app case, assume M�hap A B, A�st C and B�st D. From L�hap M and M�hap A B
we conclude that L�hap A B by transitivity of�hap. Finally, from this plus A�st C and B�st D,
we conclude that L�st C D using st-app.

• For the st-abs case, we assume M�hap ňx A and A�st B. Similarly to the preceding case, we
conclude that L�hap ňx A from L�hap M, M�hap ňx A and the transitivity of�hap. From this
and A�st B, we conclude L�st ňx B using st-abs.

• For the st-alpha case, we assume M�st A′ and A′ ∼α A. We use constructor st-alpha applied
to the induction hypothesis L�st A′ and A′ ∼α A′ to complete our goal.

We can now use the preceding lemma to prove that substitution is preserved by the�st relation. This
lemma is key to the proof and was originally stated by Kashima for single substitutions as: M�st N
and P�st Q =⇒ M[z := P]�st N[z := Q]. By taking the substitution to be an arbitrary (multiple) σ

instead of the particular case where we replace just one variable z, we obtain a definition of substitution
by structural recursion, and hence we can prove this result using just structural induction (see [3] for a
detailed explanation). The substitution lemma is then stated as follows:

st-substσ∼=σ’ : ∀{M N σ σ’} -> M →→st N -> σ →st σ’ -> M • σ →→st N • σ’

Proof. By induction on the definition of M�st N

• Case st-var: We have to prove M • σ �st x • σ ′ under the hypotheses M�hap x and σ →st σ ′.
From hap-subst applied to M�hap x we know that M • σ �hap x • σ and from the definition
of σ →st σ ′ we get that x • σ �st x • σ ′. Therefore, from M • σ �hap x • σ �st x • σ ′ we
conclude that M • σ �st x • σ ′ using hap-st→st.

• Case st-app: Assume M�hap A B, σ →st σ ′, A • σ �st C • σ ′ and B • σ �st D • σ ′. We
have to prove M • σ �st (C D) • σ ′. Now:
M�hap A B
=⇒ (hap-subst)
M • σ �hap (A B) • σ

≡ (Def. • )
M • σ �hap (A • σ) (B • σ)
=⇒ (st-app and hypothesis)
M • σ �st (C • σ ′) (D • σ ′)
≡ (Def. • )
M • σ �st (C D) • σ ′.

• Case st-abs: Assume M�hap ňx A, A�st B and σ →st σ ′. We prove M • σ �st (ňx B) • σ ′:
M�hap ňx A
=⇒ (hap-subst)
M • σ �hap (ňx A) • σ

≡ (Def • )
M • σ �hap ňyA (A • σ ≺+(x, yA)) where yA = χ(σ , ňx A) (1).
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Let z = χ(ι � ((ňx A) • σ) ((ňx B) • σ ′)). Due to the definition of the choice function χ , z is
fresh in every term and substitution involved. We can now prove that:
ňyA (A • σ ≺+(x, yA)) ∼α ňz (A • σ ≺+(x, z))
=⇒ (hap-α and (1))
M • σ �hap ňz (A • σ ≺+(x, z)) (2).
Note that by using multiple substitutions, our induction hypothesis is strong enough to allow us
to use it with any pair of substitutions σ ,σ ′ as long as σ →st σ ′. Therefore, we can extract the
following induction hypothesis from A�st B:
A • σ ≺+(x, z)�st B • σ ′ ≺+(x, z) (3).
We can prove that σ ≺+(x, z)→st σ ′ ≺+(x, z) because the �st relation is reflexive (lemma
st-refl), so replacing x for z in both substitutions will preserve the→st relation. So, from (2), (3)
and constructor st-abs we obtain that M • σ �st ňz (B • σ ′ ≺+(x, z)) and we obtain our thesis
using st-alpha, since ňz (B • σ ′ ≺+(x, z)) ∼α (ňx B) • σ ′, .

• Case st-alpha: We assume that M�st N′ and N′∼α N and want to prove that M • σ�st N • σ ′.
From the induction hypothesis we get that M • σ �st N′ • σ ′. In addition, we know that
N′ • σ ′ ∼α N • σ ′, since they are equal (lemmaM∼M’→Mσ≡M’σ) and ∼α is reflexive. From
these we obtain our goal using the st-alpha rule.

