
Detecting Deadlocks in Formal System Models

with Condition Synchronization

Eduard Kamburjan

Department of Computer Science, Technische Universität Darmstadt, Germany
kamburjan@cs.tu-darmstadt.de

Abstract. We present a novel notion of deadlock for synchronization
on arbitrary boolean conditions and a sound, fully automatic deadlock
analysis. Contrary to other approaches, our analysis aims to detect dead-
locks caused by faulty system design, rather than implementation bugs.
We analyze synchronization on boolean conditions on the �elds of an ob-
ject instead of targeting speci�c synchronization primitives. As usual, a
deadlock is a circular dependency between multiple tasks. A task depends
on a second task if the execution of this second task has a side-e�ect that
makes the blocking guard-condition of the �rst one evaluate to true. This
requires an analysis of the computations in a method beyond syntactic
properties and we integrate a logical validity calculus to do so.

1 Introduction

Deadlock is an essential notion of error in distributed systems and is commonly
de�ned as a blocked con�guration with circular dependencies among multiple
tasks. Deadlocks have been examined for di�erent notions of dependency: Re-
source dependencies are de�ned between acquire and release actions, or message
dependencies, which are de�ned between receiving and sending actions on chan-
nels, and other notions based on other synchronization primitives.

The control �ow of a system design or model is described using common
synchronization primitives like locks, in most languages. The primitives reduce
to one of the aforementioned dependency notions and allow to use dependency
analyses for deadlock detection. Systems however are rarely directly designed
with concrete primitives in mind � the design makes use of the more abstract
synchronization patterns with synchronization on conditions. Condition synchro-
nization can be expressed with, e.g., a statement await i>0, which suspends the
active task until the guard-condition i>0 becomes true. Such a statement is not
available in most languages, but can be seen as an abstraction to the established
conditional variables pattern with monitors and loops. The direct use of a condi-
tion synchronization statement is nearer to the modelers intention of when a task
will resume. Condition synchronization can be compiled into low-level synchro-
nization primitives, but they do not trivially reduce to resources or messages:
the most common compilation into condition variables requires the addition of
new monitors, locks and loops.

We propose a formalization of dependency that �ts the intuition of the sys-
tem designer better than purely syntactical approaches or approaches based on
translation into low-level synchronization primitives. A task t1 depends on t2 if
the continuation of t2 would make the guard-condition b of t1 true at a point
where t1 may be scheduled. This notion of dependency requires to evaluate the
guard b and to analyze all side-e�ects of the continuation of t2.

The analysis builds a dependency graph: First, for each �eld new dependen-
cies are added from each read in a condition synchronization to each write. In
the second step, all those edges are removed, for which we can show that the
execution of the writing method will never make the guard in question true.

The actor-based, object-oriented Abstract Behavioral Speci�cation (ABS)
modeling language [12] implements an await statement. But all three deadlock
analysis tools developed for ABS [8�10] do not consider dependencies intro-
duced by await statements. Motivated by this shortcoming, we implemented our
approach for ABS, while the theory can be applied to other languages.

Our implementation extends the DECO tool [8] in the Static Analysis for Ac-
tive Objects (SACO) toolsuite, and integrates the KeY-ABS theorem prover [5]
to discard dependencies.

We evaluate our approach on industrial case studies, which show that the pre-
cision depends on the communication structure and the complexity of required
SMT-theories for the types occurring in the program. It also shows that our anal-
ysis is precise enough for useable feedback in most cases and gives valuable clues
to detect deadlocks caused by errors in the modeled system rather than errors
stemming from the wrong use of synchronization primitives: The number of false
positives in all but one case studies is small enough to check all detected potential
deadlocks by hand. Our main contributions are (1) a novel notion of dependency
and deadlock for condition synchronization and (2) a sound deadlock analysis for
full coreABS that integrates a theorem prover into a dependency-based deadlock
analysis.

This paper is organized as follows: Section 2 introduces condition synchro-
nization and gives examples of its usage as an abstraction for low-level syn-
chronization primitives. Section 3 introduces a simple language with condition
synchronization. Section 4 de�nes our notion of deadlock and Section 5 describes
our analysis for it, Section 6 reports on the implementation and Section 7 con-
cludes with future and related work.

