
An Entailment Checker for Separation Logic with
Inductive Definitions

Radu Iosif and Cristina Serban

CNRS/VERIMAG/Université Grenoble Alpes
{Radu.Iosif,Cristina.Serban}@univ-grenoble-alpes.fr

Abstract. In this paper, we present Inductor, a checker for entailments between
mutually recursive predicates, whose inductive definitions contain ground con-
straints belonging to the quantifier-free fragment of Separation Logic. Our tool
implements a proof-search method for a cyclic proof system that we have shown
to be sound and complete, under certain semantic restrictions involving the set
of constraints in a given inductive system. Dedicated decision procedures from
the DPLL(T)-based SMT solver CVC4 are used to establish the satisfiability of
Separation Logic formulae. Given inductive predicate definitions, an entailment
query, and a proof-search strategy, Inductor uses a compact tree structure to ex-
plore all derivations enabled by the strategy. A successful result is accompanied
by a proof, while an unsuccessful one is supported by a counterexample.

1 Introduction

Inductive definitions play an important role in computing, being an essential component
of programming languages, databases, automated reasoning and program verification
systems. The main advantage of using inductive definitions is the ability of recursively
reasoning about sets of logical objects. The semantics of these definitions is defined
in terms of least fixed points of higher-order functions on assignments mapping pred-
icates to sets of models. A natural problem is the entailment, that asks whether the
least solution of one predicate is included in the least solution of another. Examples
of entailments are language inclusion between finite-state (tree) automata, context-free
grammars or verification conditions generated by shape analysis tools using specifica-
tions of recursive data structures as contracts of program correctness.

The interest for automatic proof generation is two-fold. On one hand, machine-
checkable proofs are certificates for the correctness of the answer given by an auto-
mated checker, that increase our trust in the reliability of a particular implementation
[19]. On the other hand, the existence of a sound and complete proof system provides
a (theoretical) decision procedure for the entailment problem. Assuming that the sets
of models and derivations are both recursively enumerable, one can interleave the enu-
meration of counter-models with the enumeration of derivations; if the entailment holds
one finds a finite proof (provided that the proof system is complete), or a finite coun-
terexample, otherwise. Moreover, proof generation can be made effective by providing
suitable strategies that limit the possibilities of applying the inference rules and guide
the search towards finding a proof or a counterexample.

In this paper we consider inductive systems with constraints written in Separation
Logic [17] with the classical (strict) interpretation of spatial atoms. We introduce a set
of inference rules tailored for proving inductive entailments in Separation Logic, which
have been shown to be sound [13] under a ranking assumption for the constraints of the
inductive definitions. Completeness is assured under three additional restrictions and
only for a particular interpretation of the least solution of the inductive system, taking
into account the coverage trees of the heap generated by the inductive definitions. We
then describe Inductor [18], a prototype implementation for the more general proof
search algorithm given in [13] and reprised in §2.4, and discuss several case studies
involving both valid and invalid entailments.

Related Work The problem of entailment in Separation Logic with inductive defini-
tions has been approached by other solvers. The generic cyclic proof framework CY-
CLIST [3] has an instantiation for this fragment and allows for the discovery of inductive
arguments during proof construction. CYCLIST builds proofs in which infinite traces
can be cut by induction when they satisfy a global trace condition requiring them to
visit infinitely many progress points. SLEEK [5] and SPEN [9, 10] both provide meth-
ods of proving entailments by relying on lemmas that relate the inductive definitions.
However, SLEEK utilizes a database of user-provided lemmas, while SPEN is able to
automatically discover and synthesize concatenation lemmas.

Chu et al. [6] propose a proof system that extends the basic cyclic proof method
with a cut rule type that uses previously encountered sequents as inductive hypotheses
and applies them by matching and replacing the left with the right-hand side of such
a hypothesis. This method can prove entailments between predicates whose coverage
trees differ and only soundness is guaranteed. An automata-based decision procedure
that also tackles such entailments is given in [12]. This method translates the entailment
problem to a language inclusion between tree automata and uses a closure operation on
automata to match divergent predicates. Unlike proof search, this method uses existing
tree automata inclusion algorithms, which do not produce proof witnesses.

2 Cyclic Proofs for Inductive Entailments in Separation Logic

2.1 Preliminaries

For two integers 0 ≤ i ≤ j, we denote by [i, j] the set {i, i+1, . . . , j} and by [i] the set
[1, i], where [0] = /0. ||S|| denotes the cardinality of the finite set S.

We consider a signature Σ = (Σs,Σf), where Σs is a set of sort symbols and Σf is
a set of function symbols. For the purpose of this paper, we restrict the signature such
that Σs = {Loc,Bool} and Σf contains only equality, the constant symbol nil of sort Loc
and the boolean constants > and ⊥. Let Var be a countable set of first order variables,
each xσ ∈ Var having a sort σ. We write x,y, . . . for both sets and ordered tuples of
variables and, for brevity, we use ∈, ∪, ∩, ⊆ on tuples such that x ∈ x iff x occurs in x,
x∪y = {x | x ∈ x or x ∈ y}, x∩y = {x | x ∈ x and x ∈ y}, x⊆ y iff x ∈ y for any x ∈ x.

A term tσ is either a constant or a variable of sort σ ∈ Σs. Separation Logic (SL)
formulae are generated by the following syntax:

φ ::=> | ⊥ | tσ
1 ≈ tσ

2 | emp | xLoc 7→ (tLoc
1 , . . . , tLoc

k) | φ1 ∗φ2 | ¬φ1 | φ1∧φ2 | φ1∨φ2 | ∃x.φ1 | ∀x.φ1

2

where k > 0 is a fixed constant. Given a set of formulae F = {φ1, . . . ,φn}, we write∗F
for φ1 ∗ . . . ∗φn, which is equivalent to emp if F = /0. For a formula φ (set of formulae
F), FV(φ) (

⋃
φ∈F FV(φ)) is the set of variables not occurring under a quantifier scope,

and φ(x) (F(x)) means that, for every x ∈ x, we have x ∈ FV(φ) (x ∈
⋃

φ∈F FV(φ)).
Given sets of variables x and y, a flat substitution θ : x→ y is a mapping of the

variables in x to variables in y. We denote by xθ = {θ(x) | x ∈ x} its image under the
substitution θ. For a formula φ(x), φθ is the formula obtained by replacing each oc-
currence of x ∈ x with the term θ(x). Observe that θ is always a surjective mapping
between FV(φ) and FV(φθ). We lift this notation to sets as Fθ = {φθ | φ ∈ F}.

We fix an interpretation I such that I (>) = true, I (⊥) = false, I (Loc) is a count-
ably infinite set L, and I (nil) = `nil is a fixed element of L. A valuation ν maps each
variable xBool to true or false and each variable yLoc to an element of L. Given a term tσ,
by writing tI

ν we mean either I (t) (if t is a constant symbol) or ν(t) (if t is a variable).
A heap is a finite partial mapping h : L⇀fin Lk associating locations with k-tuples

of locations. We denote by dom(h) the set of locations on which h is defined, by img(h)
the set of locations occurring in the range of h, and by Heaps the set of heaps. Two
heaps h1 and h2 are disjoint if dom(h1)∩ dom(h2) = /0. In this case, h1] h2 denotes
their union, which is undefined if h1 and h2 are not disjoint. Given a valuation ν and a
heap h, the semantics of SL formulae is defined as:

ν,h |=sl t1 ≈ t2 ⇔ (t1)I
ν = (t2)I

ν

ν,h |=sl emp ⇔ h = /0

ν,h |=sl x 7→ (t1, . . . , tk)⇔ h = {
〈
ν(x),((t1)I

ν, . . . ,(tk)
I
ν)
〉
}

ν,h |=sl φ1 ∗φ2 ⇔ ∃h1,h2 ∈ Heaps .h = h1]h2 and ν,hi |=sl φi, i ∈ [2]

The semantics of boolean and first order connectives is the usual one, omitted for
brevity. Given SL formulae φ and ψ, we say that φ entails ψ (i.e. φ |=sl ψ) iff ν,h |=sl φ

implies ν,h |=sl ψ, for any valuation ν and heap h.