The following lemma states that if there is a standard reduction to a term that is a redex (λx.M) N, then
it is possible to construct a standard reduction to the contractum M[x := N], somehow “inserting” the
contraction in a right place:
st-abs-subst : ∀ {L M N x} -> L →→st (ň x M) · N -> L →→st (M [ x := N ])

Proof. From L�st (ňx M) N and the definition of�st we know that L�hap P N′ for some P and N′

such that P�st (ňx M) and N′�st N. In addition, from P�st (ňx M) we know that P�hap (ňx M′) for
some M′ such that M′�st M. Then,
P�hap (ňx M′)
=⇒ (hap-app-r)
P N′�hap (ňx M′) N′ (1).
On the other hand,
(ňx M′) N′

�hap (α-star-singl applied to constructor hap-head)
M′ [x := N′]
�st (st-substσ∼=σ’ with M′�st M and N′�st N)
M [x := N] (2).
From L�hap P N′, (1), (2) and the transitivity of �hap we get that L�hap M′ [x := N′], and since
M′ [x := N′]�st M [x := N] we conclude that L�st M [x := N] using lemma hap-st→st.

Using this result, we can now prove that any β -contraction can be also inserted into a standard reduction:
st-B→st : ∀{L M N} -> L →→st M -> M −→B N -> L →→st N

Proof. By induction on M −→β N.

• The case outer-redex follows directly from the previous lemma st-abs-subst.

• All the application cases are solved by simply using st-app applied to the induction hypotheses.
For example, if M −→β N was constructed using the rule appAbsL then we know that M = A C,
N =B C and (A C)β (B C)@(suc n), with Aβ B@n for some n. Since M is an application, L�st M
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must have been constructed using either the st-app constructor or the st-alpha constructor. We
will deal with all the st-alpha cases uniformly at the end, so let us focus on the st-app case for
now. We know that L�hap A′ C′, A′�st A and C′�st C. We want to prove that L�st B C. From
A′�st A and A −→β B we get that A′�st B by the induction hypothesis. Finally, we prove this
case using the st-app rule applied to L�hap A′ C′, A′�st B and C′�st C. The proofs for the
other three application cases follow the same structure.

• The abs case also follows a similar pattern. We know that λxA −→β λxB where A −→β B.
Therefore, considering that L �st λxA was constructed using the st-abs rule, we have that
L�hap λxA′ and A′�st A for some A′. The induction hypothesis applied to A′�st A and A−→β B
gives us that A′ �st B, and we obtain our goal L �st λxB using the st-abs rule applied to
L�hap λxA′ and A′ −→β B.

• In all the previous cases we ignored the case where L �stM was constructed using the st-alpha
constructor since we can prove this uniformly for all cases. We know that L�st M′ and M′ ∼α M.
In order to use the induction hypothesis we would need to have that M′ −→β K for some K. Since
we know that M−→β N and M′ ∼α M we can use the α-β diamond property of Section 2 (lem-Bα),
to obtain a term K such that M′ −→β K and K ∼α N, so we prove our goal using the st-alpha

rule.

Finally, using this last result we can prove that if there is a sequence of β -reductions from M to N, then
there is also a standard reduction between those two terms. The proof is a direct induction on M�β N:

B→st : ∀{M N} -> M →→B N -> M →→st N

3.4 Standard Sequences

The next results show the relation between the reduction relations�l ,�hap and�st with the existence of
a standard reduction sequence. Firstly notice that, since leftmost reductions always involve the reduction
of redexes at position 0, then any sequence of leftmost reductions is a standard reduction sequence with
lower bound 0.
nf→leftmost→seqBst : ∀{M N} -> M →→l N -> seqB-st M N 0

As a corollary of this lemma and the fact that M�hap N implies M�l N (lem-hap→l), we obtain
that if M�hap N, then there is a standard reduction sequence from M to N with lower bound 0:
hap→seqBst : ∀{M N} -> M →→hap N -> seqB-st M N 0

The next result about seqB-st will be useful to prove the subsequent lemma.
abs-seq : ∀ {x M N n} -> seqB-st M N n -> seqB-st (ň x M) (ň x N) n

Proof. We proceed by induction on the definition of seqB-st M N n.
• Case nil: We know that seqB-st M M 0 and therefore we construct our goal, seqB-st (λxM) (λxM) 0,

using nil.

• Case α-step: We know that seqB-st M K n for some K such that K ∼α N. From the induction
hypothesis we get that seqB-st (λxM) (λxK) n and since K ∼α N we can easily prove that λxK ∼α

λxN. From this we prove the case using the st-alpha constructor.

• Case β-step: We know that seqB-st M K n for some K such that K β N @m with n≤ m. Similarly
to the last case, the induction hypothesis tells us that seqB-st (λxM) (λxK) n and from K β N @m
we can construct (λxK)β (λxN)@m using rule abs. Finally, we prove our goal using constructor
β-step.
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As for the�st relation, if M�st N then there is a standard reduction sequence from M to N, which
we code in Agda as the existence of a lower bound for a standard reduction sequence:

st→seqBst : ∀{M N} -> M →→st N -> Σ N (\n -> seqB-st M N n)

Proof. By induction on the definition of M�st N.
• The case st-var can be easily proven using lemma hap→seqBst: since M�hap x, then there is a

standard reduction sequence (with lower bound 0) from M to x.