2 On Condition Synchronization in System Design

Our aim is to analyze the control �ow of a system design to ensure that it
does not include circular dependencies. For this, we concentrate on the boolean
conditions on which processes may synchronize to achieve the intended control
�ow. We are not concerned with the usage of low-level primitives like locks:
Deadlocks caused by low-level primitives are indications of incorrect usage of
the concurrency model, e.g., forgetting to unlock or unlocking twice. Deadlocks

caused by the boolean conditions are signs of errors in the design: the program
cannot progress because its designed control �ow itself contains a bug.

1 public void m1() {
2 lock.lock();
3 a = 1;
4 aIsOne.signalAll();
5

6 }
7 public void m2(){
8 lock.lock();
9 while(a != 1) aIsOne.await();
10 a = 0;
11 lock.unlock();
12 }

1 public void m1() {
2 lock.lock();
3 a = 2; //bug
4 aIsOne.signalAll();
5 lock.unlock();
6 }
7 public void m2(){
8 lock.lock();
9 while(a != 1) aIsOne.await();
10 a = 0;
11 lock.unlock();
12 }

Fig. 1. Two Java snippets for condition variables. The methods run in separate threads.

Example 1. Consider the Java code on the left in Fig. 1. If both described meth-
ods are running in parallel in two threads on the same object, they need not
progress, as m1 fails to unlock. Now consider the Java code on the right. Again
both methods may not progress � however the reason is that m2 waits for m1
to change the internal state. The �rst example is an implementation bug: The
lock is used wrongly. The second example is a design bug: the combined control
�ow of m1 and m2 is designed wrongly � m2 does not continue after m1.

Both kinds of errors cannot be sharply distinguished � a wrong usage of syn-
chronization primitives may also be a result of erroneous design, e.g., if unlocking
twice is a consequence of the intended control �ow. Deadlocks caused by syn-
chronization primitives have been studied extensively [4, 9�11, 20, 22] and focus
for the most part on syntactic properties, not information in the guard. In this
work we concentrate on condition synchronization. We aim to detect bugs in the
design itself, helping the software architect, not the implementing programmer
and use this system model: We abstract away from the low-level primitives and
only consider the aforementioned await statement with a cooperative scheduling
concurrency model, where every context switch is explicit.

Condition Synchronization as Abstraction To illustrate the di�erence between
condition synchronization and synchronization via low-level primitives, we show
the use of condition synchronization as an abstraction of condition variables.
A conditional variable is a predicate associated with a monitor and a lock. All
threads waiting for the condition are noti�ed by the monitor once the predicate
may become true. If the guard evaluates to false, the noti�ed threads become
inactive again.

1 public void put(Object x) {
2 lock.lock();
3 while (count >= items.length)
4 notFull.await();
5 //add x to queue here
6 notEmpty.signalAll();
7 lock.unlock();
8 }

1 put(Object x){
2 await count < items.length;
3 //add x to queue here
4 }

Fig. 2. A Java method and its Abstraction

The Java code on the left in Fig. 2 shows the use of condition variables to
add an element to a bounded queue, once the queue is not full. Here, the thread
waits for the list to be below its maximal capacity. Otherwise it waits on the
monitor notFull until the state changes and it is noti�ed. If it modi�es the
state itself, it noti�es all threads waiting for the list to be not empty by calling
signalAll on the monitor notEmpty. Deadlock analysis can be performed by
analyzing the possible sequences of calls to await and signalAll [16], as every
call to signalAll causes the process to execute one more loop iteration.

With condition synchronization and cooperative scheduling, we can express
this method as shown on the right in Fig. 2. The lock and the monitors are not
part of the code, it is thus not necessary to check their correct usage already
in the design: The method only switches context at the await statement and
continues execution once its guard evaluates to true.

Condition Synchronization as a Modeling Tool Condition synchronization is not
only a useful tool for modeling, it clari�es reasoning about control �ow by ab-
stracting from implementation details. E.g., in the above example the notEmpty
and notFull monitors are not part of the code. This makes it unnecessary to
ensure that the correct monitors are used.

Notions of deadlock for condition variables based on the correct use of the
involved primitives have two down-sides: First, the condition itself is not de-
termining the dependencies � dependencies are determined by the additional
structure the programmer assumes to guarantee deadlock freedom. This struc-
ture (1) leads to a large overhead, as for each condition a monitor has to be added
and (2) adds another layer between the system design and the analyzed artifact.
Secondly, in the sketched situation in Java, the waiting thread may progress, if
another process was active and called signalAll; as it must execute the loop
to reevaluate its guard-condition. We abstract away from the reevaluation, and
assume it is handled by the runtime environment � by abstracting to condition
synchronization, the results are nearer to the intuition of the designer.

