
Sloth: Separation Logic and Theories via Small
Models

Jens Katelaan1, Dejan Jovanović2, and Georg Weissenbacher1

1 TU Wien, Vienna, Austria
2 SRI International

Abstract. We present Sloth, a solver for separation logic modulo
theory constraints specified in the separation logic SL∗data, a propositional
separation logic that we recently introduced in [14]. SL∗data admits NP
decision procedures despite its high expressiveness; features of the logic
include support for list and tree fragments, universal data constraints
about both lists and trees, and Boolean closure of spatial formulas. Sloth
solves SL∗data constraints via an SMT encoding of SL∗data that is based
on the logic’s small-model property. We argue that, while clearly still a
work in progress, Sloth already demonstrates that SL∗data lends itself to
the automation of nontrivial examples. These results complement the
theoretical work presented in [14].

1 Introduction

Separation logics [28] enable concise, compositional specifications of programs
with dynamic memory. Compositionality, based on the frame rule for the sep-
arating conjunction, has been the key to separation logic’s impressive success,
enabling the automated analysis of millions of lines of code [6,5]. Such scalability
has, however, only been achieved for very restricted fragments of separation logic:
Formulas without Boolean structure or data constraints (symbolic heaps) [3].
When restricted to individual pointers and lists, and when forbidding all quan-
tification, satisfiability and entailment of symbolic heaps can even be decided
in polynomial time [9]. But without Boolean structure, without the possibility
to reason about data structures other than lists, and without the possibility
to refer to the data stored in the data structures, the expressiveness of this
polynomial-time decidable fragment is severely limited.

Unfortunately, adding features to the logic to increase its expressiveness
quickly leads to intractability. For example, the full Boolean closure of even
propositional separation logic immediately leads to Pspace hardness [7].

In [14], we proposed the propositional separation logic SL∗data that aims
at striking the right balance between expressiveness and complexity: SL∗data is
expressive enough to model interesting (shape and functional) properties of
programs while retaining NP decidability. SL∗data has the following features.

1. Boolean closure of spatial formulas.3 In addition to gains in expressiveness,
this makes it possible to reduce entailment to satisfiability.

2. Support for list segments and tree fragments (partial trees). This enables
specifications of programs that locally violate shape and/or data properties
by asserting properties of multiple parts of a data structure separately.

3. Sufficiently expressive data constraints to capture many natural data-structure
properties: Sortedness of lists, binary search trees, max heaps, etc.

4. Per-field allocation to allow easy extension of SL∗data to overlaid, nested and
doubly-linked data structures. Such extensions remain future work, however.

We will illustrate all of these features by examples in Section 2. Despite this
expressiveness, SL∗data has a small-model property that ensures NP decidability of
the satisfiability problem of the logic. To the best of our knowledge, SL∗data is the
first separation logic that combines all these features while remaining decidable
in NP.

With the exception of the Grit logic [23], we are not aware of any separation
logic that supports both reasoning about trees and support for data constraints
while remaining decidable in NP. The complexity result for Grit [23] is, however,
derived from the analysis of a specific encoding, which is based on local theory
extensions and which formalized trees as overlaid reversed lists—a tree is an
overlaid structure of paths that follow parent pointers from the leaves to the root.
In contrast, we use a direct encoding of trees based on the small-model property,
simplifying reasoning about trees. In addition, we also allow tree fragments, which
are not supported by Grit.

We give a brief overview of other related work with a particular focus on
decision procedures. Several other SAT and SMT encodings of heap logics have
been proposed in the literature. These are either limited to lists [13,15,21,22],
do not support any recursively defined structures, but the magic wand [26]
and ∃∗∀∗ quantifier prefixes [27]. Strand supports arbitrary MSO-definable
structures and reduces only the data part of the assertions to SMT [17]. Decision
procedures for various symbolic-heap fragments of separation logic without data
were proposed in [3,11,12,18]; decidability of satisfiability and undecidability of
entailment for general symbolic-heap separation logic where shown in [4] and
[1], respectively. The satisfiability problem of a fragment with symbolic heaps
and limited arithmetic was shown decidable in [16]. For a detailed discussion of
the expressiveness and complexity of many variants and fragments of separation
logic, see [10]. In addition, a myriad of semi-decision procedures for variants of
separation logic have been proposed; see, for example [8,25].