2.2 Inductive Systems of Predicates in Separation Logic

Let Pred be a countable set of predicates, each pσ1...σn ∈ Pred having an associated
tuple of argument sorts. Given a tuple of terms (tσ1

1 , . . . , tσn
n), we call p(t1, . . . , tn) a

predicate atom. A predicate rule is a pair 〈{φ(x,x1, . . . ,xn),q1(x1), . . . ,qn(xn)} , p(x)〉,
where x,x1, . . . ,xn are tuples whose corresponding sets of variables are pairwise dis-
joint, φ is a formula, called the constraint, p(x) is a predicate atom called the goal
and q1(x1), . . . ,qn(xn) are predicate atoms called subgoals. The variables x are the goal
variables, whereas

⋃n
i=1 xi are the subgoal variables.

An inductive system S (system, for short) is a finite set of predicate rules. In this
paper, we consider inductive systems whose constraints belong to the SL fragment de-
scribed in §2.1. We assume w.l.o.g. that each predicate p ∈ Pred is the goal of at least
one rule of S and that there are no goals with the same predicate and different goal
variables. We write p(x) :=S R1 | . . . | Rm when {〈R1, p(x)〉 , . . . ,〈Rm, p(x)〉} is the set
of all predicate rules in S with goal p(x). We consider only quantifier-free constraints,
in which no disjunction occurs positively and no conjunction occurs negatively, and
assume that the set of constraints of a system has a decidable satisfiability problem.

3

Disjunctions can be eliminated by splitting 〈{φ1 ∨ . . .∨ φm,q1(x1), . . . ,qn(xn)}, p(x)〉
into m rules 〈{φi,q1(x1), . . . ,qn(xn)} , p(x)〉, one for each i ∈ [m].

Example 1. Consider the SL inductive system SAB consisting of the predicate rules:

p(x) :=SAB x 7→ (x1,x2), p1(x1), p2(x2) q(x) :=SAB x 7→ (x1,x2),q1(x1),q2(x2)
| x 7→ (x1,x2),q2(x1),q1(x2)

p1(x) :=SAB x 7→ (x1,nil), p1(x1) | x 7→ (nil,x) q1(x) :=SAB x 7→ (x1,nil),q1(x1) | x 7→ (nil,x)
p2(x) :=SAB x 7→ (x1,nil), p2(x1) | x 7→ (nil,nil) q2(x) :=SAB x 7→ (x1,nil),q2(x1) | x 7→ (nil,nil)

Broadly speaking, the predicates define binary trees in which the root node points to
two lists and one leaf is not nil, but its position differs in each definition. ut

Given an SL inductive system S , an assignment X maps each predicate pσ1...σn ∈
Pred to a set X (p) ⊆ Ln×Heaps. For a set F = {φ,q1(x1), . . . ,qn(xn)}, where φ is an
SL formula and q1(x1), . . . ,qn(xn) are predicate atoms, we define X (∗F) = {(ν,h0]⊎m

i=1 hi) | ν,h0 |=sl φ,(ν(xi),hi) ∈ X (qi),∀i ∈ [m]}.
Then S induces a function Fsl

S (X) on assignments, which maps each predicate
p ∈ Pred into the set

⋃m
i=1{(ν(x),h) | (ν,h) ∈ X (∗Ri)}, where p(x) :=S R1 | . . . | Rm.

A solution of S is an assignment X such that Fsl
S (X)⊆ X , where inclusion between as-

signments is defined pointwise. It can be shown that the set of all assignments, together
with the ⊆ relation, is a complete lattice and that FI

S is monotone. Therefore, by the
Knaster-Tarski theorem, µS sl =

⋂
{X | FI

S (X) ⊆ X } is the least fixed point of Fsl
S and

the least solution of S .

Example 2. Considering the SAB inductive system from Example 1, the set µS sl
AB(q)

consists of trees of both following forms, where n≥ 1 and m≥ 1:

x
x1

1
. . .

nil
x1

2
. . .

nil

xn
1
nil

nil
xn

1
xm

2
nil

nil
nil

x
x1

1
. . .

nil
x1

2
. . .

nil

xn
1
nil

nil
nil

xm
2
nil

nil
xm

2

while the set µS sl
AB(p) contains trees of the first above form, but not the second. ut

We are concerned with the following entailment problem: given an inductive system
S and predicates pσ1...σm , qσ1...σm

1 , . . . ,qσ1...σm
n , is it true that µS sl(p)⊆

⋃n
i=1 µS sl(qi)? We

denote entailment problems as p |=sl
S q1, . . . ,qn.

Example 3. Given the least solution of the SAB inductive system from Example 2, ob-
serve that the entailment p |=sl

SAB
q holds, while q |=sl

SAB
p does not. ut

2.3 Tree Automata Inclusion as Cyclic Proof Search

We consider top-down nondeterministic finite tree automata (NFTA), where a tree over
a ranked alphabet F is either a symbol a∈ F of rank (or arity) 0, or f (t1, . . . , tn) such that
f ∈ F is of rank n and t1, . . . , tn are, in turn, trees. The actions of an NFTA are described
by transition rules q

f−→ (q1, . . . ,qn), with the following meaning: if the automaton is
in state q and the input is a tree f (t1, . . . , tn), then it moves simultaneously on each ti
changing its state to qi, for all i ∈ [n]. A tree is accepted by an automaton A if each leaf

4

can be eventually read by a transition of the form q a−→ (). The language of a state q in
A, denoted L(A,q), is the set of trees accepted by A starting with state q.

An NFTA can be naturally viewed as an inductive system, where predicates repre-
sent states and predicate rules are obtained directly from transition rules. For instance,
q

f−→ (q1, . . . ,qn) can be written as 〈{x≈ f (x1, . . . ,xn), q1(x1), . . . ,qn(xn)},q(x)〉, where
variables range over trees and the function symbols are interpreted in the canonical
(Herbrand) sense. To further obtain an SL inductive system, an encoding of the con-
straints in each predicate rule using SL connectives is required.

Example 4. The SL inductive system SAB from Example 1 encodes two NFTA A and B
with states {p, p1, p2} and {q,q1,q2}, respectively, where p and q are initial states, us-

ing the alphabet { f (,),g(),a,b} and having the transition sets {p
f→ (p1, p2), p1

g→ p1,

p1
a→ (), p2

g→ p2, p2
b→ ()} and {q f→ (q1,q2),q

f→ (q2,q1),q1
g→ q1,q1

a→ (),q2
g→ q2,

q2
b→ ()}, respectively. We encoded the binary symbol f as x 7→ (x1,x2), the unary sym-

bol g as x 7→ (x1,nil), and the constant symbols a and b as x 7→ (nil,x) and x 7→ (nil,nil),
respectively, where x, x1 and x2 are always allocated, thus different from nil. ut

Since language inclusion is decidable for NFTA [7, Corollary 1.7.9], we leverage
an existing algorithm for this problem by Holı́k et al. [11] to build a set of inference
rules and derive a proof search technique. This algorithm searches for counterexamples
of the inclusion problem L(A, p)⊆

⋃n
i=1 L(B,qi) by enumerating pairs (r,{s1, . . . ,sm}),

where r is a state that can be reached via a series of transitions from p, and {s1, . . . ,sm}
are all the states that can be reached via the same series of transitions from q1, . . . ,qk.
A counterexample is found when reaching a pair (r,{s1, . . . ,sm}) such that there exists

a transition r
f→ (r1, . . . ,rk), but there is no transition si

f→ (s1
i , . . . ,s

k
i) for any i ∈ [m].