3 A Language with Boolean Guards and Dynamic Logic

We introduce a simple language SYNC with cooperative scheduling, asynchronous
communication and conditional synchronization. SYNC is a simpli�ed version of
ABS [12], following the formalization of the semantics in [8]. We ignore futures,
which synchronize processes on termination similar to thread joins, and return
values for presentation's sake, as those dependencies have been described by
Flores-Montoya et al. [8]. Our implementation considers full coreABS.

A SYNC-program is a set of objects and a main block. Each object has �elds
and methods. All objects are running in parallel and share no state. An object
may only change its active task, if the active task explicitly releases control.
Control can be released by termination or a special statement await b; which
suspends the active task, and allows its reactivation only once the boolean ex-
pression b evaluates to true. This statement models condition synchronization
within one object. Between multiple objects, only asynchronous method calls of
the form async X.m(e) are possible. Such an statement has been introduced and
examined earlier [21], but does not correspond to other await concepts. E.g.,
pthreads implements an await function, but usess it to implement barriers, not
condition synchronization. As seen in the previous Section, await can be compiled
into condition variables.

De�nition 1 (Syntax). We underspecify the sets of types and expressions. For
the examples, we assume types for booleans, integers, lists and Object, as well as
the usual operations and literals for their elements. Let e range over expressions,
T over types, v over variable names, f over �eld names and X over object names.
· denotes possibly empty lists. A program Prgm is de�ned as follows:

Prgm ::= O main{s} O ::= object X {M T f = e} M ::= m(T v){s}
s ::= async e.m(e) | f = e | T v = e | await e | if(e)s else s � | skip | s; s

Example 2. In the following code, the object Queue models a queue with maxi-
mal length of 5 and the main block pushes a number into the queue and after-
wards removes it. It is not guaranteed that the push method will start to execute
�rst. The synchronization with await, however, guarantees that it terminates �rst.

1 object Queue{
2 List<Int> list = Nil;
3 push(Int i){ await size(list) < 5; list = [i]::list;}
4 pop(){ await size(list) > 0; list = tail(list);}
5 }
6 main{
7 async Queue!push(1);
8 async Queue!pop();
9 }

De�nition 2 (Runtime Syntax). D is the value domain, with {tt,ff} ⊆ D.
Let X range over object names, i over N, s over statements, σ over functions

tsk(X, i, await e, σ) obj(X, i, ρ) C
→(i) tsk(X, i, await e, σ) obj(X,⊥, ρ) C

(wait)
JeKσ,ρ = tt

tsk(X, i, await e, σ) obj(X,⊥, ρ) C
→(i) tsk(X, i,⊥, σ) obj(X, i, ρ) C

(cont)

JeKσ,ρ = X′ j does not appear in C C = obj(X′, l, ρ′) obj(X, i, ρ) C′

tsk(X, i, async e.m(e), σ) C

→(i,j) tsk(X, i,⊥, σ) tsk(X′, j,M(m), M̂(JeKσ,ρ)) C

(call)

Fig. 3. Selected Small-Step Operational Semantics Rules

that map variable names to domain elements and ρ over functions that map �eld
names to domain elements. We de�ne con�gurations C as follows:

C ::= tsk(X, i, s, σ) | obj(X, i, ρ) | C C

The composition of con�gurations is commutative and associative, i.e. C C′ =
C′ C and C (C′ C′′) = (C C′) C′′. Well-formedness conditions can be found in [12].

A con�guration contains tasks and objects. An object obj(X, i, ρ) has a unique
name X, an active task id i and a store ρ. If inactive, the task id is the special
symbol ⊥. A task tsk(X, i, s, σ) has a unique id i, a local store σ, the id of its
object X and the remaining statement. A terminated task has the special symbol
⊥ as its statement.

We denote the initial con�guration of a program Prgm with I(Prgm). The
de�nition is straightforward and the main block is running in a special object.
We assume that each store ρ is initialized with a special �eld Xf for each object
X with ρ(Xf) = X. The method body of a method m is denoted M(m) and the

initial local store of a task executing m with parameters d with M̂(d).

The most important rules are shown in Fig 3: The rule (wait) suspends a pro-
cess by setting the task id of the corresponding object to ⊥. The await statement
is not removed. The rule (cont) removes the await statement when reactivating a
process � the corresponding object must be inactive and the guard must hold.
The rule (call) starts a new process, which is not set as active upon creation.

