
A Complete Proof System for Basic Symbolic
Heaps with Permissions

S. Demri1, E. Lozes2, and D. Lugiez3

1LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, France
2I3S, CNRS, Université Côte d’Azur, France

3Aix-Marseille Univ, LIF, CNRS, Marseille, France

Abstract. We design a proof system for symbolic heaps with permis-
sions restricted to points-to predicates. The calculus is parameterised by
the permission theory and we establish soundness and completeness. A
strategy with optimal computational properties is also presented. This is
a very preliminary work that is intended to be much further extended.

1 Introduction

Concurrent heap manipulating programs may contain subtle bugs that are hard
to detect by testing. Formal proofs of such programs made significant progress in
the last ten years, particularly due to the developments of logical frameworks and
tools based on concurrent separation logic. One of the strengths of concurrent
separation logic is to support reasoning about resources shared among execution
units (threads, actors, etc.). In the simplest cases, resources are shared without
races, and a mechanism called permissions can be used to track which memory
regions an execution unit can access at a given time of its execution, and the
kind of accesses it can perform: a permission can be thought of as a “quantity of
ownership” that gets attached to each cell of the heap. This quantity prescribes
whether write accesses are allowed on this cell or not and how such a write access
may be restored in the future.

Permissions have been integrated successfully in several tools among which
VCC [8], VeriFast [12], Dafny [15], Hip/Sleek [11], Viper [16] or Heap-Hop [17].
Several models of permissions have been considered, among which fractional
permissions [5], token-based permissions [4], combinations of the two, and binary
tree shares [10]. In particular, a COQ library of certified decision procedures for
the theory of binary shares is developed in [13].

In a different line, since the early works on the foundations of Smallfoot [2],
several proof systems have been proposed for dialects of separation logic: first for
symbolic heaps with lists [1,3], and later on for arbitrary recursive predicates,
often based on cyclic proofs [6,7]. Such proof systems were important for the
development of separation logic, because they guided proof search heuristics
that are easy to understand, they helped integrate separation logic in interactive
theorem provers, and in the future, they could be used by automatic tools as
proof certificates. Moreover, some of these proof systems proceed by ”subtracting”

heap assertions, which convey some heuristics for solving frame inference and
biabduction.

In this paper, we look for a proof system in which one may derive valid
entailments between symbolic heaps with permissions. For this, we follow closely
the methodology we developed in our recent study on the decidability and
complexity of satisfiability and entailment for symbolic heaps with permissions and
lists [9]. However, instead of providing ad-hoc decision procedures as performed
in [9], we design a sequent-style proof system for valid entailments. In this paper,
the preliminary results we present concern basic symbolic heaps, that is symbolic
heaps without lists. Our contributions are the following.

– We introduce a proof system for entailment among symbolic heaps with
permissions, for now without lists, that proceeds by “subtracting” heap
assertions in the same manner as several other proof systems for permission-
free separation logics.

– We establish the soundness and the completeness of this system, up to the
price of imposing some canonicity of the heap assertions before applying our
subtraction rules.

– We present a proof search strategy that remains complete and optimal from
the complexity point of view.

Related work. Bach Le and Hobor recently introduced a proof system for sym-
bolic heaps with permissions for arbitrary recursive predicates [14]. This proof
system differs from ours in two ways: first, it is based on a notion of “predicate
multiplication” π · P between a permission π and an arbitrary formula P that
we did not consider in our model. Second, and most importantly for us, it does
not address the issue of completeness.

Outline In Section 2, we recall the definition of symbolic heaps and permissions.
In Section 3, we define our proof system for logical entailments, together with
an auxiliary rewriting system that helps normalise symbolic heaps, as needed by
some proof rules. In Section 4, we establish the soundness and the completeness
of our proof system.

2 Separation logic with permissions

In this section, we recall the definition of separation logic with permissions.

2.1 Syntax

In order to define the symbolic heaps, that are the formulae of the separation
logic, first, we introduce permission formulae. A key feature of the logic we
consider remains in its parameterisation by a permission model.

2

Permission formulae are defined by the grammar below:

p ::= 1 | α | p⊕ p (permission term)
L ::= > | ⊥ | p ≤ p | ¬(p ≤ p) (permission literal)
A ::= L | A ∧A (permission formula)

where PVar = {α, β, . . . } is a countably infinite set of permission variables.

Notation

– We write defined(p) for p ≤ 1 and p = p′ for p ≤ p′ ∧ p′ ≤ p.
– We write p < p′ for p ≤ p′ ∧ ¬(p′ ≤ p).