The paper is structured as follows. In Section 2, we showcase SL∗data by
presenting a number of examples. We omit a formal definition of the logic, which
you can find in [14]. We continue with a high-level summary of our decision
procedure for SL∗data in Section 3 before discussing the implementation of Sloth
in Section 4. We present an evaluation of Sloth in Section 5 and conclude in
Section 6.

3 But no Boolean structure inside spatial formulas—i.e., below the separating
conjunction—to avoid Pspace hardness

t := null | x ∈ X
ASpatial ::= t→f t | list(t, s) | tree(t, s) | Floc | Fdata Spatial atoms
FSpatial ::= ASpatial | FSpatial ∗ FSpatial Spatial formulas

F ::= FSpatial | ¬F | F ∨ F | F ∧ F SL∗data formulas

Fig. 1: Simplified syntax of the separation logic SL∗data. In the definition of ASpatial,
s denotes a (possibly empty) sequence of terms and f ∈ {n, l, r, d}.

2 SL∗
data by Example

SL∗data is parametric in a location theory Tloc (over a sort loc) and a data theory
Tdata (over a sort data) with atomic formulas Floc and Fdata, respectively. Figure 1
contains a slightly simplified definition of the syntax of SL∗data. We assume a
countable infinite set of (sorted) variables X and a dedicated constant null of
sort loc. We denote with s a vector 〈s1, . . . , sn〉 of variables from X .

Formulas are Boolean combinations of spatial formulas. As usual, a spatial
formula is a separating conjunction of spatial atoms. For SL∗data, these are points-
to assertions, list predicates, tree predicates, as well as atoms of the location
theory and the data theory. We omit a formal semantics of the logic, which you
can find in [14]. Instead, we illustrate the use of the logic by means of examples.
Let us begin with a simple spatial formula. The formula

(x→n y) ∗ (x→d d) ∗ (d > 0)

expresses that the heap consists of a list node x which points to y via the n-field
(n for next) and which stores the data value d in its d-field. The value of d
is constrained to be positive by conjoining the data atom d > 0. SL∗data is a
separation logic with precise semantics in the usual separation-logic sense (see
e.g. [3]), meaning that the above formula describes a heap in which only x is
allocated. Throughout this paper, we assume that Tdata is the theory of linear
integer arithmetic. This is the only data theory that is currently supported by
Sloth. Note that this is a limitation of the implementation, not of SL∗data.

SL∗data supports both lists and list segments. For example,

list(x, y) ∗ (y →n,d (z, d)) ∗ list(z)

expresses that (1) the heap contains a list segment from x to y, (2) the node
referenced by y points to z and contains data d, and (3) z points to a list from z
to null.

More interestingly, SL∗data also supports both trees and tree fragments. Con-
sider the formula

F := tree(t, 〈u, v〉)∗(u→(l,r,d) (null,null, d))∗(v →(l,r,d) (null,null, e))∗(d > e).

It asserts that the heap contains (1) a tree fragment rooted in t with stop nodes
u and v, (2) u is a leaf that contains the data value d, (3) v is a leaf that contains

the data value e and (4) d > e. Intuitively, the semantics of the tree fragment
tree(t, 〈u, v〉) is as follows. As usual in separation logic, there is no sharing of
nodes within the model of the predicate. The location t is the root of a tree, from
which all but two paths end in null; additionally, there are two distinct paths
ending in in u and v, respectively. Additionally, u and v are ordered, meaning that
u comes before v in an in-order depth-first traversal of the tree. Consequently,
for example, any tree satisfying F is not a binary search tree, because the node
containing d comes before the node containing e in the depth-first traversal and
d > e.