A con�guration is terminated if all tasks and objects have the forms

tsk(Xi, i,⊥, σi) obj(X,⊥, ρX)

A con�guration is stuck, if it can not be reduced further but it is not terminated.
We denote with JeKσ,ρ the evaluation of e with the stores σ and ρ. We write C |= e

i� JeKσ,ρ = tt and the object whose store ρ is evaluated is understood.

We index the reduction relation with a tuple of active tasks. A singleton
tuple (i) expresses that only i is active, a tuple (i, j) expresses that i is active
and launches j. This allows us to reason about restricted behavior, i.e. C⇒(i) C

′

expresses that C′ is reachable from C only by executing the task with id i.

De�nition 3 (Run). Let C1, . . . ,Cn be con�gurations. A run from C1 to Cn is
denoted C1 ⇒ Cn and de�ned as a tuple C1, . . . ,Cn with

C1 →I1 C2 →I2 . . .→In−1
Cn

for some tuples of task-ids I1, . . . , In−1. We say that the run is annotated with
I1, . . . , In−1. For simplicity, we assume that all runs are �nite.

Using the annotated tuples, we can de�ne rooted runs: A run rooted in a
task-id i is a run which only executes task i and tasks started by task i. Rooted
runs allow one to reason about system behavior caused by a certain task.

De�nition 4 (Rooted Runs). Let the following be the graph of some tuple of
tuples of task ids I = (I1, . . . , In):

G
(
I
)
=
(
V,E

)
V = {i | id i occurs in some Ik} E =

{
(i, j) | ∃k < n. Ik = (i, j)

}
A tuple I is rooted in i, if G(I ′) is a tree with root i for each pre�x I ′ of
I. A run rooted in i, denoted C1 ⇒i Cn, is a run C1, . . . ,Cn annotated with
I = I1, . . . , In−1, such that I is rooted in i.

De�nition 5 (≡eX). We write C ≡eX C′ if two con�gurations are equal every-
where, except for the values of �elds occurring in an expression e of object X:

C ≡eX C′ ⇐⇒ ∃C′′. C = C′′ obj(X, i, ρ) ∧ C′ = C′′ obj(X, i, ρ′) ∧
∧

f 6∈fields(e)

ρ(f) = ρ′(f)

3.1 Dynamic Logic

We use a dynamic logic, called SDL based on ABSDL [7] to reason about pro-
grams. SDL extends �rst-order logic with a modality for SYNC programs and
allows us to reason about all possible runs of a method. We refer to [5,7] for full
formal details about ABSDL.

De�nition 6 (Syntax). Let v range over logical variables and f over function
symbols. SDL-formulas φ and terms t are de�ned by the following syntax:

φ ::= ∃ v. φ | ¬φ | φ ∨ φ | [s]φ | 〈[s]〉φ | t .= t t ::= f(t) | v

The modality [s]φ expresses that φ holds after the execution of s and at every
suspension point within. We introduce 〈[s]〉φ below. A formula is valid if it holds
in all models. The other formulas express constraints on given con�gurations. We
assume a formalization of the heap with two function symbols store and select
with the connecting axiom

select(store(heap, o, f, value), o, f)
.
= value

for every heap heap, object o, �eld f and value value. A modality-free formula
holds in a con�guration if the constraints are satis�ed � select is interpreted such
that select(heap, o, f)

.
= value) is satis�ed in a con�guration C if C has the form

obj(X, i, ρ) C′ and ρ(f) = JvalueKρ,σ ∧ JoKρ,σ = X holds. The local store σ is also
modeled globally, with one special function for each local variable. We assume
for simplicity that all local variables have unique names.

Example 3. The following formula states that if in the beginning o.f is positive,
then after the execution of f = f+1; in o, o.f is strictly positive.

o.f ≥ 0→ [f = f+1;]o.f > 0

The full semantics and a sequent calculus for validity are presented in [5, 7].
A sequent calculus operates on sequents of the form Γ ⇒ ∆, where Γ,∆ are
sets of SDL-formulas. Contrary to [7] we use the sequent calculus not to ensure
that an invariant is preserved by a method, but only to check that the method
establishes a certain post-condition at all suspension points.