Example 5. Consider the NFTA A and B from Example 4. To check L(A, p)⊆ L(B,q),
we start with (p,{q}). A possible run is:

(p,{q})

((p1, p2),{(q1,q2),(q2,q1)})

(p1,{q1,q2}) (p1,{q1}) (p2,{q2}) (p2,{q2,q1})

((),{()}) (p1,{q1,q2}) ((),{()}) (p1,{q1}) ((),{()}) (p2,{q2}) ((),{()}) (p2,{q2,q1})

f

a g a g b g b g

The algorithm performs two types of moves: transitions and split actions. The arrows
labeled by symbols f ,g,a and b are transitions, for instance the arrow labeled by f
takes p into the tuple (p1, p2) by the transition p

f−→ (p1, p2) and {q} into the set of
tuples {(q1,q2),(q2,q1)}, by the transitions q

f−→ (q1,q2) and q
f−→ (q2,q1). However,

the pair ((p1, p2),{(q1,q2),(q2,q1)}) is problematic because it asserts that L(A, p1)×
L(A, p2) ⊆ L(B,q1)×L(B,q2)∪L(B,q2)×L(B,q1). Using several properties of the
Cartesian product [11, Theorem 1] there are multiple ways to split this proof obligation
into several simpler conjunctive subgoals. If at least one split move leads to a proof,
then the inital proof obligation holds. The split move used above simultaneously con-
siders (p1,{q1,q2}), (p1,{q1}), (p2,{q2}) and (p2,{q2,q1}), together asserting that

5

L(A, p1)⊆ L(B,q1) and L(A, p2)⊆ L(B,q2). The other options are: (1) (p1,{q1,q2})
(p1,{q1}), (p1,{q2}), and (p2,{q2,q1}); (2) (p1,{q1,q2}), (p2,{q1}), (p1,{q2}), and
(p2,{q2,q1}); (3) (p1,{q1,q2}), (p2,{q1}), (p2,{q2}), and (p2,{q2,q1}). The algo-
rithm does not expand nodes (p,S) with p ∈ S, for which inclusion holds trivially, or
having a predecessor (p,S′) with S′ ⊆ S (enclosed in dashed boxes), since any coun-
terexample that can be found from (p,S) could have been discovered from (p,S′). ut

2.4 A Proof Search Semi-algorithm

(IR)
Γ1 ` ∆1 . . . Γn ` ∆n

Γ ` ∆

side

conditions
.... C

Γp ` ∆p

We denote sequents as Γ ` ∆, where Γ and ∆

are sets of formulae and commas are read as set
union, thus contraction rules are not necessary.
We omit braces and a sequent of the form p(x) `
q1(x), . . . ,qn(x) is called basic. An inference rule
schema IR is a possibly infinite set of inference rules, called instances of the schema,
sharing the same pattern. An inference rule has antecedents Γ1 ` ∆1, . . . ,Γn ` ∆n, and
a consequent Γ ` ∆. We write > for an empty antecedent list and an inference rule
without antecedents may have a pivot Γp ` ∆p, which is an ancestor of the consequent
or, in other words, a sequent preceding the consequent in the transitive closure of the
consequent-antecedent relation. The sequence of inference rules applied along the path
between the pivot and the consequent is subject to a pivot condition C.

A proof system is a set R of inference rule schemata. A derivation built with R
is a possibly infinite tree D = (V,v0,S,R,P,B), where V is a set of vertices (or nodes)
and v0 ∈ V is the root. Every v ∈ V is labeled with sequent S(v) and an inference rule
schema R(v) ∈ R such that S(v) is the consequent of the instance of R(v) applied at v.
Moreover, B(v) ∈ V is a node such that S(B(v)) is the pivot for R(v), if it has one. We
call (v,B(v)) a backlink. If v 6= v0, P(v) is the parent of v in the derivation and S(v) is
an antecedent for the instance of R(P(v)) with consequent S(P(v)). A proof is a finite
derivation in which S(v) => for all leaves v∈V – i.e. on every branch of the derivation,
the last inference rule application generates an empty list of antecedents.

Given an inductive system S and predicates pσ1,...,σn , qσ1,...,σn
1 , . . ., qσ1,...,σn

k ∈Pred, a
proof system R is: (i) sound if, for any proof D = (V,v0,S,R,P,B) with S(v0) = p(x) `
q1(x), . . . ,qn(x), we have p |=sl

S q1, . . . ,qn, (ii) complete if p |=sl
S q1, . . . ,qn implies the

existence of a proof D = (V,v0,S,R,P,B) with S(v0) = p(x) ` q1(x), . . . ,qn(x).
A sequence π = v1, . . . ,vn of vertices is a trace if, for any i ∈ [n− 1], either vi =

P(vi+1) or vi+1 = B(vi). π is path if only the former condition holds and, moreover,
a direct path if v1 = B(vn). We denote by Λ(π) = R(v1), . . . ,R(vn− 1) the sequence
of inference rule schemata applied between v1 and vn. An inference rule schema IR is
applicable on vn and π if there exists an instance ir of IR whose consequent matches
S(vn) and whose pivot (if it exists) matches S(vi) for some i < n, such that both the
side conditions of ir are satisfied and and Λ(vi, . . . ,vn) abides by its pivot condition. A
strategy is a set S of inference rule schemata sequences. A sequence s is a valid prefix for
S if there exists another sequence s′ such that their concatenation s · s′ ∈ S. A derivation
(proof) D is an S-derivation (S-proof) if, for each maximal path π in D , Λ(π) ∈ S.

Given an input sequent p(x) ` q1(x), . . . ,qn(x), a set R of inference rules and a
strategy S, the proof search semi-algorithm 1 uses a worklist iteration to build a deriva-

6

Algorithm 1 Proof search semi-algorithm.
data structure: Node(sequent,rule,parent,pivot,children), where:

– sequent is the sequent that labels the node,
– rule is the inference rule with consequent sequent.
– parent is the link to the parent of the node,
– pivot is the pivot for the instance of rule applied on sequent
– children is the list of children nodes

input: inductive system S , sequent p(x) ` q1(x), . . . ,qn(x), proof system R , strategy S
output: an S-proof built with R , whose root is labeled with sequent p(x) ` q1(x), . . . ,qn(x)

1: Root← Node(p(x) ` q1(x), . . . ,qn(x),null,null,null, [])
2: WorkList←{Root}
3: while WorkList 6= /0 do
4: remove N from WorkList
5: let π be the path between Root and N
6: let RN ⊆ R be the inference rule schemata applicable on N and π

7: let R 0
N ⊆ RN be the subset of RN with empty antecedent lists

8: if Λ(π) · IR is a valid prefix of S for some IR ∈ R 0
N then

9: let ir be an instance of IR such that N.sequent is the consequent of ir
10: N.rule← IR
11: if ir has pivot N′.sequent for some N′ ∈ π then N.pivot← N′

12: mark N as Closed
13: if N not Closed and Λ(π) · IR is a valid prefix of S for some IR ∈ RN then
14: let ir be an instance of IR such that N.sequent is the consequent of ir
15: for each antecedent Γ′ ` ∆′ of ir do
16: N′← Node(Γ′ ` ∆′,null,N,null, [])
17: add N′ to N.children and to WorkList
18: if N.children is empty then mark N as Closed

tion of p(x) ` q1(x), . . . ,qn(x). When a node is removed from the worklist, it chooses
(non-deterministically) an inference rule and an instance whose consequent matches
the sequent of the node, if one exists. To speed up termination, inference rule schemata
without antecedents are considered eagerly (line 8). If a proof of the input sequent ex-
ists, then there exists a finite execution of the semi-algorithm 1 leading to it.

2.5 The Set R sl
Ind of Inference Rules for Separation Logic Entailments

Figure 1 gives a set R sl
Ind of inference rule schemata for the entailment problem in SL,

which generalize the transitions and split actions performed by the NFTA language
inclusion algorithm described in §2.3. To shorten the presentation, we write 〈Γi ` ∆i〉ni=1
for Γ1 ` ∆1, . . . ,Γn ` ∆n.

(LU) and (RU) unfold a predicate atom p(x) by replacing it with the set of predicate
rules p(x) :=S R1(x) | . . . | Rn(x), with goal variables x and fresh subgoal variables. The
left unfolding yields a set of sequents, one for each Ri(x) with i ∈ [n], that must be all
proved, whereas the right unfolding replaces p(x) with the set of formulae obtained
from R1(x) | . . . | Rn(x) in which the subgoal variables are existentially quantified.