A symbolic heap with symbolic permissions is a formula (Π,Σ), where Π
is a pure formula and Σ a spatial formula according to the grammar below:

Π ::= > | ⊥ | x = y | x 6= y | A | Π ∧Π (pure formula)

Σ ::= emp | > | x p7→ y | Σ ∗Σ (spatial formula)

where LVAR = {x, y, . . . } is a countably infinite set of location/program vari-
ables. We write Πpe and Πpv to denote respectively the permission part of Π
and the part about program variables from Π, so that Π is logically equivalent
to Πpe ∧Πpv. We write LVAR(ϕ) (resp. PVar(ϕ)) to denote the set of location
(resp. permission) variables occurring in the syntactic object ϕ. Moreover, by
slightly abusing the notations, ¬ ⊥ (resp. ¬>, ¬(x 6= y), ¬(x = y), ¬¬(p ≤ p′))
is understood as > (resp. ⊥, x = y, x 6= y, p ≤ p′), see the rule (Negation) in
Figure 2.

2.2 Semantics

Definition 1. A permission model is a tuple P = (PP,1P,⊕P) such that

– PP = {π, . . . } is a set of permissions,
– 1P ∈ PP is a distinguished permission called the write permission or the

total permission,
– ⊕P : PP×PP → PP is a partial composition that is cancellative, commutative

and associative,1

– the relation <P
def
= {(π′, π) | π = π′ ⊕P π′′ for some π′′} is irreflexive and

transitive, with maximum element 1P.

An example of a permission model is Boyland’s fractional model PBoy =

((0, 1], 1,⊕PBoy
) [5], where π⊕PBoy

π′
def
= π+ π′ is defined when the sum is at most

1.
Given P = (PP,1P,⊕P), a P-interpretation is a map ι : PVar→ PP. The

map ι is extended to a partial map from the set of permission terms to PP so

1 In particular, whenever a sum π1 ⊕P π2 . . . ⊕P πn is defined, πi1 ⊕P . . . ⊕P πik is
defined for each non-empty {i1, . . . , ik} ⊆ {1, . . . , n}.

3

that ι(1)
def
= 1P and ι(p⊕ p′) def

= ι(p)⊕P ι(p′) if ι(p), ι(p′) and ι(p)⊕P ι(p′) are
defined. Otherwise ι(p⊕p′) is undefined. We write ι |= A to denote that ι satisfies
the permission formula A, following the clauses below:

– always ι |= >; never ι |=⊥;

– ι |= p ≤ p′
def⇔ both ι(p) and ι(p′) are defined and, either ι(p) = ι(p′) or

ι(p) <P ι(p′);

– ι |= ¬(p ≤ p′) def⇔ ι 6|= p ≤ p′;
– ι |= A ∧A′ def⇔ ι |= A and ι |= A′.

Since <P is irreflexive and transitive, ι(p) = ι(p′) iff ι |= p ≤ p′ and ι |= p′ ≤ p.
A permission formula A is P-satisfiable if there is a P-interpretation ι such
that ι |= A. The entailment A |= B holds if for all P-interpretations ι, if ι |= A
then ι |= B. The satisfiability problem w.r.t. P, written SAT(P), takes as
input A and asks whether it is satisfiable. The entailment problem w.r.t. P,
written ENT(P), takes as input permission formulas A and B and asks whether
A |= B.

Again, let P = (PP,1P,⊕P) be a fixed permission model and let Loc =
{`, . . . } be a countably infinite set of locations (by default, Loc = N). A P-
memory state is a triple (s, h, ι) where:

– s is a store, i.e. a function s : LVAR → Loc that assigns to each variable a
location,

– h is a P-heap, i.e. a partial function with a finite domain h : Loc ⇀fin

PP × Loc,

– ι is a P-interpretation.

Before defining the semantics of symbolic heaps, we define the composition of
P-heaps. The composition h1•h2 of two P-heaps h1 and h2 is defined whenever
there is no ` ∈ dom(h1)∩dom(h2) with h1(`) = (π1, `1) and h2(`) = (π2, `2) such
that either `1 6= `2 or π1 ⊕P π2 is undefined. When h1 • h2 is defined, say equal
to the P-heap h, it takes the unique value satisfying the conditions below:

– if ` 6∈ dom(h1) ∪ dom(h2), then ` 6∈ dom(h),

– if ` ∈ dom(hi) \ dom(hj), then ` ∈ dom(h) and h(`) = hi(`) (for all i 6= j ∈
{1, 2}),

– if ` ∈ dom(h1) ∩ dom(h2), then ` ∈ dom(h) and h(`) = (π1 ⊕P π2, `
′) with

h1(`) = (π1, `
′), h2(`) = (π2, `

′) and π1 ⊕P π2 is defined.

We write h′ v h if there is h′′ so that h = h′ • h′′ and we also write
h′ @ h whenever h′ v h and h′ 6= h. The satisfaction relations s, h, ι |=P Σ and
s, h, ι |=P Π are defined as follows:

4

s, h, ι |=P > always
s, h, ι |=P⊥ never
s, h, ι |=P x = y iff s(x) = s(y)
s, h, ι |=P x 6= y iff s(x) 6= s(y)
s, h, ι |=P A iff ι |= A
s, h, ι |=P Π1 ∧Π2 iff s, h, ι |=P Π1 and s, h, ι |=P Π2

s, h, ι |=P emp iff dom(h) = ∅
s, h, ι |=P x

p7→ y iff dom(h) = {s(x)}, ι(p) is defined,
and h(s(x)) = (ι(p), s(y))

s, h, ι |=P Σ1 ∗Σ2 iff there are subheaps h1, h2 such that
h = h1 • h2, s, h1, ι |=P Σ1, and s, h2, ι |=P Σ2.