SL∗data predicate calls can also be parameterized by data predicates (a possi-
bility omitted in Figure 1 for the sake of simplicity). Data predicates come in
two shapes: Unary data predicates that assert properties of the data stored in all
nodes in the model of the data structure; and binary predicates, which relate the
data value of each node to the data values of its descendants. For instance,

list(x, {(α > 0), (n, α < β)})
asserts that x points to the head of a sorted list of positive integers. Here α and
β are logical variables that range over the data stored in all locations of the
list. Thus (α > 0) asserts that the d-field of every location in the list contains a
positive number. (n, α < β) expresses that for all locations `1, `2 in the list with
`1 →d α and `2 →d β, if `2 can be reached from `1 by first taking an n pointer
then α < β holds. This enforces sortedness of the list.

To see why it is useful to pair each binary data predicate with a pointer field,
consider

G := tree(t, {(l, β < α), (r, β > α)}).
This expresses that t is the root of a tree and that for all pairs of nodes `1 and
`2 in the tree containing data values α and β, respectively, if `2 can be reached
from `1 by first taking an l (i.e., left) pointer then β < α holds; and analogously
for taking an r (right) pointer and β > α. Thanks to the implicit universal
quantification over tree locations `1 and `2, this ensures that for every node in
the tree all left descendants store smaller data values and all right descendants
store larger data values—the location t is the root of a binary search tree.

Finally, spatial SL∗data formulas are closed under Boolean operators. For
example, we can assert F ∧G for F and G as above. This formula is unsatisfiable,
as G states that t is the root of a binary search tree, whereas no model of F is
a binary search tree. Entailment problems can be modeled via negation, e.g. to
check whether list(x, y) ∗ list(y) |= list(x), check whether

(list(x, y) ∗ list(y)) ∧ ¬list(x)

is unsatisfiable. (Which is the case.) For further examples as well as the formal
semantics of SL∗data, see [14].

3 Deciding SL∗
data

We briefly summarize our decision procedure for SL∗data. Further details and
correctness proofs can be found in [14].

Small-model property. Despite its expressiveness, all satisfiable SL∗data formulas
have models whose size (i.e., number of allocated locations) is linear in the
number of variables and the number of data predicates that occur in the formula:

Theorem 1 (Small-model property for SL∗data [14]). Let F be a satisfiable
SL∗data formula with nlist list variables, ntree tree variables, mlist list predicates
with data constraints, mtree tree predicates with data constraints, and at most
k ≥ 1 stop locations per tree predicate. Then there is a heap interpretation M4

that satisfies F such that |M| ≤ max(4, 2nlist + (3 + k)ntree + 2mlist + 2mtree).

Note that while this bound is tight for worst-case instances, by further analysis
of the input formula we can often derive even lower size bounds. We exemplify
this in Section 4.

Complexity results. The small-model property implies that the satisifiability
problem for SL∗data is in NP if the data theory is in NP: We can guess a
polynomially-sized model and then check it in deterministic polynomial time.
Since NP hardness is trivial (SL∗data subsumes propositional logic), NP complete-
ness follows. Unlike with symbolic-heap separation logics such as [1,3,9,11], the
entailment problem F |= G for SL∗data can be solved by checking unsatisfiability
of F ∧ ¬G. The entailment problem for SL∗data is thus coNP complete.

Observe that these complexity bounds are obtained completely independently
of an encoding of SL∗data into SMT—in contrast to, for example, [22,23].

Solving SL∗data via SMT encodings. Thanks to the small-model property, a variety
of decision procedures for SL∗data are conceivable. For example, given a size bound
n, we could explicitly enumerate models up to size n. In [14], we instead proposed
to axiomatize lists and trees of size at most n in an appropriate SMT theory and
thus solve SL∗data by reduction to SMT. Note that having a size bound is crucial
for such an encoding, because it depends on axiomatizing reachability within the
data structures—which is only possible given a fixed size bound, as unbounded
reachability is not expressible in first-order logic.

Note further that this approach is not quite the same as unfolding the
recursive predicate definitions, which would also be possible, but would lead to
an exponential-size encoding, as there are O(2n) trees of size n.

The encoding proposed and proved correct in [14]—and implemented in
Sloth—reduces SL∗data to the disjoint theory combination Tarray ⊕ Tdata ⊕ Tloc,
where by Tarray we denote the theory of arrays extended with combinators that
can express constant arrays and point-wise array operations [19]. Intuitively, this
encoding works as follows. (For the details of the encoding, see [14].)