(RD) eliminates constraints from both sides of a sequent. The existentially quan-
tified variables on the right-hand side are replaced using a (subset of) the finite set

7

(LU)
〈Ri(x,yi),Γ\ p(x) ` ∆〉ni=1

Γ ` ∆

p(x)∈Γ, p(x):=S R1(x,y1)|...|Rn(x,yn)

y1,...,yn fresh variables

(RU)
Γ ` {∃yi .∗Ri(x,yi)}n

i=1 ,∆\ p(x)
Γ ` ∆

p(x)∈∆, y1,...,yn fresh
p(x):=S R1(x,y1)|...|Rn(x,yn)

(RD)
p1(x1), . . . , pn(xn) ` {Q jθ | θ ∈ S j}i

j=1

φ(x,x1, . . . ,xn), p1(x1), . . . , pn(xn) ` {∃y j .ψ j(x,y j)∗Q j(y j)}k
j=1

φ|=sl∧i
j=1 ∃y j .ψ j

φ 6|=sl∨k
j=i+1 ∃y j .ψ j

S j⊆Sk(φ,ψ j), j∈[i]

(AX) >
Γ ` ∆
∗Γ|=sl∨∆

(ID)
>

Γθ ` ∆′θ
θ flat injective substitution
∆⊆ ∆′

.... (R sl
Ind)

∗·LU·(R sl
Ind)

∗

Γ ` ∆

(SP)
〈pı̄ j (x) ` {q`ı̄ j

(x) | ` ∈ [k], f j(Q `) = ı̄ j}〉n
k

j=1

p1(x1), . . . , pn(xn) ` Q1(x1, . . . ,xn), . . . ,Qk(x1, . . . ,xn)

∀i, j∈[n] .xi∩x j= /0, ı̄∈[n]n
k

Qi=∗n
j=1 qi

j(x j),Q i=〈qi
1,...,q

i
n〉

F (Q 1,...,Q k)={ f1,..., fnk}

Fig. 1. The set R sl
Ind of inference rule schemata for inductive entailments in SL.

Sk(φ,ψ j) = {θ :
⋃k

i=1 yi→{nil}∪x∪
⋃n

i=1 xi) | φ |=sl ψ jθ} of substitutions that witness
the entailments φ(x,x1, . . . ,xn) |=sl ∃y j .ψ j between the left and right constraints.

A transition move in the language inclusion algorithm of [11] (Example 5) per-
forms (LU), (RU) and (RD) all at once. This is natural because the transition rules of
tree automata are controlled uniquely by the function symbols labeling the root of the
current input tree, which can be matched unambiguously. When considering more gen-
eral constraints, matching amounts to discovering non-trivial substitutions that prove an
entailment between existentially quantified constraints.

(SP) generalizes the split moves performed by the language inclusion algorithm
of [11] and breaks a sequent p1(x1), . . . , pn(xn) ` Q1(x1, . . . ,xn), . . . ,Qn(x1, . . . ,xn)
into basic sequents. Given tuples {Q 1, . . . ,Q k} ⊆ Predn with n ≥ 1, a choice func-
tion f maps each tuple Q i into an index f (Q i) ∈ [n] corresponding to a position in
the tuple. Let F (Q 1, . . . ,Q k) be the set of such choice functions, having cardinality
nk ≤ n||Pred||n . Given a tuple ı̄ ∈ [n]n

k
, associating a value in [n] to each choice func-

tion f ∈ F (Q 1, . . . ,Q k), there exists an application of (SP) generating nk antecedents
with left hand-side pı̄ j(xı̄ j), j ∈ [nk] and right hand-side consisting of all predicate
atoms q`ı̄ j

(xı̄ j), ` ∈ [k] obtained from predicates at position ı̄ j in the tuples Q ` which
are mapped to ı̄ j by the choice function f j. In order to obtain a proof, there must exist
some application of (SP) – and, therefore, some ı̄ ∈ [n]n

k
– for which all the generated

antecedents can be proven. As shown in [11, Section 3], the tuples ı̄ ∈ [n]n
k

encode the
transformation of a formula from CNF to DNF and, as such, not all are relevant. More
precisely, any ı̄ for which there exists j ∈ [nk] such that ı̄ j 6∈ img(f j) can be discarded.

(AX) closes the current branch of the proof if the sequent can be proved using a
decision procedure for the underlying constraint logic, by treating predicate symbols as
uninterpreted boolean functions. This is a generalization of encountering a pair (p,S)
with p ∈ S in the NFTA language inclusion algorithm of [11].

(ID) introduces backlinks in a derivation, from the consequent Γθ ` ∆′θ to a pivot
Γ ` ∆. The pivot condition (R sl

Ind)
∗ ·LU · (R sl

Ind)
∗ requires that (LU) must be applied on

the direct path between the pivot and the consequent. Observe that, if Γθ`∆′θ denotes a

8

non-valid entailment, there exists (ν,h)∈ µS sl(∗Γθ)\µS sl(
∨

∆′θ). Since θ is surjective
by construction and injective by the side condition, the restriction of θ to FV(Γ∪∆′)
has an inverse and, because ∆′ ⊆ ∆, we obtain that (ν◦θ−1,h) ∈ µS sl(∗Γ)\µS sl(

∨
∆)

is a counterexample for the pivot.
The local soundness of R sl

Ind \{ID} is given by [13, Lemma 15], whereas the sound-
ness of proofs containing (ID) is established by [13, Theorem 6] through the following
argument. If the root sequent of a proof denotes an entailment that admits a coun-
terexample, then, by the local soundness, there exists a path in the proof on which
this counterexample can be propagated. This path may not end with an application of
(AX), as it would violate its side condition, and, thus, must end with an application
of (ID), which allows it to be extended to an infinite trace. Then, using the reasoning
above to additionally propagate counterexamples through a backlinks, we obtain that
the counterexample for the root sequent can also be propagated along a trace with an
infinite number of direct paths [13, Proposition 1]. We use an additional ranking as-
sumption given by a pre-established well-founded ordering of the counterexamples. In
SL, we consider the subheap ordering, where h1 � h2 iff there exists h ∈ Heaps such
that h2 = h1]h and h1�h2 if, moreover, h 6= /0. An SL inductive system is ranked if the
constraints of every predicate rule with at least one subgoal do not admit an empty heap
model. Since (LU) is required on each direct path, this leads to an infinite sequence of
counterexamples (ν1,h1),(ν2,h2), . . . with strictly decreasing heaps h1 � h2 � . . . (see
[13, Lemma 15] and the proof of [13, Theorem 6]). However, since the subheap order-
ing is well-founded, the existence of such sequences is prohibited. We have reached a
contradiction and may conclude that there was no counterexample to begin with.

Analogously, the language inclusion algorithm of [11] stops expanding a branch in
the search tree whenever it has discovered a pair (p,S) that has a predecessor (p,S′),
with S′ ⊆ S. Just as for the (ID) inference rules, backtracking relies on the Infinite
Descent principle [4], that forbids infinitely descending sequences of counterexamples.