• Similarly, the case st-abs also relies in this lemma, and the induction hypothesis: we know from
hap→seqBst that there is a standard reduction sequence with lower bound 0 from M to λx.A;
the induction hypothesis tells us that there exists a natural number n such that there is a reduction
sequence from A to B with lower bound n. Therefore, using lemma abs-seq we conclude that there
must be a standard reduction sequence from M to B with lower bound n since 0≤ n.

• The case for st-app is slightly trickier since the lower bound that exists depends on certain
characteristics of the terms involved: If M�st N was constructed using the constructor st-app,
that means that for some terms A, B , C and D: (1) M�hap (A B), (2) A�st C and (3) B�st D.
We need to prove that there is a standard reduction sequence from M to (C D). Using the induction
hypotheses, let m and n be the lower bounds for the standard reduction sequences from A to C and
from B to D respectively:

1. If C is not an abstraction, and B ∼α D2, then the lower bound for the standard reduction
sequence will be m.

2. If C is not an abstraction, and B 6∼α D, then the lower bound for the standard reduction
sequence will be n+countRedexes C.

3. If C is an abstraction, and B 6∼α D, then the lower bound for the standard reduction sequence
will be suc(n+countRedexes C ).

4. If C is an abstraction, and B∼α D, then we need to do some further case analysis using the
following lemma:
lem-seq-appACBC-abs : ∀ {A C B n} -> seqB-st A C n -> isAbs C

-> (seqB-st (A · B) (C · B) n) ∨ (seqB-st (A · B) (C · B) (suc n))

Note that if a reduction sequence ends in an abstraction, by appending the same application
(or an α-equivalent one) to all of the terms in the sequence, the lower bound will remain the
same if and only the abstraction is generated in the last beta step of the sequence and therefore
does not affect the redex count in β -reductions. However, if the abstraction appears before
that, then the lower bound of the reduction sequence must be increased by one, since a new
redex at position 0 is formed. From this lemma we conclude that the lower bound must be
either m or suc m for this case.

• Finally, for the st-alpha case, we have that M�st N′ and N′ ∼α N and we want to prove the
existence of a standard reduction sequence from M to N. The induction hypothesis gives us a
standard reduction sequence from M to N′ and we can directly perform an alpha step to N by using
the α-step constructor from seqβ-st.

The Standardization Theorem finally follows from this last result and lemma B→st that states that
M�β N implies M�st N:

standardization : ∀{M N} -> M →→B N -> Σ N (ń n -> seqB-st M N n)

standardization M→→BN = st→seqBst (B→st M→→BN)

2This is a possible scenario, since�st includes ∼α .
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4 The Leftmost Reduction Theorem

A quite relevant corollary of the Standardization Theorem is the Leftmost Reduction Theorem, which
states that if a term M has a normal form, then the leftmost-outermost reduction strategy will find it. In
the present section we show how this property can be derived from standardization. It is worth noticing
that this proof was developed as part of the present work and is not present in Kashima’s article.

We can directly characterize a term in normal form as one without redexes using the countRedexes
function from section 2:

nf : Λ -> Set

nf M = countRedexes M ≡ 0

and now we can state the aforementioned property as the following lemma:

leftmost-nf : ∀{M N} -> M →→B N -> nf N -> M →→l N

In order to prove this result, we must first consider some lemmas. The first one states that the number
of redexes of two α-equivalent terms is the same, which easily follows by induction on M ∼α N:
α→sameRedexCount : ∀ {M N} -> M ∼α N -> countRedexes M ≡ countRedexes N

The second lemma states that if a term M β -reduces to a term N in normal form, then the contracted
redex must be the leftmost redex of M, i.e., the one at position zero:
nf→l : ∀{M N n} -> M B N @ n -> nf N -> n ≡ 0

Proof. We proceed by induction on M β N @n

• Case outer-redex: we have that (λxA)Bβ B[x := A]@0. Our goal follows directly since rule
outer-redex contracts the redex at position 0.

• Case appNoAbsL: we have that (AC)β (BC)@n where Aβ B@n, A is not an abstraction and
(B C) is in normal form. From this, we know that countRedexes B+countRedexes C ≡ 0, and
therefore countRedexes B ≡ 0 which allows us to use the induction hypothesis with Aβ B@n
and conclude that n≡ 0.

• Case appAbsL: we have that (AC)β (BC)@(sucn) where Aβ B@n, A is an abstraction and
(B C) is in normal form. Since (B C) is in normal form B cannot be an abstraction, but this is a
contradiction since Aβ B@n and A is an abstraction because contracting a redex in an abstraction
always results in an abstraction (rule abs).