4 Heap interpretations are the models of SL∗data formulas. Intuitively, a heap interpre-
tation is a structure that interprets every pointer field as a partial function. The size
of the structure corresponds to the size of the domains of these partial functions.
See [14] for the formal definitions.

SMT-LIB file

parser

F ∈ SL∗data

Sloth API calls

bound computation

n ∈ N

encoding ϕ ∈ Tarray ⊕ Tdata ⊕ Tloc

SMT API (Z3)

M′ ∈ models(ϕ) unsat

model translation M∈ models(F)

serialization SMT-LIB file

Fig. 2: Solving SL∗data formulas in Sloth.

– Sets of locations (representing footprints of spatial formulas) are represented
as arrays mapping loc to Bool; set operations are expressed by mapping point-
wise operations over these arrays. Intersection of sets corresponds to point-wise
conjunction of arrays, for example. This allows for encoding the union and
disjointness constraints implied by the use of separating conjunctions.

– Each pointer field is represented as an array from loc to loc.

– Lists and trees of size at most n are encoded by encoding (1) that the
heap contains at most n locations and (2) that these locations satisfy the
structural properties of the data structure(s) in the SL∗data formula. For trees,
for example, such properties include that every path ends in null or a stop
location, that every node has at most one parent in the tree, etc. Note that
these properties depend on reachability predicates, which are SMT-definable
thanks to the size bound.

4 Implementation

Sloth (a Separation Logic modulo Theories solver for SL∗data) is implemented
in Python 3 on top of Z3’s [20] Python API.5 The Sloth source code is available
at https://github.com/katelaan/sloth.

Both the location theory and the data theory are currently fixed in Sloth:
Locations are interpreted as integers; valid Floc assertions are equality and
disequality assertions about pairs of locations (so Floc is the empty theory). Tdata
is always instantiated as linear integer arithmetic (LIA). Consequently, Fdata is
the set of all atomic LIA formulas supported by Z3. In the future, we plan to
support both multiple location theories and multiple data theories.

Figure 2 illustrates the tool architecture of Sloth. The Sloth command-line
interface (CLI) processes a custom extension of the SMT-LIB format [2]. This
custom extension supports all features of SL∗data on top of SMT-LIB. We explain
the format later in this section.

5 Perhaps the name is also related to the anticipated performance of the tool given
this technology stack.

https://github.com/katelaan/sloth

In addition, Sloth also exposes an API on top of Z3’s python API. Sloth
can thus also be used in interactive Python sessions and as a library. In the
future, we plan to build additional features on top of the Sloth API. The API
could, for example, serve as a backend for program verifiers or for more high-level
decision procedures (e.g. with limited support for quantification). We show an
example interactive session later in this section.

Once an AST of the input formula F ∈ SL∗data has been built—whether
through parsing SMT-LIB or through Sloth API calls—Sloth first computes
a number n ∈ N that is an upper bound for the size of minimal models of F .
We explain the bound-computation algorithm later in this section. Based on the
bound n, F is then translated into an SMT formula ϕ ∈ Tarray ⊕ Tdata ⊕ Tloc as
outlined in Section 3. The encoding implemented in Sloth very closely follows
the encoding proposed in [14].

By default, Sloth feeds the encoded formula into Z3 through Z3’s Python
API. If Z3 concludes that ϕ is unsatisfiable, F is unsatisfiable as well. If Z3
proves the satisfiability of the formula, Sloth requests a model M′ |= ϕ. It then
transforms M′ into a model M |= F of the original formula. M is output on
the command line (when using the CLI) or returned as Python object (when
using the Sloth API). It is also possible to have Sloth serialize the expression
DAG of the encoding ϕ and write it to an SMT-LIB file. Any SMT solver that
supports the theory combination Tarray ⊕ Tdata ⊕ Tloc can then be called directly
on the encoding.