Example 6. Given the system SAB from Example 1, we can use R sl
Ind to build a proof for

p(x) ` q(x), partially shown below – we only include the subproof for the first sequent
obtained after split. Note the similarities with the proof tree in Example 5.

p1(x) ` q1(x),q2(x)

x 7→ (nil,x) ` q1(x),q2(x)

x 7→ (nil,x)`x 7→ (nil,x),q2(x),
∃y1 .x 7→ (y1,nil)∗q1(y1)

>

x 7→ (x1,nil), p1(x1) ` q1(x),q2(x)

x 7→ (x1,nil), p1(x1) ` x 7→ (nil,x),∃y1 .x 7→ (y1,nil)∗q1(y1),q2(x)

x 7→ (x1,nil), p1(x1)`x 7→ (nil,x),∃y1 .x 7→ (y1,nil)∗q1(y1),
x 7→ (nil,nil),∃y1 .x 7→ (y1,nil)∗q2(y1)

p1(x) ` q1(x),q2(x)

>

LU

RU

AX

RU

RU

RD

ID

p(x) ` q(x)

x 7→ (x1,x2), p1(x1), p2(x2) ` q(x)

x 7→ (x1,x2), p1(x1), p2(x2)`∃y1,y2 .x 7→ (y1,y2)∗q1(y1)∗q2(y2),
∃y1,y2 .x 7→ (y1,y2)∗q2(y1)∗q1(y2)

p1(x1), p2(x2) ` q1(x1)∗q2(x2),q2(x1)∗q1(x2)

p1(x) ` q1(x),q2(x) p1(x) ` q1(x) p2(x) ` q2(x) p2(x) ` q2(x),q1(x)

LU

RU

RD

SP

For (SP), let Q 1 = (q1,q2) and Q 2 = (q2,q1) be the tuples of predicates on the right-
hand side. The set of choice functions is F (Q 1,Q 2) = { f1 = {(Q 1,1),(Q 2,1)}, f2 =

9

{(Q 1,1),(Q 2,2)}, f3 = {(Q 1,2),(Q 2,1)}, f4 = {(Q 1,2),(Q 2,2)}}. Out of the 16 in-
dex choice tuples for F (Q 1,Q 2), only (1,1,1,2), (1,1,2,2), (1,2,1,2) and (1,2,2,2)
are relevant. To obtain the above proof, we chose ı̄ = (1,1,2,2). ut

Only the ranking assumption is necessary to ensure soundness of R sl
Ind. Three addi-

tional restrictions required for completeness are given in [13, Section 4.2]. Effectively
checking whether a given inductive system satisfies these restrictions requires the exis-
tence of a decision procedure for the ∃∗∀∗-quantified fragment of the underlying logic.
In general, this problem is undecidable for SL [8, Theorem 1], but the fragment decribed
in §2.1 omits the −−∗ operator (primarily responsible for loss of decidability), while the
7→ operator only maps elements in L to tuples in Lk. As such, the satisfiability of ∃∗∀∗-
quantified formulae is PSPACE-complete in the fragment we consider [8, Theorems 2
and 3]. A suitable decision procedure for this fragment of SL is given in [15]. Com-
pleteness is then assured for entailments involving inductive definitions which generate
matching coverage trees of the heap (see [13, Section 4.3]).

Example 7. Consider the following definitions for doubly-linked lists:
dlls(hd, p, tl,n) :=S hd ≈ tl∧hd 7→ (p,n)

| hd 7→ (p,x),dlls(x,hd, tl,n)
dllsr(hd, p, tl,n) :=S hd ≈ tl∧hd 7→ (p,n)

| tl 7→ (n, tl′),dllsr(hd, p,x, tl)

t1 = {(1,〈0,2〉)}

{(2,〈1,3〉)}

{(3,〈2,4〉)}

t2 = {(3,〈2,4〉)}

{(2,〈1,3〉)}

{(1,〈0,2〉)}

The predicate dlls unfolds the list starting at the head, while dllsr unfolds it starting
at the tail. Both dlls |=sl

S dllsr and dllsr |=sl
S dlls hold, however, they cannot be proven

using our inference rules. Take, for instance, the tuple ` = 〈0,1,3,4〉 and the heap
h = {(1,〈0,2〉),(2,〈1,3〉),(3,〈2,4〉)}. The pair (`,h) belongs to both µS sl(dlls) and
µS sl(dllsr), but dlls generates the coverage tree t1 for h, while dllsr generates the cover-
age tree t2. Since the trees do not match, R sl

Ind cannot built proofs for either entailment.

3 An Inductive Entailment Checker for Separation Logic

In this section we describe Inductor, an entailment checker tool that implements the
proof-search semi-algorithm 1 from §2.4, using the set R sl

Ind of inference rules for in-
ductive entailments in SL. Inductor is written in C++ and uses the DPLL(T)-based
SMT solver CVC4 [1] as a back-end that it queries in order to establish the satisfia-
bility of SL formulae, in which the occurrences of inductive predicates are treated as
uninterpreted functions. More specifically, these queries are handled by the decision
procedures provided in [16, 15] and integrated into CVC4.

The inputs mainly handled by Inductor are SMT-LIB scripts, abiding by the SMT-
LIB Standard: Version 2.6 [2]. Theory and logic files are loaded automatically, based on
the logic set in the input script being handled. Additionally, proof strategies are specified
as nondeterministic finite word automata (NFA), in a language similar to that accepted
by libVATA [14] (for more details, see Appendix A.1). The front-end interprets these
input files using custom parsers constructed with Flex1 and Bison2.

1 Flex – The Fast Lexical Analyzer, github.com/westes/flex
2 GNU Bison – The Yacc-compatible Parser Generator, www.gnu.org/software/bison

10

3.1 A Breadth-First Proof Search Implementation

The proof search method sketched by algorithm 1 is reliant on the choice of IR made at
lines 8 and 13. Whenever there are more than one applicable inference rules, only one
is selected and the rest are discarded. Furthermore, as is the case for SP, some inference
rules can have multiple possible instances for the same sequent, where only one is
required to succeed in obtaining a proof. Algorithm 1 again only chooses one of them.
In our implementation, we wanted to explore all the potential derivations resulting from
the inference rule instances available at any point. Moreover, since we use a queue for
the nodes still needing to be explored, we generate derivations in a breadth-first fashion.
Thus, proofs or counterexample are obtained from the shortest possible paths.

We use a different tree-like structure to compactly store all the derivations explored.
This structure accepts two types of nodes, depicted in Figure 2, which represent se-
quents (SNode) and inference rule instances (RNode), respectively. The node types al-
ternate in the tree, thus an SNode only has RNode children, and vice-versa.

SNode { sequent : A sequent Γ ` ∆, RNode { rule : An inference rule schema
states : A list of states in the strategy pivot : SNode pivot for this rule instance,
parent : RNode parent of the current node parent : SNode parent of the current node,
children : A list of RNode children } children : A list of SNode children }

Fig. 2. The data structures representing sequents and inference rule instances

With these new data structures, we say that an inference rule IR ∈ R sl
Ind is applicable

on a given SNode N whenever there exists an instance ir of IR for which: (i) the conse-
quent of ir matches N.sequent and the pivot of ir matches N′.sequent, for some SNode
ancestor N′ of N, such that the side conditions of ir are satisfied, and (ii) if R1, . . . ,Rn
is the RNode sequence extracted from the path starting at N′ and ending at N, then
R1.rule, . . . ,Rn.rule satisfies the pivot condition of ir.

Both types of nodes are marked with either a Closed, Failed or Unknown status. All
nodes are initially Unknown. The status of an SNode can be changed to Closed when-
ever: (i) its sequent is >, or (ii) at least one of its RNode children is Closed. An RNode

becomes Closed when all of its SNode children are Closed. Conversely, an SNode is
marked as Failed whenever: (i) its sequent is of the form Γ ` /0, or (ii) all of its RNode
children are Failed. An RNode is marked Failed when at least one of its SNode children
is Failed. Changing the status of a node prompts a status update for all of its ancestors.

Algorithm 2 sketches our proof search implementation for R sl
Ind, which, given an in-

put sequent p(x) ` q1(x), . . . ,qn(x) and an NFA S = (QS,R sl
Ind,TS,q0,FS) describing the

proof strategy, explores all derivations rooted at the input sequent. The default strategy
is (LU ·RU∗ ·RD ·SP?)∗ ·LU? ·RU∗ · (AX | ID) from [13, Theorem 7]. We construct a
node Root and add it to the work queue. While the work queue is not empty and the
status of Root is Unknown, we dequeue an SNode N. We denote by QIR

N the set of states
in S towards which we transition from N.states by applying IR, and build a set RN of
applicable inference rule schemata that are also accepted by the strategy.