A model of Π,Σ is an interpretation (s, h, ι) such that s, h, ι |=P Π and
(s, h, ι) |= Σ. Most of the time, we omit the subscript P and we simply write
(s, h, ι) |= Π and (s, h, ι) |= Σ.

Our definitions of symbolic heaps and models encompass the standard defi-
nitions without permissions: choose P1 = ({1},1,⊕P1) that has only the write
permission and the always undefined composition.

2.3 Satisfiability and Entailment Problems

A symbolic heap (Π,Σ) is P-satisfiable if there is a P-memory state (s, h, ι)
such that s, h, ι |=P Π and s, h, ι |=P Σ and we say that (s, h, ι) is a P-model
of (Π,Σ). Two symbolic heaps (Π,Σ) and (Π ′, Σ′) are equivalent, written
(Π,Σ) ≡P (Π ′, Σ′), if they have the same P-models. The satisfiability prob-
lem w.r.t. P, written SATSH(P), takes as input (Π,Σ) and asks whether
(Π,Σ) has a P-model. The entailment problem w.r.t. P written ENTSH(P)
takes as input two symbolic heaps (Π,Σ) and (Π ′, Σ′) and asks whether every
P-model of (Π,Σ) is a P-model of (Π ′, Σ′) (written (Π,Σ) |=P (Π ′, Σ′)). As
above, we may omit the subscript P, when the underlying permission model is
clear from the context.

3 A Proof System for Symbolic Heaps with Permissions

In this section, we introduce a proof system for symbolic heaps with permissions.
The calculus uses two types of expressions (also called judgments), entailment
judgments of the form Π,Σ ` Π ′, Σ′ and unsatisfiability judgments of the
form Π,Σ ` ⊥. Below, entailment judgments are also called entailments. We say
that Π,Σ ` Π ′, Σ′ is true/valid iff Π,Σ |=P Π ′, Σ′ (implicitly, we assume a
fixed permission model P). Similarly, we say that Π,Σ ` ⊥ is true/valid iff
Π,Σ is unsatisfiable.

We distinguish three types of inference rules:

– rules of the form
A

with no premisses,

5

– rules of the form
B

A
with one premiss,

– and rules of the form
B1 B2

A
with two premisses.

The expression A is called the conclusion.
Since we aim at completeness, our proof system will feature some deduction

rules that differ from most established proof rules. Therefore, first we discuss
what would be these established proof rules and why, aiming at a complete
proof system, we need to follow a different approach. In their two complete proof
systems for symbolic heaps with lists [1,3], Berdine et al. relied on the following
“frame rule” (not to be confused with the frame rule for Hoare triples).

Π,Σ ` Π ′, Σ′

Π,Σ ∗ F ` Π ′, Σ′ ∗ F

This rule allows to “subtract” heap assertions on both sides of an entailment.
From the completeness point of view, this rule should be used very carefully,
because it is not “invertible” in general: the entailment in the conclusion might
be valid even if the premiss is not. Therefore, we prefer to restrict the use of this
rule to special cases in which the premiss and the conclusion are equally valid,
which will correspond to the rule (Align) in our proof system (side-conditions
will apply).

On a different line, all of the reasoning about the 7→ predicate in the presence
of permissions could be summarized in the following equivalence

y1 = y2, x
p1⊕p27→ y1 ≡P >, x

p17→ y1 ∗ x
p27→ y2,

which can be read as a pair of zero-premiss rules (axioms) to rewrite both the
left-hand side and the right-hand side of a given entailment, so as to “merge” all
7→ predicates with a same left value. This rewriting has an interplay with the
equalities in the pure assertions: merging 7→ predicates in a spatial formula on the
left-hand side generates a new equality y1 = y2, whereas merging 7→ predicates
on the right-hand side of ` require to check that this equality is entailed by
the left-hand side. We shall proceed differently, and we will only “merge” 7→
predicates on the left-hand side. On the other hand, we “subtract” every 7→
predicate found in the right-hand side (see the rule Subtract below). Following
this approach, it is a bit simpler to handle a possible occurrence of > in the
right-hand side of `.

In the remainder, we first present the normalization rules that are used to
merge 7→ predicates on the left-hand side of a judgment, and later we introduce
the proof rules for logical entailments.