Size bound computation in Sloth. In most cases, the size bound in Theorem 1
is not tight. For example, consider the (classical) conjunction list(x) ∧ (y →n z).
Theorem 1 gives a bound of 6 for this formula (nlist = 3, ntree = mlist = mtree = 0),
whereas the actual bound is 1: Every model of the formula must interpret x as
equal to y and z as equal to null and contain a single pointer from x to null.
Sloth is able to compute such lower size bounds in many cases, including for
the above example. Roughly, the bound n for a formula F ∈ SL∗data is computed
as follows:

1. If F contains a top-level conjunct without predicate calls, let n be the number
of distinct variables that occur on the left-hand side of points-to assertions.

2. Otherwise, compute the size bound for each spatial formula in F as if it did
not contain any data predicates.6 Let m be the maximum over these bounds.

3. Let u and b be the number of unary and binary predicates that occur in
spatial formulas that are under the scope of an odd number of negations.

4. Let n := m+ u+ 2b.

Thanks to step (1), Sloth computes the optimal bound in the example above.
In steps (2) to (4), we exploit: (a) We can take the maximum of the bounds
rather than add the bounds, because all spatial formulas in the formula have to
be true in the same global footprint. (b) We only need to retain witnesses for
data predicates if they have to be falsified in the model.

6 I.e., apply the bound for the logic without data predicates, cf. Theorem 1 in [14].

The Sloth input format. To illustrate the Sloth input format, we show the
input files for several of the examples provided in Section 2.7

– (x→n y) ∗ (x→d d) ∗ (d > 0):

(declare-const x sl.list.loc)

(declare-const y sl.list.loc)

(declare-const d Int)

(assert (sl.sepcon (sl.sepcon (sl.list.next x y) (sl.list.data x d))

(> d 0)))

Note the use of the LIA assertion (> d 0) below the scope of the separating
conjunction.

– list(x, y) ∗ (y →n,d (z, d)) ∗ list(z):

(declare-const x sl.list.loc)

(declare-const y sl.list.loc)

(declare-const z sl.list.loc)

(declare-const d Int)

(assert (sl.sepcon

(sl.sepcon (sl.list.seg x y) (sl.list.next y z))

(sl.sepcon (sl.list.data y d) (sl.list z))))

– tree(t, {(l, β < α), (r, β > α)}) (t is a binary search tree).

(declare-const t sl.tree.loc)

(assert (sl.tree.dpred.left (> sl.alpha sl.beta) t))

(assert (sl.tree.dpred.right (< sl.alpha sl.beta) t))

The two data predicates for l and r have to be asserted separately. For
example, (sl.tree.dpred.left (> sl.alpha sl.beta) t) corresponds to
the SL∗data formulas tree(t, {l, α > β}).

Using the Sloth API. We conclude this section with an example Python session
illustrating some of the features of the Sloth API. We check the satisfiability
of and get a model for (list(x, y) ∗ x 6= y) ∧ ¬ ((x→n,d (z, d)) ∗ (z →n,d (y, e))).
Further usage examples are distributed together with the source code.

from z3 import And, Not, Ints

from sloth import *

x, y, z = sl.list.locs(’x y z’)

d, e = Ints(’d e’)

Construct SL* expressions with the same syntax as in the SMT-LIB extension

SL* expressions can be freely combined with z3 expressions (And, Not,...)

expr1 = sl.sepcon(sl.list.seg(x, y), sl.list.neq(x,y))

expr2 = Not(sl.sepcon(sl.list.next(x, z), sl.list.next(z,y),

sl.list.data(x,d), sl.list.data(y,e)))

expr = And(expr1, expr2)

7 All these and many more examples are available in the Sloth github repository.

Check satisfiability

is_sat(expr)

Out: True

Get model

model(expr)

Out: Model [

Struct sl.list [

locs = Integers(6:[z, x], 7:[y])

null = 2

next = 6->7

data = 6->9

]

]

5 Evaluation

Table 1 shows the performance of Sloth on a selection of list and tree benchmarks.
Where the SL∗data formula was too big to fit in the table, it can be found in
Appendix A.8

For each benchmark, the table contains the following data. The bound com-
puted by the bound-computation algorithm (i.e., the bound underlying the SMT
encoding); whether the benchmark is satisfiable or unsatisfiable; the total runtime
of Sloth; the time Z3 needs to solve the expression DAG of the encoding9; and
the size in kB of an SMT-LIB dump of the encoding.