• Case appNoAbsR: we have that (C A)β (C B)@(countRedexesC + n) where Aβ B@n, C is
not an abstraction and (C B) is in normal form. From this we know that countRedexes C ≡
0 and countRedexes B ≡ 0. From the induction hypothesis we have that n ≡ 0, and since
countRedexes C ≡ 0, n+countRedexes C ≡ 0.

• Case appAbsR: we have that (C A)β (C B)@suc(countRedexesC+n) where Aβ B@n, C is an
abstraction and (C B) is in normal form. However, this is a contradiction since (C B) cannot be in
normal form if C is an abstraction.

• Case abs: we have that λxA β λxB @ n where A β B @ n and λxB is in normal form. From this
we know that B must be in normal form too and we can call the induction hypothesis for A β B @ n,
concluding that n≡ 0.

Finally, notice that a standard sequence with lower bound 0 must be a sequence of leftmost reductions,
since all of the β -steps must involve the contraction of the redex at position 0, i.e. a leftmost reduction.
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seqB0→l : ∀ {A B} -> seqB-st A B 0 -> A →→l B

The proof follows by a direct induction on seqB-st A B 0.

Lets now turn our attention to the main lemma:

seqst→l : ∀{M N n} -> seqB-st M N n -> nf N -> M →→l N

Proof. We proceed by induction on the definition of seqB-st M N n.

• Case nil: We have that seqB-st A A 0 and we need to prove that A�l A, which follows by
constructor refl.

• Case α-step: We have that seqB-st A B′ n with B′ ∼α B and nf B. From this, we have that
countRedexes B′ ≡ 0 by lemma α→sameRedexCount and therefore, using the induction hypoth-
esis we obtain A �l B’. Finally, we construct our goal using rule α-step.

• Case β-step: We have seqB-st A B′ n and B′β B@n′, where n ≤ n′ and countRedexes B ≡ 0.
Using lemma nf→l we have that n′ ≡ 0, and so n≡ 0. We then apply lemma seqB0→l to seqB-st
A B′ 0 and get that A�l B′. Note that since n′ ≡ 0, we also have that B′ −→l B. Finally, from
A�l B′ and B′ −→l B we conclude that A�l B using rule append.

Finally, if we have that M�β N, the Standardization Theorem lets us conclude that there exists a
standard reduction sequence from M to N. Therefore, the desired property follows directly combining this
result and the previous lemma:

leftmost-nf : ∀{M N} -> M →→B N -> nf N -> M →→l N

leftmost-nf M→→BN crN≡0 = seqst→l (proj2 (standardization M→→BN)) crN≡0

5 Conclusions

In this work we have extended some metatheoretical results from [3] by formalizing a proof of the
Standardization Theorem in Lambda Calculus using Constructive Type Theory. We use a concrete
approach to λ -terms and the notion of multiple substitution. The latter enables us to proceed by structural
induction only, producing proofs that are easy to follow, yet fully formal. This work has also served to
showcase the usefulness of the library produced in [2] and its suitability for the formalization of other
metatheoretical properties of the Lambda Calculus. It is worth highlighting that the definitions and lemmas
used to handle syntax and substitutions did not need to be modified or extended in any way and could
be rapidly put into use by a programmer with a minimal training in Agda, namely the first author while
working on his Master’s thesis [4]. The Agda code reported in this paper is 890 lines long.

Other efforts to formalize Kashima’s proof in the literature include one by Guidi in Matita [7] and
another one by Vyšniauskas and Emerich in Coq [6]. However, what sets our development apart from
these efforts is the use of a concrete syntax with names and our definition of multiple substitution. While
this allows us to prove our lemmas using a clean structural inductive argument, they use a nameless
syntax based on de Brujin indexes which results in some inductions being done on the size of the λ -
terms. Another effort worth highlighting is that of McKinna and Pollack, who formalized a proof of the
Standardization Theorem due to Takahashi [12] using the LEGO proof assistant [9].

Within the chosen syntax approach, we have to consider the work by Vestergaard and Brotherston [13]
which uses modified rules of α-conversion and β -reduction based on unary substitution to formally prove
the Church-Rosser theorem in Isabelle-HOL. Substitution does not proceed in cases of capture and they
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use explicit α-conversion to perform the renaming achieved by our substitution. As a consequence, their
development requires an administrative layer of reasoning for showing that α-conversion and β -reduction
interact correctly. This consists in a rather complex definition of a new auxiliary relation for α-conversion,
which we do not need.

In addition to proving the Standardization Theorem, Kashima proves a few other interesting results
which could be a good follow up to the present work, e.g. the Quasi-Leftmost Reduction Theorem. An
infinite β -reduction sequence is called quasi-leftmost if it contains infinitely many leftmost reduction
steps −→l . As a corollary of the Standardization Theorem it can be proved that if M has a β -normal form,
then there is no infinite quasi-leftmost β -reduction sequence from M.
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