3.1 Normalization Rules

In Figure 1, we present a set R of rewrite rules that are used to normalise
formulae. The reduction =⇒ is the rewrite relation associated to R and =⇒∗ is

6

its reflexive and transitive closure. Moreover, Π[y/x], Σ[y/x] denotes the formula
obtained from Π,Σ by replacing each occurrence of x by y.

(R-Subst) (Π,Σ) =⇒ (Π,Σ[y/x]) if Π |= x = y, {x, y} ⊆ LVAR(Σ)

(R-Merge) (Π,Σ ∗ x p7→ y ∗ x p′7→ z) =⇒ (Π ∧ y = z,Σ ∗ x p⊕p′7→ y)
(R-Empty) (Π,Σ ∗ emp) =⇒ (Π,Σ) if non-empty Σ
(R-True) (Π,Σ ∗ > ∗ >) =⇒ (Π,Σ ∗ >)

Fig. 1: Rewriting system R

We write |Π,Σ| to denote the size of the symbolic heap Π,Σ for some
reasonably succinct encoding (for instance the number of symbols occurring in
Π,Σ).

Lemma 1 ([9]). The rewrite relation =⇒ has the following properties.

– If (Π,Σ) =⇒ (Π ′, Σ′) then (Π,Σ) ≡ (Π ′, Σ′).

– Any rewrite sequence starting from (Π,Σ) terminates in time O(|(Π,Σ)|).

We say that a symbolic heap Π,Σ is in normal form iff it is in normal form
w.r.t. the =⇒ relation.

Lemma 2 ([9]). Given
(
Π,Σ

)
in normal form, Π,Σ is satisfiable iff Πpe ∧

defined(Σ) is satisfiable.

Therefore each symbolic heap is equivalent to a symbolic heap in normal form
and this normal form can be computed in polynomial time.

3.2 Inference Rules

A variable x occurring in Π,Σ ` Π ′, Σ′ is solved iff Π contains an equation
x = y and x does not occur anywhere else. In Figure 2 below, we present the
inference rules of the proof system.

Remark 1. If the application of a rule results in an empty spatial or pure formula,
we write emp or > instead, like in:

x 6= y, emp ` >, emp
x 6= y, x

p7→ y ` >, x p7→ y
Align

Remark 2. To apply one of the rules (Align) or (Subtract), one must check
Πpe ∧ defined(Σ) |= p = p′ and Πpe ∧ defined(Σ) |= p > p′, respectively. Both
conditions can be understood as instances of the entailment problem ENT(P).

7

(Emp1)
Π, emp ` >, emp

(Emp2)
Π,Σ ` Π ′, Σ′

Π,Σ ` Π ′, Σ′ ∗ emp

(True1)
Π,Σ ` >,>

(True2)
Π,Σ ` Π ′, Σ′ ∗ >

Π,Σ ` Π ′, Σ′ ∗ > ∗ >

(Unsatpe)
Π,Σ ` Π ′, Σ′

if Πpe ∧ defined(Σ) is P-unsatisfiable

(Unsatpv)
Π,Σ ` Π ′, Σ′

if Πpv is unsatisfiable (checkable in PTime)

(Simp)
Π,Σ ` Π ′, Σ′

x = x ∧Π,Σ ` Π ′, Σ′

(Normalize)
ΠNF , ΣNF ` Π ′, Σ′

Π,Σ ` Π ′, Σ′
(†)

(†) if Π,Σ is not in normal form and ΠNF ∧ΣNF is a normal form of Π,Σ

(Subst)
x = y ∧Π[y/x], Σ[y/x] ` Π ′[y/x], Σ′[y/x]

Π,Σ ` Π ′, Σ′
(‡)

(‡) if x is not solved and Πpv |= x = y

(Substract)
p = p′ ⊕ α ∧Π,Σ ∗ x α7→ y ` Π ′, Σ′

Π,Σ ∗ x p7→ y ` Π ′, Σ′ ∗ x′ p
′
7→ y′

(††)

(††) if Πpv |= x = x′ ∧ y = y′ , Πpe ∧ defined(Σ) |= p > p′, and
α 6∈ PVar(Π,Σ,Π ′, Σ′)

(Align)
Π,Σ ` Π ′, Σ′

Π,Σ ∗ x p7→ y ` Π ′, Σ′ ∗ x′ p
′
7→ y′

(‡‡)

(‡‡) if Π ∧ defined(Σ) |= p = p′ ∧ x = x′ ∧ y = y′

(Negation)
¬A ∧Π,Σ ` ⊥ Π,Σ ` Π ′, Σ′

Π,Σ ` A ∧Π ′, Σ′
(†††)

(†††) if A is a permission literal or an atomic formula

Fig. 2: Inference rules

8

3.3 Proof Trees

As usual, the construction of a proof tree starts from the given entailment
judgment and proceeds upwards until each leaf is an axiom. The construction
fails when it ends up with a formula which is not empty but for which no rule
applies.