We only show the rule for the await statement. The following rule is taken
from [5, 7] and replaces the heap by a new function symbol to erase all knowl-
edge. Afterwards, only the guard expression can be assumed. This mirrors the
concurrency model, as other tasks may modify the heap. It also proves that the
post-condition holds at each such point:

Γ ⇒ φ,∆
Γ ⇒ {heap := newHeap}e→ [s]φ,∆

Γ ⇒ [await e; s]φ,∆
(await)

We require a way to reason about all suspension points, except the �rst one.
This is needed to verify that a method will ful�ll a post-condition after being
suspended at least once � it is not relevant whether the execution up to the �rst
suspension satis�es the post-condition. Thus we use a special modality 〈[s]〉φ
that expresses that φ holds after the execution of s and at each suspension point
in s, except the �rst one. The calculus is the same, except that for the await

statement, we use the following rule which does not check the post-condition.
Note that afterwards the usual modality is used.

Γ ⇒ {heap := newHeap}e→ [s]φ,∆

Γ ⇒ 〈[await e; s]〉φ,∆
(await)

The connection to the language's SOS semantics follows from the correctness
of the underlying validity calculus [7].

Lemma 1. Let φ be a modality-free formula which contains function symbols
only for the �elds of object X, 〈[s]〉φ a formula and C1 a con�guration of the form

C1 = tsk(X, i, s, σ) obj(X, i, ρ) C′

If the proof for 〈[s]〉φ can be closed, then for every run C1 ⇒i Cn with intermediate
con�gurations C1,C2, . . . ,Cn the following holds: At every position, except the
very �rst, with a transition Ck →(i) Ck+1 such that i is active in X in Ck, but
not in Ck+1, (i.e., these con�gurations execute suspension points) φ holds in Ck.

4 Dependencies for Condition Synchronization

A deadlock describes a stuck con�guration, where tasks circularly depend on each
other. To �x the notion of deadlock, we need to �x the notion of dependency.

Intuitively, a stuck task t depends on a task t′ in a given con�guration C,
if the continued execution of t′ leads to a con�guration where t can continue
its execution. If t′ is stuck at some guard b too, then t depends on t′ if the
continuation of t′ in some con�guration C′ where b holds leads to a con�guration
where t can continue its execution. We demand that C and C′ are as similar as
possible: they are equal everywhere but in the �elds occurring in b, as de�ned
in Def. 5.

De�nition 7. We formally de�ne a predicate dep(C, i, j) which expresses that i
depends on j in con�guration C. The formalization is not in SDL but references
SDL-formulas. To do so, we �rst de�ne a family of predicates n-dep(C, i, j), to
model that i depends on j with at most n enforced continuations. Let C be a
con�guration of the form

tsk(X, i, await e; si, σi) tsk(X, j, sj , σj) obj(X,⊥, ρ) C0

The base predicate models that by executing only j, a con�guration can be reached,
such that e evaluates to true: 0-dep(C, i, j) ≡ C 6|= e ∧ ∃C′. (C⇒j C

′ ∧ C′ |= e)
The other predicates handle the case that both i and j are blocked and j has

the guard e′: and by choosing a con�guration C′′ w.r.t. C′, the guard e′ evaluates
to true and in this con�guration i depends on j.

n-dep(C, i, j) ≡∃e′. ∃C′,C′′. sj = await e′; s′j ∧ C 6|= e ∧ C 6|= e′ ∧ C ≡e
′

X C′

∧ C′ |= e′ ∧ C′ 6|= e ∧ C′ ⇒j C
′′ ∧

(
C′′ |= e ∨ (n−1)-dep(C′′, i, j)

)
Task i depends on j in C, written dep(C, i, j), if some n-dep(C, i, j) holds.

We can now distinguish between deadlock and starvation.

De�nition 8 (Deadlock and Starvation). The dependency graph of a con-
�guration has its task ids as nodes and its dependencies as edges. A stuck con-
�guration is deadlocked if its dependency graph contains a dependency cycle. A
con�guration is starving, if it is stuck, but not deadlocked.

A starving con�guration requires some condition e to become true, but no task
can have such an e�ect. Sometimes an active process which tries to acquire a
resource is also said to be starving, but in our framework this is abstracted to
await isAvailable(this.resource) � all starving processes are stuck.