If AX or ID are in RN and, moreover, their application leads S to transition to some
final states, then this branch of the derivation has been successful. We add a > leaf,

11

which is marked as Closed. Otherwise, for each IR ∈ RN we consider each instance ir
of IR with antecedents Γ1 ` ∆1, . . . ,Γk ` ∆k. If k = 0 and we reach some final state in S
by transition with IR, then this branch is successful and we add a > leaf that we mark
as Closed. Otherwise, if k > 1, we create an RNode R for ir and an SNode Ni for each
of its antecedents. If ∆i = /0 for some i ∈ [k], then Ni is marked as Failed. If this is not
the case for any i ∈ [k], then we add N1, . . . ,Nk to the work queue and continue.

Algorithm 2 Sketch of our exhaustive proof search implementation
input: an SL inductive system S , a basic sequent p(x) ` q1(x), . . . ,qn(x),

and a proof strategy NFA S = (QS,R sl
Ind,TS,q0,FS)

output: VALID and an S-proof starting with p(x) ` q1(x), . . . ,qn(x), built with R sl
Ind;

INVALID and a counterexample for p(x) ` q1(x), . . . ,qn(x);
UNKNOWN and the proof search tree constructed by the algorithm

1: Root← SNode(p(x) ` q1(x), . . . ,qn(x), [q0],null, [])
2: Queue←{Root}
3: while Queue 6= [] and Root is Unknown do
4: dequeue N from Queue
5: let QIR

N = {q′ | (q, IR)→ q′ ∈ TS and q ∈ N.states} for any IR ∈ R sl
Ind

6: let RN = {IR | QIR
N 6= /0 and IR applicable on N}

7: if AX ∈ RN and QAX
N ∩FS 6= /0 then

8: R← RNode(AX,null,N, []) and add R to N.children
9: N′← SNode(>,QAX

N ,R, []), add N′ to R.children and mark it as Closed
10: else if ID ∈ RN and QID

N ∩FS 6= /0 then
11: R← RNode(ID,N′,N, []) for some pivot N′ of ID and add R to N.children
12: N′← SNode(>,QID

N ,R, []), add N′ to R.children and mark it as Closed
13: else
14: for each instance ir of each IR ∈ RN do
15: R← RNode(IR,null,N, []) and add R to N.children
16: let k be the number of antecedents generated by ir
17: if k = 0 and QIR

N ∩FS 6= /0 then
18: N′← SNode(>,QIR

N ,R, []), add N′ to R.children and mark it as Closed

19: for each antecedent Γi ` ∆i of ir with i ∈ [k] do
20: Ni← SNode(Γi ` ∆i,QIR

N ,R, []) and add Ni to R.children
21: if ∆i = /0 then mark Ni as Failed
22: if R is not Failed then enqueue N1, . . . ,Nk in Queue

23: if Root is Closed then
24: return VALID and ExtractProof(Root)
25: else if Root is Failed then
26: return INVALID and ExtractCounterexamples(Root)
27: else return UNKNOWN and Root

When the status of Root changes to Closed, then a proof has been obtained. The
proof is extracted from the proof search tree and offered as a certificate. Otherwise, if
it changes to Failed, then at least one counterexample has been discovered. We extract
the counterexamples from the proof search tree and give them as witnesses. If the work

12

queue becomes empty, but the status of Root is still Unknown, then the proof search
was inconclusive and our entire proof search tree is returned as justification.

3.2 Case Study: Binary Trees
Consider the following ranked definitions for binary trees. The predicate tree accepts
any tree model, tree+

1 accepts trees with at least one node, and tree+
2 accepts trees with

at least one node in which the children of a node are either both allocated or both nil.
tree(x) :=St x≈ nil∧ emp | x 7→ (l,r), tree(l), tree(r)

tree+
1 (x) :=St x 7→ (nil,nil) | x 7→ (l,r), tree+

1 (l), tree(r) | x 7→ (l,r), tree(l), tree+
1 (r)

tree+
2 (x) :=St x 7→ (nil,nil) | x 7→ (l,r), tree+

2 (l), tree+
2 (r)

The entailments tree+
1 |=sl

St
tree, tree+

2 |=sl
St

tree and tree+
2 |=sl

St
tree+

1 hold, facts corrob-
orated by Inductor. A branch of the proof for tree+

2 (x) ` tree+
1 (x) is depicted below.

However, the reversed entailments do not hold and the counterexamples provided are:
– x≈ nil∧ emp for tree(x) ` tree+

1 (x) and tree(x) ` tree+
2 (x);

– x 7→ (l0,r0)∗ tree+
1 (l0)∗(r0 ≈ nil∧emp) for tree+

1 (x) ` tree+
2 (x). Note that predicate

atoms can occur within counterexamples and indicate that they can be substituted
by any model to obtain a more concrete one. In this case, an immediate substitution
with the base case of tree+

1 (l0) gives us x 7→ (l0,r0)∗ l0 7→ (nil,nil)∗(r0≈ nil∧emp),
which can be further simplified to x 7→ (l0,nil)∗ l0 7→ (nil,nil).

tree+

2(x) ` tree+

1(x)

x 7→ (l0,r0), tree+

2(l0), tree+

2(r0) ` tree+

1(x)

x 7→ (l0,r0), tree+

2(l0), tree+

2(r0)`x 7→ (nil,nil),∃l1∃r1 .x 7→ (l1,r1)∗ tree+

1(l1)∗ tree(r1),
∃l1∃r1 .x 7→ (l1,r1)∗ tree(l1)∗ tree+

1(r1)

tree+

2(l0), tree+

2(r0) ` tree+

1(l0)∗ tree(r0), tree(l0)∗ tree+

1(r0)

tree+

2(l0) ` tree(l0)

l0 7→ (l00,r00), tree+

2(l00), tree+

2(r00) ` tree(l0)

l0 7→ (l00,r00), tree+

2(l00), tree+

2(r00)` l0 7→ (nil,nil),∃l11∃r11 . l0 7→ (l11,r11)∗ tree(l11)∗ tree(r11)

tree+

2(l00), tree+

2(r00) ` tree(l00)∗ tree(r00)

tree+

2(l00) ` tree(l00)

>

LU

RU

RD

SP

LU

RU

RD

SP

ID

3.3 Case Study: Possibly Cyclic and Acyclic List Segments
Consider the following ranked definitions for possibly cyclic and acyclic list segments.

ls(x,y) :=Sl x≈ y∧ emp | x 7→ z, ls(z,y) lsa(x,y) :=Sl x≈ y∧ emp | ¬(x≈ y)∧ x 7→ z, lsa(z,y)

Naturally, the entailment lsa |=sl
Sl

ls holds, while ls |=sl
Sl

lsa does not. The proof for the
former case is shown below. In the latter case, the counterexample provided by Inductor
for ls(x,y) ` lsa(x,y) is x ≈ y∧ x 7→ z0 ∗ ls(z0,y), from which we can obtain the more
concrete one x≈ y∧ x 7→ z0 ∗ (z0 ≈ y∧ emp), further simplified to x 7→ x.

lsa(x,y) ` ls(x,y)

x≈ y∧ emp ` ls(x,y)

x≈ y∧ emp`x≈ y∧ emp, ls(x,y)

>

¬(x≈ y)∧ x 7→ z0, lsa(z0,y) ` ls(x,y)

¬(x≈ y)∧ x 7→ z0, lsa(z0,y)`x≈ y∧ emp,∃z1.x 7→ z1 ∗ ls(z1,y)

lsa(z0,y) ` ls(z1,y)

>

LU

RU

AX

RU

RD

ID

13

3.4 Case Study: List Segments of Even and Odd Length

Consider the following ranked definitions for list segments of even and odd length,
together with two alternate definitions of list segments with at least one element.

lse(x,y)←Seo x≈ y∧ emp | x 7→ z, lso(z,y)
lso(x,y)←Seo x 7→ y | x 7→ z, lse(z,y)

ls+(x,y)←Seo x 7→ y | x 7→ z, ls+(z,y)

l̂s
+
(x,y)←Seo x 7→ z, lse(z,y) | x 7→ z, lso(z,y)

The entailments lso |=sl
Seo

l̂s
+

, ls+ |=sl
Seo

l̂s
+

, ls+ |=sl
Seo

lse, lso and l̂s
+
|=sl

Seo
lse, lso hold,

while entailments such as lse |=sl
Seo

l̂s
+

, lse |=sl
Seo

lso, ls+ |=sl
Seo

lse or l̂s
+
|=sl

Seo
lso do not.