Example 1. Below, we present a proof of the entailment judgment y = z ∧ 1 =

α⊕ α, x 17→ y ` y = z, x
α7→ y ∗ x α7→ y for the permission model ((0, 1], 1,⊕PBoy

),

in which we use the abbreviation A′
def
= 1 = α ⊕ α ∧ 1 = α ⊕ α′. Note that the

equality 1 = α⊕ α enforces that α can only be interpreted by 1/2.

Unsatpv
y 6= z ∧ y = z ∧A′, emp ` ⊥ y = z ∧A′, emp ` >, emp

Emp1

y = z ∧A′, emp ` y = z, emp

y = z ∧ 1 = α⊕ α ∧ 1 = α⊕ α′, x α′

7→ y ` y = z, x
α7→ y

y = z ∧ 1 = α⊕ α, x 17→ y ` y = z, x
α7→ y ∗ x α7→ y

Subtract

Align

Negation

It is worth noting that we do not require that the right-hand side is normalised.
Moreover, for the application of the rule (Subtract), we take advantage of
1 = α⊕ α |=PBoy

1 > α and 1 = α⊕ α ∧ 1 = α⊕ α′ |=PBoy
α = α′.

In contrast, the formula x 6= y ∧ 1 = α⊕ α, x 17→ y ` >, x α7→ y has no proof
tree since the construction fails after one application of the rule (Subtract).
Actually, in any model of the left-hand side formula, a write permission is given
to x when the right-hand-side only gives a read permission.

?

x 6= y ∧ 1 = α⊕ α ∧ 1 = α⊕ α′, x α′

7→ y ` >, emp
No Rule Applies

x 6= y ∧ 1 = α⊕ α, x 17→ y ` >, x α7→ y
Subtract

4 Correctness and Completeness of the Proof System

In this section, we establish the correctness and the completeness of our proof
system. We proceed first by proving that all axioms are sound (Lemma 3),
then we establish that all deduction rules are not only sound, but actually
“reversible” (Lemmas 4 and 5). Then, we show that there is no infinite sequence
of applications of deduction rules (Lemma 6), and finally that if no rule applies
to a given entailment judgment, then this judgment is not valid (Lemma 7).

4.1 Correctness

Lemma 3. Let Π,Σ ` Π ′, Σ′ be an entailment judgment such that one rule
among (Emp1), (True1), (Unsatpe), (Unsatpv) applies. Then, the entailment
Π,Σ ` Π ′, Σ′ is valid.

9

Proof. (idea) Each model of Π,Σ is a model of Π ′, Σ′ when (Emp1) or (True1)
applies, and there is no such model for (Unsatpe), (Unsatpv) otherwise.

Lemma 4. Let Π,Σ ` Π ′, Σ′ be an entailment such that one rule among
(Emp2), (True2), (Simp), (Normalize), (Subst), (Substract), (Align)
applies (backward). Let Π1, Σ1 ` Π ′1, Σ′1 be the premiss of the application. Then
the entailment Π,Σ ` Π ′, Σ′ is valid iff the entailment Π1, Σ1 ` Π ′1, Σ′1 is valid.

Proof. We prove the property for each application of an inference rule of the

form
B

A
(with a unique premiss).

– The cases with (Emp2), (True2) and (Simp) are immediate, as it amounts
to eliminate a tautology. For the inference rule (Normalize), the property
holds by Lemma 1 and for the inference rule (Subst), a simple reasoning on
equality suffices.

– Let us consider the case with the inference rule (Align). Let Π,Σ ∗ x p7→ y `
Π ′, Σ′ ∗ x′ p

′

7→ y′ be the conclusion of the application of (Align).

• Assume that Π,Σ ∗ x p7→ y ` Π ′, Σ′ ∗ x′ p
′

7→ y′ is true. We shall prove that
Π,Σ ` Π ′, Σ′ is true too when the rule is applicable.
Let (s, h, ι) be a model for Π,Σ. Consequently, (s, h, ι) |= Π ∧ defined(Σ)
by definition of |=. By the side-condition of the inference rule (Align),
this entails that (s, h, ι) |= p = p′ ∧ x = x′ ∧ y = y′. Let us introduce the
model (s, h • h′, ι) where dom(h′) = {s(x)} and h′(s(x)) = (ι(s(x)), s(y)).

One can check that (s, h•h′, ι) is a model of Π,Σ ∗x p7→ y. By assumption

Π,Σ ∗ x p7→ y ` Π ′, Σ′ ∗ x′ p
′

7→ y′ is true and therefore (s, h • h′, ι) |=
Π ′, Σ′ ∗ x′ p

′

7→ y′ as s(x) = s(x′), s(y) = s(y′), ι(p) = ι(p′). So, one can
conclude that (s, h, ι) |= Π ′, Σ′.

• Conversely, assume that Π,Σ ` Π ′, Σ′ is true. For any interpretation
(s, h, ι) which is a model of Π,Σ -hence a model of Π ′, Σ′- , we get a

model (s, h•h′, ι) of Π,Σ ∗x p7→ y which is also a model of Π ′, Σ′ ∗x p′7→ y′

since we must have ι(p) = ι(p′), s(x) = s(x′) and s(y) = s(y′) as (Align)
is applicable.