8 The benchmarks as well as instructions for running the benchmarks are also included
in the Sloth source code repository at https://github.com/katelaan/sloth.

9 The expression DAG is constructed incrementally through the Z3 Python API during
the preprocessing/encoding phase of Sloth.

Benchmark Bound Result Time (sec) Encoding size (kB)
Total z3

list(x, y) 3 SAT 0.069 0.008 6.07
Sorted list segment 3 SAT 0.083 0.008 6.92
list(x) ∧ ¬list(x) 2 UNSAT 0.064 0.010 4.70
(list(x, y) ∗ list(y)) ∧ ¬list(x) 4 UNSAT 0.598 0.299 37.86
tree(t, 〈u, v〉) 6 SAT 0.520 0.019 69.70
list(x, y) ∗ tree(t, 〈u, v〉) 9 SAT 3.731 0.370 497.39
Binary search tree (2 stops) 6 SAT 1.129 0.044 149.98
Tree but not BST (1 stop) 8 SAT 4.140 0.766 492.85
BST but not tree (1 stop) 4 UNSAT 0.601 0.184 53.56
9 allocated tree nodes 9 SAT 0.341 0.104 23.05
BST of size 9 (2 stops) 9 SAT 25.200 21.244 584.41

Table 1: Performance of Sloth.

https://github.com/katelaan/sloth

0 2 4 6 8 10 12
0

10

20

30

Size bound

T
o
ta

l
ru

n
ti

m
e/

s

list(x, y)

Sorted list

tree(t, 〈u, v〉)
Binary search tree

(a) Total time

0 2 4 6 8 10 12
0

10

20

30

Size bound

Z
3

ru
n
ti

m
e/

s

list(x, y)

Sorted list

tree(t, 〈u, v〉)
Binary search tree

(b) SMT runtime

Fig. 3: Runtime of Sloth for increasing bounds with a timeout of 30 seconds.

Note that for most benchmarks, the runtime is dominated not by the Z3 call,
but by the time that Sloth spends processing the input and constructing the
encoding. We are convinced that we will be able to significantly reduce this time
in the future, as we have not yet made any attempt at performance optimization.

Z3’s performance significantly suffers when combining predicate calls with
many, deeply nested separating conjunctions, as we can see in the last row of
Table 1. We further illustrate this in Figure 3. Each line of the graph in Figure 3
corresponds to a single benchmark F . Each data point corresponds to a modified
version of the benchmark that enforces a model size bound of n through explicit
allocation of n locations by means of points-to assertions. Formally, to obtain
the data point with size bound n for a list benchmark F , we called Sloth on
the formula F ∧ (y1 →n,d (y2, d1) ∗ · · · ∗ yn →n,d (yn+1, dn)); for tree benchmarks,
we conjoined points-to assertions that allocate a balanced tree of appropriate
size, formalized in Appendix A. As expected, the runtime on tree benchmarks
increases exponentially as the size bound increases. This illustrates the importance
of computing bounds that are as tight as possible. The encoding for both trees
and lists is dominated by the encoding of the bounded reachability predicates.
This explains why the runtime increases almost as quickly for list benchmarks as
for tree benchmarks. This will be improved in a future version of Sloth.

6 Conclusion

We presented Sloth, a prototypical solver for the logic SL∗data proposed in [14].
While Sloth is clearly still a work in progress, our evaluation demonstrated that
SL∗data lends itself to the automation of nontrivial reasoning tasks. A comparison
to other tools, in particular to GrassHopper [24], will be carried out in the future.
We also plan to extend both SL∗data and Sloth with support for doubly-linked,
nested data structures, and overlaid data structures; to implement abduction for
SL∗data; and to investigate the possibility of limited support for quantifiers.