A branch of the proof for ls+(x,y) ` l̂s
+
(x,y) is shown below. For the invalid entail-

ments, Inductor gives the counterexamples: x≈ y∧emp for both lse(x,y) ` l̂s
+
(x,y) and

lse(x,y) ` lso(x,y); x 7→ y for ls+(x,y) ` lse(x,y); x 7→ z0 ∗z0 7→ y for l̂s
+
(x,y) ` lso(x,y).

ls+(x,y) ` l̂s
+
(x,y)

x 7→ z0, ls+(z0,y) ` l̂s
+
(x,y)

x 7→ z0, ls+(z0,y)`∃z1 .x 7→ z1 ∗ lse(z1,y),∃z1 .x 7→ z1 ∗ lso(z1,y)

ls+(z0,y) ` lse(z0,y), lso(z0,y)

z0 7→ z00, ls+(z00,y) ` lse(z0,y), lso(z0,y)

z0 7→ z00, ls+(z00,y) ` z0 ≈ y∧ emp,∃z01 .z0 7→ z01 ∗ lso(z01,y), lso(z0,y)

z0 7→ z00, ls+(z00,y)`z0 ≈ y∧ emp,∃z01 .z0 7→ z01 ∗ lso(z01,y),z0 7→ y,∃z11 .z0 7→ z11 ∗ lse(z11,y)

ls+(z00,y) ` lso(z00,y), lse(z00,y)

>

LU

RU

RD

LU

RU

RU

RD

ID

3.5 Experimental results

Table 1 summarizes the experimental results obtained for the entailments discussed in
§3.2-3.4 and Appendix A.2. All experiments were run on a 2.10GHz Intel R© CoreTM

i7-4600U CPU machine with 4MB of cache. For each case, we indicate: (i) the result
(column R), which can be V for VALID or I for INVALID, (ii) the total number of sequent
nodes (column Seq), the maximum number of sequent nodes along a branch (column
H) and the maximum number of (LU) and (SP) applications along a branch (columns
HLU and HSP) of the tree structure defined in Figure 2, which encodes the derivation,
(iii) the run time for the proof search algorithm (column T), and (iv) the total number
of calls to CVC4 (column CVC4).

As shown by the T column in both halves of the table, the execution times are fairly
low. The size of the derivations is influenced by how elaborate the inductive definitions
are. For instance, tree+

1 is defined by three predicate rules, thus when encountered on
the left-hand side of an entailment will generate a larger number of nodes due to left-
unfolding. On the right-hand side, the number of predicate rules in a definition and the
number of subgoals in each predicate rule both influence the complexity of (SP), which
can lead to higher execution times than expected, given the size of the derivation, since
all instances of (SP) need to be generated and then checked.

14

LHS RHS R Seq HSeq HLU HSP T CVC4 LHS RHS R Seq HSeq HLU HSP T CVC4

tree+

1 tree V 34 7 2 1 0.096s 9 tree tree+

1 I 7 4 1 0 0.033s 7
tree+

2 tree V 21 7 2 1 0.053s 7 tree tree+

2 I 7 4 1 0 0.028s 5
tree+

2 tree+

1 V 1477 11 3 2 5.515s 37 tree+

1 tree+

2 I 38 8 2 1 0.096s 14
lsa ls V 8 5 1 0 0.014s 2 ls lsa

I 7 4 1 0 0.015s 2
llsa lls V 21 9 2 1 0.048s 4 lls llsa

I 20 8 2 1 0.043s 4
lso l̂s

+
V 10 6 1 0 0.032s 5 lse l̂s

+
I 7 4 1 0 0.024s 4

ls+ l̂s
+

V 16 8 2 0 0.049s 9 lse lso
I 7 4 1 0 0.030s 5

ls+ lse, lso
V 8 5 1 0 0.020s 4 ls+ lse

I 13 6 2 0 0.075s 8
l̂s

+
lse, lso

V 9 5 1 0 0.028s 8 l̂s
+

lso
I 20 9 3 0 0.143s 12

Table 1. Experimental results

4 Conclusions

We describe an entailment checker tool called Inductor, which implements a cyclic
proof system for Separation Logic with inductive definitions and utilizes dedicated de-
cision procedures in the SMT solver CVC4 to establish the satisfiability of quantifier-
free or ∃∗∀∗-quantified Separation Logic formulae. The tool outputs a proof whenever
an entailment is found to be valid, or counterexamples when it is not. Soundness is
warranted by imposing a ranking restriction on the inductive system given as input. It
is possible, although the results may be inconclusive, to use Inductor outside of these
boundaries. We discuss several case studies and provide experimental results showing
fairly low execution times and moderate sizes for the derivations built by the tool in
order to obtain proofs or counterexamples.

Our inference rules build cyclic proofs with backlinks in similar fashion as CYCLIST
[3], closing recurring branches of a proof with (ID). We restrict backlinks to ancestral
nodes, which allows us to embed the condition necessary to ensure progress along an
infinite trace directly into (ID). Because we allow disjunctions on the right-hand side
of sequents and (RU) introduces all the cases of an inductive definition – as opposed to
CYCLIST and [6], which always choose only one – Inductor can tackle entailments such
as ls+(x,y) |=sl

Seo
l̂s
+
(x,y) in §3.4, which CYCLIST and [6] cannot prove. However, the

cut rule in [6] and the canonical rotation relation between trees in SLIDE [12] enable
these systems to show entailments such as the ones in Example 7, for which Induc-
tor cannot build proofs. On a different note, the fragment of inductive definitions that
SLIDE can translate to tree automata does not allow disequalities between variables,
thus it cannot handle predicates and entailments such as lsa(x,y) |=sl

Sl
ls(x,y) in §3.3.

SLEEK [5] and SPEN [9, 10] go further than Inductor and are able to check much
more complex verification conditions, involving, for instance, concatenations of predi-
cates, formulae equivalent to several unfoldings of a predicate and various combinations
of allocated heap cells and predicate calls. Although most of the inductive definitions
for data structures used in these entailments fall into the fragment accepted by Inductor,
the entailments themselves are out of the scope of our current implementation. Multiple
extensions of the inference rules are possible in order to allow the building of proofs for
such entailments (e.g. right unfolding inside the same formula multiple times, reducing
any subset of constraints) and are considered for future work.

15

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A.,
Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification:
23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceed-
ings. pp. 171–177. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

2. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech. rep., Depart-
ment of Computer Science, The University of Iowa (2017), available at www.SMT-LIB.org

3. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover. In: Pro-
gramming Languages and Systems: 10th Asian Symposium (APLAS’12). pp. 350–367.
Springer (2012)

4. Bussey, W.H.: Fermat’s method of infinite descent. The American Mathematical Monthly
25(8), 333–337 (1918)

5. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size and
bag properties via user-defined predicates in separation logic. Sci. Comput. Program. 77(9),
1006–1036 (Aug 2012), http://dx.doi.org/10.1016/j.scico.2010.07.004

6. Chu, D., Jaffar, J., Trinh, M.: Automatic induction proofs of data-structures in imperative
programs. In: Proc. of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, Portland, OR, USA, June 15-17, 2015. pp. 457–466. ACM,
New York, NY, USA (2015)

7. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C., Tison, S.,
Tommasi, M.: Tree automata techniques and applications (2005),
URL: http://www.grappa.univ-lille3.fr/tata

8. Echenim, M., Iosif, R., Peltier, N.: On the expressive completeness of Bernays-Schönfinkel-
Ramsey separation logic. ArXiv e-prints (feb 2018), https://arxiv.org/abs/1802.00195v2

9. Enea, C., Lengál, O., Sighireanu, M., , T.V.: Spen: A solver for separation logic. In: Barrett,
C., Davies, M., Kahsai, T. (eds.) NASA Formal Methods. pp. 302–309. Springer Interna-
tional Publishing, Cham (2017)