– Let us consider the case with the inference rule (Substract). Let Π,Σ ∗x p7→
y |= Π ′, Σ′ ∗ x′ p

′

7→ y′ be the conclusion of the application of (Substract)

and p = p′ ⊕ α ∧ Π,Σ ∗ x α7→ y ` Π ′, Σ′ be its premiss. Since the rule is

applicable, we assume that

{
Πpv |= x = x′ ∧ y = y′

Πpe ∧ defined(Σ) |= p > p′

• We prove that if Π,Σ ∗ x p7→ y ` Π ′, Σ′ ∗ x′ p′7→ y′ is true, then p =
p′ ⊕ α ∧Π,Σ ∗ x α7→ y ` Π ′, Σ′ is true.
Assume that (s, h, ι) is a model of p = p′ ⊕ α ∧Π,Σ ∗ x α7→ y.

From this model we obtain a model (s, h′, ι) of x
p′7→ y where h′(s(x)) =

(ι(p′), s(y)) yielding a model (s, h • h′, ι) of Π,Σ ∗ x α7→ y ∗ x p7→ y. It is a

10

model of Π,Σ ∗x p7→ y hence of Π ′, Σ′ ∗x′ p
′

7→ y′ by hypothesis. Therefore
(s, h, ι) is also a model of Π ′, Σ′.

• We prove that if p = p′ ⊕ α ∧ Π,Σ ∗ x α7→ y ` Π ′, Σ′ is true, then

Π,Σ ∗ x p7→ y ` Π ′, Σ′ ∗ x′ p
′

7→ y′ is true.

Assume that (s, h, ι) is a model of Π,Σ ∗ x p7→ y.

Since Πpv |= x = x′ ∧ y = y′, we have s(x) = s(x′) and s(y) = s(y′). We
have (s, h, ι) |= Π ∧ defined(Σ) by definition of |=. By satisfaction of the
side-condition, we conclude that ι(p) > ι(p′), i.e., ι(p) = ι(p′) ⊕ π for
some permission π. We can write h = h1 • h2 where dom(h1) = dom(h),
h1(s(x)) = (π, s(y)), h1(s(z)) = h1(s(z)) if z 6= x, and dom(h2) = {s(x)},
h(s(x)) = (ι(p′), s(y)). We extend ι to ι′ by setting ι(α) = π yielding a

model (s, h1, ι
′) of p = p′ ⊕ α ∧Π,Σ ∗ x α7→ y which is also a model of

Π ′, Σ′ by hypothesis. This proves that (s, h1 • h2, ι) = (s, h, ι) is a model

of Π ′, Σ′ ∗ x′ p
′

7→ y′.

Lemma 5. Let Π,Σ ` Π ′, Σ′ be a formula such that (Negation) applies and
let Π1, Σ1 ` Π ′1, Σ′1 and Π2, Σ2 ` Π ′2, Σ′2 be the premisses of the rule. Then the
entailment Π,Σ ` Π ′, Σ′ is true if and only if the entailments Π1, Σ1 ` Π ′1, Σ′1
and Π2, Σ2 ` Π ′2, Σ′2 are true.

Proof. We prove each implication.

– We prove that if A is a literal and Π,Σ ` A∧Π ′, Σ′ is true then ¬A∧Π,Σ |=
⊥ and Π,Σ ` Π ′, Σ′ are true.

Assume that (s, h, ι) is a model of Π,Σ. Since the entailment is true, it is a
model of A ∧Π ′, Σ′, i.e. a model of A and a model of Π ′, Σ′. This proves
that Π ∧ ¬A,Σ is unsatisfiable and that Π,Σ ` Π ′, Σ′ is true.

– We prove that if A is a literal, Π ∧ ¬A,Σ |= ⊥ and Π,Σ ` Π ′, Σ′ is true
then the entailment Π,Σ ` A ∧Π ′, Σ′ is true.

Assume that (s, h, ι) is a model of Π,Σ. Since Π,Σ ` Π ′, Σ′, it is a model of
Π ′, Σ′ and since Π ∧ ¬A,Σ |= ⊥, it is a model of Π. Therefore it is a model
of A ∧Π ′, Σ′.

4.2 Termination

To show the termination of the application of rules, we define the following com-
plexity measure for an entailment Π,Σ ` Π ′, Σ′. To each entailment judgment we
associate the tuple (rightlit, nbunsolvars, nbpointsto, nbsym, nbvarleft) where

– rightlit : the number of permission literals or atomic formula of Π ′,

– nbunsolvars : the number of unsolved variables,

– nbpointsto : the number of formulae x
p7→ y in Σ and Σ′,

– nbsym: the number of non-logical symbols,

– nbvarslefts : the number of location variables of Π.