References

1. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M., Ouaknine, J.: Foun-
dations for decision problems in separation logic with general inductive predicates.
In: FOSSACS. Springer (2014)

2. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017), available at
www.SMT-LIB.org

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic.
In: FSTTCS (2004)

4. Brotherston, J., Fuhs, C., Pérez, J.A.N., Gorogiannis, N.: A decision procedure for
satisfiability in separation logic with inductive predicates. In: CSL-LICS (2014)

5. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O’Hearn,
P., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with software
verification. In: NFM. pp. 3–11 (2015)

6. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analysis
by means of bi-abduction. J. ACM 58(6), 26:1–26:66 (2011)

7. Calcagno, C., Yang, H., O’Hearn, P.: Computability and complexity results for a
spatial assertion language for data structures. In: FSTTCS (2001)

8. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Science of
Computer Programming 77(9), 1006–1036 (2012)

9. Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable reasoning
in a fragment of separation logic. In: CONCUR (2011)

10. Demri, S., Deters, M.: Logical investigations on separation logics (2015), http:
//www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/DD-esslli15.pdf, lecture Notes,
(ESSLLI’15)

11. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: CADE (2013)

12. Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation
logic with tree automata. In: ATVA (2014)

13. Itzhaky, S., Banerjee, A., Immerman, N., Nanevski, A., Sagiv, M.: Effectively-
propositional reasoning about reachability in linked data structures. In: CAV (2013)

14. Katelaan, J., Jovanović, D., Weissenbacher, G.: A separation logic with data:
Small models and automation. In: IJCAR (2018), extended preprint avaiable at
http://www.georg.weissenbacher.science/ijcar2018.pdf

15. Lahiri, S., Qadeer, S.: Back to the future: revisiting precise program verification
using SMT solvers. POPL (2008)

16. Le, Q.L., Makoto, T., Sun, J., Chin, W.N.: A decidable fragment in separation logic
with inductive predicates and arithmetic. In: CAV (2017)

17. Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures
and data. In: POPL (2011)

18. Matheja, C., Jansen, C., Noll, T.: Tree-like grammars and separation logic. In:
APLAS (2015)

19. de Moura, L., Bjørner, N.: Generalized, efficient array decision procedures. In:
FMCAD. pp. 45–52 (2009)

20. de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: TACAS (2008)

21. Navarro Pérez, J., Rybalchenko, A.: Separation logic modulo theories. In: APLAS
(2013)

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/DD-esslli15.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/DD-esslli15.pdf
http://www.georg.weissenbacher.science/ijcar2018.pdf

22. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In: CAV
(2013)

23. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data.
In: CAV. Springer (2014)

24. Piskac, R., Wies, T., Zufferey, D.: GRASShopper. complete heap verification with
mixed specifications. In: TACAS. pp. 124–139 (2014)

25. Qiu, X., Garg, P., Ştefănescu, A., Madhusudan, P.: Natural proofs for structure,
data, and separation. In: PLDI (2013)

26. Reynolds, A., Iosif, R., King, T.: A decision procedure for separation logic in SMT.
In: ATVA (2016)

27. Reynolds, A., Iosif, R., Serban, C.: Reasoning in the Bernays-Schoenfinkel-Ramsey
Fragment of Separation Logic. In: VMCAI (2017)

28. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS (2002)

A Formal Definition of the Benchmarks Used in Section 5

For the sake of completeness, this section formally defines the SL∗data formulas
that were used to generate Table 1 and Figure 3.

Sorted list segment. list(x, {(α > 0), (n, α < β)})
Binary search tree (2 stops). F := tree(t, 〈u, v〉 , {(l, β < α), (r, β > α)})
Tree but not BST (1 stop). tree(t, u)∧¬(tree(t, 〈u, v〉 , {(l, β < α), (r, β > α)}))
BST but not tree (1 stop). (¬tree(t, u))∧(tree(t, 〈u, v〉 , {(l, β < α), (r, β > α)}))
9 allocated tree nodes. G := ~0≤i≤8 (yi →l,r,d (v2i+1, v2i+2, di)), where we

use ~ as shorthand for an iterated separating conjunction and where we
define vi := yi for i ≤ 8 and as null otherwise.

BST of size 9 (2 stops). F ∧G
Tree benchmarks in Figure 3. We conjoined ~0≤i<n (yi →l,r,d (v2i+1, v2i+2, di))

to obtain a size bound of n.

	Sloth: Separation Logic and Theories via Small Models