10. Enea, C., Sighireanu, M., Wu, Z.: On automated lemma generation for separation logic with
inductive definitions. In: Automated Technology for Verification and Analysis: 13th Inter-
national Symposium, ATVA 2015, Shanghai, China, October 12-15, 2015, Proc. pp. 80–96.
Springer International Publishing, Cham, Switzerland (2015)

11. Holı́k, L., Lengál, O., Simácek, J., Vojnar, T.: Efficient inclusion checking on explicit and
semi-symbolic tree automata. In: ATVA 2011, Proc. pp. 243–258 (2011)

12. Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation logic with
tree automata. In: Automated Technology for Verification and Analysis: 12th International
Symposium, ATVA 2014, Sydney, NSW, Australia, November 3-7, 2014, Proc. pp. 201–218.
Springer International Publishing, Cham, Switzerland (2014)

13. Iosif, R., Serban, C.: Complete cyclic proof systems for inductive entailments. CoRR
abs/1707.02415 (2017), http://arxiv.org/abs/1707.02415

14. Lengál, O., Simácek, J., Vojnar, T., Hruska, M., Holı́k, L.: libVATA - a C++ library for
efficient manipulation with non-deterministic finite (tree) automata.
URL: https://github.com/ondrik/libvata

15. Reynolds, A., Iosif, R., Serban, C.: Reasoning in the bernays-schönfinkel-ramsey fragment
of separation logic. In: Verification, Model Checking, and Abstract Interpretation: 18th Inter-
national Conference, VMCAI 2017, Paris, France, January 15–17, 2017, Proc. pp. 462–482.
Springer International Publishing, Cham, Switzerland (2017)

16. Reynolds, A., Iosif, R., Serban, C., King, T.: A decision procedure for separation logic in
SMT. In: Artho, C., Legay, A., Peled, D. (eds.) Automated Technology for Verification and
Analysis: 14th International Symposium, ATVA 2016, Chiba, Japan, October 17-20, 2016,
Proceedings. pp. 244–261. Springer International Publishing (2016)

16

17. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Proc. of
LICS. pp. 55–74 (2002)

18. Serban, C.: Inductor: an entailment checker for inductive systems.
URL: https://github.com/cristina-serban/inductor (2017)

19. Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT proof checking using a
logical framework. Formal Methods in System Design 42(1), 91–118 (2013)

17

A Additional Material

A.1 Specifying Proof Strategies as Automata

Inductor can also accept a proof strategy as input – if no proof strategy is given, then
S = (LU ·RU∗ ·RD ·SP?)∗ ·LU? ·RU∗ · (AX | ID) from [13, Theorem 7] will be used
as default. By Kleene’s Theorem, it is known that, given a regular expression, there
exists an equivalent nondeterministic finite word automaton (NFA), possibly with ε-
transitions (NFA-ε). Figure 3 depicts a straightforward NFA-ε that is equivalent to S.

q0start q1 q2 q3 q4 q5
LU

RU

RD SP LU

RU
AX

ID
ε

ε ε

ε

Fig. 3. An NFA-ε equivalent to our default proof strategy S

We are more interested in such a representation because, after applying a certain
inference rule, we want to easily check which inference rules that comply with the
strategy could be applied next. However, given an NFA-ε, the ε-transitions are cum-
bersome and, thus, we prefer an equivalent NFA – which is guaranteed to exist, since
the two classes of automata are known to be equivalent. As such, the proof strategies
that Inductor accepts as input are given as NFA, rather than regular expressions. The
definition of such an NFA is specified in a language inspired by the simplicity of the
one used by libVATA [14] and whose grammar is depicted in Listing 1.1.

<file> : ’Rules’ <rule_list> <automaton>
<rule_list> : <rule> <rule> ...
<automaton> : ’Automaton’ string ’States’ <state_list>

’Initial State’ <state> ’Final States’ <state_list>
’Transitions’ <trans_list>

<state_list> : <state> <state> ...
<state> : string
<trans_list> : <trans> <trans> ...
<trans> : ’(’ <state> ’,’ <rule> ’)’ ’->’ <state>
<rule> : string

Listing 1.1. Grammar for files specifying proof strategies as NFA

Using this language, Listing 1.2 defines an NFA that is equivalent with the NFA-ε from
Figure 3, and consequently, is also equivalent with our default proof search strategy.

Rules LU RU RD SP ID AX
Automaton Default States q0 q1 q2 q3 q4 q5

18

Initial state q0 Final states q5
Transitions
(q0, LU) -> q1 (q1, RD) -> q3 (q2, RI) -> q3 (q3, LU) -> q4
(q0, LU) -> q4 (q1, RD) -> q4 (q2, RI) -> q4 (q3, RU) -> q4
(q0, RU) -> q4 (q2, LU) -> q1 (q2, SP) -> q0 (q3, AX) -> q5
(q0, AX) -> q5 (q2, LU) -> q4 (q2, SP) -> q3 (q3, ID) -> q5
(q0, ID) -> q5 (q2, RU) -> q4 (q2, SP) -> q4 (q4, RU) -> q4
(q1, RU) -> q1 (q2, RI) -> q0 (q2, AX) -> q5 (q4, AX) -> q5
(q1, RD) -> q0 (q2, RI) -> q2 (q2, ID) -> q5 (q4, ID) -> q5
(q1, RD) -> q2

Listing 1.2. The definition of the NFA corresponding to the default proof search strategy

A.2 Case Study: Lists of Possibly Cyclic and Acyclic List Segments

We adapt the acyclic list segments definitions from the previous section to a fragment
in which each memory location points to a pair of locations, and use them to define lists
whose elements point at cyclic or acyclic list segments. The last elements of these list
segments are, in turn, linked backwards and the last element of the primary list points
to the last element of the last secondary list segment.

ls(x,y) :=Sll x≈ y∧ emp | x 7→ (z,nil), ls(z,y)

lsa(x,y) :=Sll x≈ y∧ emp | ¬(x≈ y)∧ x 7→ (z,nil), lsa(z,y)

lls(x,v) :=Sll x≈ v∧ emp | x 7→ (z,u)∗w 7→ (v,nil), ls(u,v), lls(z,w)

llsa(x,v) :=Sll x≈ v∧ emp | x 7→ (z,u)∗w 7→ (v,nil), lsa(u,v), llsa(z,w)

The entailment llsa |=sl
Sll

lls holds, while its reverse lls |=sl
Sll

llsa does not. Part of the
proof for llsa(x,v) ` lls(x,v) is shown below. The subproof for lsa(u0,v) ` ls(u0,v) is
mostly skipped as it is identical to the one from §3.3 modulo a variable renaming.

llsa(x,v) ` lls(x,v)

x 7→ (z0,u0)∗w0 7→ (v,nil), lsa(u0,v), llsa(z0,w0) ` lls(x,v)

x 7→ (z0,u0)∗w0 7→ (v,nil), lsa(u0,v), llsa(z0,w0)`x≈ nil∧ emp,∃z1∃u1∃w1 .x 7→ (z1,u1)∗w1 7→ (v,nil)∗ ls(u1,v)∗ lls(z1,w1)

lsa(u0,v), llsa(z0,w0) ` ls(u0,v)∗ lls(z0,w0)

lsa(u0,v) ` ls(u0,v)

...

lsa(u00,v) ` ls(u00,v)

>

llsa(z0,w0) ` lls(u0,w0)

>

LU

RU

RD

SP

LU

ID

ID

The counterexample provided by Inductor for lls(x,v) ` llsa(x,v) is x 7→ (z0,u0) ∗
w0 7→ (v,nil)∗ (u0 ≈ v∧u0 7→ (u00,nil)∗ ls(u00,v))∗ lls(z0,w0), from which we obtain
the more concrete one x 7→ (z0,u0) ∗w0 7→ (v,nil) ∗ (u0 ≈ v∧ u0 7→ (u00,nil) ∗ (u00 ≈
v∧emp))∗(z0 ≈w0∧emp), further simplified to x 7→ (z0,v)∗z0 7→ (v,nil)∗v 7→ (v,nil).

19