11

The lexicographic ordering is used on tuples. Note that the normalization

of entailments decreases either the number of x
p7→ y formulae or the number of

symbols or else the number of location variables. A simple check on rules allows
to state the following fact.

Lemma 6. For each inference rule, the complexity measure of the premisses is
smaller than the complexity measure of the conclusion.

The only rule with two premisses is (Negation) but the left premiss must be
followed by a successful application of either (Unsatpe) or (Unsatpv) otherwise
the proof fails.

4.3 Completeness

Lemma 7. Let Π,Σ ` Π ′, Σ′ be an entailment such that no rule applies (back-
ward). Then the entailment Π,Σ ` Π ′, Σ′ is not valid.

Proof. Assume that no rule applies toΠ,Σ ` Π ′, Σ′ (backward). Since (Negation)
does not apply, Π ′ is >. Since (True1) does not apply, Σ′ is not >. Since
(Emp2) does not apply, Σ′ is either emp or does not contain emp. Finally, since
(Normalize) does not apply, Π,Σ is normalised.

– Assume that Σ′ is equal to emp. So Σ is distinct from emp, otherwise the
inference rule (Emp1) applies. Since (Unsatpv) and (Unsatpe) are not ap-
plicable, Π ∧ defined(Σ) is satisfiable. Therefore by Lemma 2, Π,Σ has a
model (s, h, ι) with a non-empty heap. But since Σ is distinct from emp,
(s, h, ι) 6|= emp and therefore (s, h, ι) 6|= Σ′. So, Π,Σ ` Π ′, Σ′ is not valid.

– Otherwise, Σ′ contains a 7→ predicate or >. If Σ is emp, then obviously the
entailment is not valid ((Unsatpv) is not applicable).

– For the remaining case, Σ is of the form x1
p17→ y1 ∗ . . . ∗ xn

pn7→ yn(∗>) with xi
and xj distinct for i 6= j and Π 6|= xi = xj , and similarly, Σ′ is of the form

x′1
p′17→ y′1 ∗ . . . ∗ x′m

p′m7→ y′m(∗>). It is worth noting that it may happen that x′i
is equal to some x′j with i 6= j. The truth constant > may be present or not
in these ∗-conjuncts.

• If > is present in Σ but not in Σ′, then Π,Σ ` Π ′, Σ′ is obviously not
valid.
• In general, for all ΠL, ΣL, ΠR, ΣR if the entailment ΠL, ΣL ` ΠR, ΣR∗>

is not valid, then neither are the entailments ΠL, ΣL ∗ > ` ΠR, ΣR ∗ >
and ΠL, ΣL ` ΠR, ΣR.

Therefore, without loss of generality, we assume that Σ is of the form

x1
p17→ y1 ∗ . . . ∗ xn

pn7→ yn and Σ′ is of the form x′1
p′17→ y′1 ∗ . . . ∗ x′m

p′m7→ y′m ∗ >.

Given a memory state (s, h, ι) satisfying Π,x1
p17→ y1 ∗ . . . ∗ xn

pn7→ yn, we can
build an alternative memory state (s′, h′, ι) satisfying the entailment and such
that distinct location variables have distinct values. We proceed as follows.

1. for j = 1, . . . , n, s′(yj)
def
= s(yj) if yj is distinct from xi for all i = 1, . . . , n,

12

2. s′(xi) 6= s′(xj) if i 6= j,
3. s′(xi) 6= s′(yj) if yj is distinct from xi,
4. h′(s′(xi)) = (ι(pi), s

′(yi)).

Again, several cases may occur depending on the form of x′1
p′17→ y′1 ∗ . . .∗x′m

p′m7→
y′m ∗ >.

• There is some x′j different from any xi for i = 1, . . . , n. Given a model

(s, h, ι) of Π,x1
p17→ y1 ∗ . . . ∗ xn

pn7→ yn, the model (s′, h′, ι) described
above in which we impose that s(x′j) 6= s(xi) for all i, cannot be a model

of x′1
p′17→ y′1 ∗ . . . ∗ x′m

p′m7→ y′m ∗ > since s(x′j) is different from s(xi) for
i = 1, . . . , n.

• There is some xi different from any x′j for i = j, . . . ,m. Using argu-
ments similar to the ones in the previous case, we can conclude that the
entailment is not valid.

• In the remaining case, we have {xi | i = 1, . . . , n} = {x′j | i = 1, . . . ,m}.
So, m ≥ n. For each i ∈ [1, n], let Si = {{p′j | x′j equal to xi}}.
Again several cases occur depending on the form of Σ′ ∗ >.

∗ Case 1: Si = {{p′j}} is a singleton for some i. Since (Align) is not
applicable, either Π ∧ defined(Σ) 6|= pi = p′j or Πpv 6|= yi = y′j . In the
first case, we can find a model (s, h, ι) of Π,Σ with ι(pi) 6= ι(p′j). From
this model, we get a new model (s′, h′, ι) as above which cannot be a
model of >, Σ′. A similar reasoning can be used when Πpv 6|= yi = y′j .

∗ Case 2: for all i, |Si| ≥ 2. Just pick an arbitrary i ∈ [1, n]. Let p′j ∈ Si.
Since (Substract) is not applicable, either Π∧defined(Σ) 6|= pi > p′j
or Πpv 6|= xi = x′j ∧ yi = y′j . In the first case, there is a memory state
satisfying the entailment Π,Σ such that ι(pi) 6> ι(p′j). This memory
state does not satisfy >, Σ′ and therefore Π,Σ ` Π ′, Σ′ is not valid.
As xi is equal to x′j , for the remaning case Πpv 6|= yi = y′j , we can
provide a similar analysis.

These lemmas allow to state the following theorem.

Theorem 1 (Correctness and Completeness). The entailment Π,Σ ` Π ′, Σ′
is valid iff there is a proof tree for Π,Σ ` Π ′, Σ′.

Proof. The previous lemmas state that any application of the rules preserves the
entailment, that all proof trees are finite, and that if a proof branch cannot be
terminated by an axiom nor a rule application, it contains an invalid entailment.

Conclusion and future work We proposed a proof system for basic symbolic
heaps with permissions and we established its soundness and completeness. To
achieve this goal, we considered deduction rules that are “invertible” à la sequent
calculus, and therefore require some particular side conditions and are particular
cases of the frame rule or the permission axiom.

As said in the introduction, this is a very preliminary work, and we would
be interested to reformulate our proof system with these more standard rules

13

while keeping the completeness. We are also interested in complete proof systems
for some related logics for permission-based separation logics, in particular with
abstract predicates à la Boolean BI equipped with an external product with a
permission algebra (as defined by Le Bach and Hobor [14]), or with concrete,
recursively defined predicates, first of which is the singly-linked list predicate.

References

1. J. Berdine, C. Calcagno, and P. O’Hearn. A decidable fragment of separation logic.
In FSTTCS’04, volume 3328 of LNCS, pages 97–109. Springer, 2004.

2. J. Berdine, C. Calcagno, and P. O’Hearn. Smallfoot: Modular automatic assertion
checking with separation logic. In FMCO’05, volume 4111 of LNCS, pages 115–137.
Springer, 2005.

3. J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with separation
logic. In APLAS’05, pages 52–68, 2005.

4. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in
separation logic. In POPL’05, pages 259–270. ACM, 2005.

5. J. Boyland. Checking interference with fractional permissions. In SAS’03, number
2694 in LNCS, pages 55–72. Springer, 2003.

6. J. Brotherston. Cyclic proofs for first-order logic with inductive definitions. In
TABLEAUX’05, volume 3702 of LNCS, pages 78–92. Springer, 2005.

7. J. Brotherston, D. Distefano, and R. L. Petersen. Automated cyclic entailment
proofs in separation logic. In CADE’11, volume 6803 of Lecture Notes in Computer
Science, pages 131–146. Springer, 2011.

8. M. Dahlweid, M. Moskal, Th. Santen, S. Tobies, and W. Schulte. VCC: contract-
based modular verification of concurrent C. In ICSE’09, pages 429–430. IEEE,
2009.

9. S. Demri, E. Lozes, and D. Lugiez. On symbolic heaps modulo permission theories.
In FSTTCS’17, volume 93 of LIPIcs, pages 25:1–25:14. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2017.

10. R. Dockins, A. Hobor, and A.W. Appel. A fresh look at separation algebras and
share accounting. In APLAS’09, volume 5904 of LNCS, pages 161–177. Springer,
2009.

11. G. He, S. Qin, C. Luo, and W.N. Chin. Memory Usage Verification Using Hip/Sleek.
In ATVA’09, number 5799 in LNCS, pages 166–181. Springer, 2009.

12. B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens.
Verifast: A powerful, sound, predictable, fast verifier for C and Java. In NFM’11,
volume 6617 of LNCS, pages 41–55. Springer, 2011.

13. X. Bach Le, C. Gherghina, and A. Hobor. Decision procedures over sophisticated
fractional permissions. In APLAS’12, pages 368–385, 2012.

14. X. Bach Le and A. Hobor. Logical reasoning for disjoint permissions. In ESOP’18,
volume 10801 of LNCS, pages 385–414. Springer, 2018.

15. K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness.
In LPAR’10, volume 6355 of LNCS, pages 348–370. Springer, 2010.

16. P. Müller, M. Schwerhoff, and A.J. Summers. Viper: A verification infrastructure
for permission-based reasoning. In VMCAI’16, volume 9583 of LNCS, pages 41–62.
Springer, 2016.

17. J. Villard, E. Lozes, and C. Calcagno. Tracking heaps that hop with Heap-Hop. In
TACAS’10, volume 6015 of LNCS, pages 275–279. Springer, 2010.

14