Example 4 (Deadlock and Starvation). Consider the program on the left in Fig-
ure 4. Its execution leads to the con�guration

tsk(X, 1, await f1; f2 = True;, σ1) tsk(X, 2, await f2; f1 = True;, σ2)

obj(X,⊥, ρX) tsk(X0, 0,⊥, σ0) obj(X0,⊥, ρX0)

This con�guration is deadlocked as for the dependency of task 1 on task 2 we
can set X.f1 = True and for the dependency of task 2 on task 1 we can set
X.f2 = True. Now consider the right program is Figure 4. Its execution leads to

C =tsk(X, 1, await f1; f2 = True;, σ1) tsk(X, 2, await f2; f1 = False;, σ2)

obj(X,⊥, ρX) tsk(X0, 0,⊥, σ0) obj(X0,⊥, ρX0
)

C is starving, as task 1 does not depend on task 2: no con�guration can be chosen
to continue task 2, so it leads to a con�guration that evaluates X1.f1 to True.

1 object X{
2 Bool f1 = False; Bool f2 =

False;
3 m(){ await f1; f2 = True; }
4 n(){ await f2; f1 = True; }
5 }
6 main{async X.m(); async X.n();}

1 object X{
2 Bool f1 = False; Bool f2 =

False;
3 m(){ await f1; f2 = True; }
4 n(){ await f2; f1 = False; }
5 }
6 main{async X.m(); async X.n();}

Fig. 4. Two example programs: The left will deadlock, the right will starve.

It is undecidable in general whether a con�guration is deadlocked, as the
computation of the dependency includes the computation of all e�ects caused
by the program following a guard. Program and guard are both turing-complete,
thus one can de�ne a function encoding the universal turing machine and check
in the guard for some property of the output of another turing machine, which
is computed/encoded in the code of another method.

Proposition 1. Given a stuck con�guration C, it is not decidable whether C is
deadlocked or starving.

Indeed even the dependency relation is undecidable. This result may appear
discouraging, but the presented notion of deadlock captures the intent of the
designer more precisely than notions which do no take the information �ow
through the heap into account and do not di�erentiate between deadlock and
starvation. The aim of our analysis is to present clues to the designer where the
intended control �ow has circular dependencies. It does not aim to catch any
kind of error and is not supposed to catch implementation bugs, where every
erroneous state is undesirable. The aim is to catch speci�c logical errors in the
design of the control �ow. Under these assumptions, undecidability is not a deal-
breaker. Indeed, if the notion would be decidable, it would restrict the possible
guards � our aim however is to give the designer full freedom and support him
with clues where it might deadlock, not guarantee complete error-freedom.

Similarly, it is useful to distinguish between deadlock and starvation. Both
notions describe erroneous states, but the reason are di�erent design �aws. Also,
starvation is not always undesirable. Consider the following method:

1 server(){
2 await requestList != Nil;
3 //handle requests
4 async this.server();
5 }

Here, the object bu�ers and handles multiple requests at once. This pattern

is used in practice [15]. Starvation is only caused by a lack of requests, not
erroneous control �ow. Similarly, the right code in Figure 1 will terminate in a
starving con�guration, as m1 does not depend on m2. A starvation analysis would
also be useful, but is out of the scope for this work.

5 Analyzing Condition Synchronization

To detect deadlocks, the abstract dependency graph is computed. The abstract
dependency graph subsumes all dependency graphs of reachable stuck con�gu-
rations in a program: If the dependency graph of a reachable stuck con�guration
has a circular dependency, then the abstract dependency graph also has one.

Our approach extends the one of Flores-Montoya et al. [8] and the imple-
mentation thus handles a language with condition synchronization and synchro-
nization on futures, i.e., termination of tasks. For presentation's sake, we only
de�ne the object-insensitive abstract dependency graph. Improvements of [8] can
still be applied, e.g., their main improvement relies on a may-happen-in-parallel
analysis, which is extended for condition synchronization in [2]. The abstract
dependency graph is de�ned syntactically. Let P be a program.

De�nition 9. Let X1, . . . ,Xn be all objects in P and mi,1, . . . , mi,o the methods
of Xi. The abstract dependency graph A(P)=(V,E) is de�ned as follows:

� The nodes are all methods, i.e. V =
(
mi,j
)
i≤n
j≤o

� Edges connect methods with writes into a �eld with methods which synchro-
nize on this �eld: (mi,j , mk,l) ∈ E i� there is a �eld f such that mi,j contains
a guard with f and mk,l contains f = e or a call to a method doing so.

Note that a guard may contain multiple �elds and that methods on di�erent
objects may depend on each other. At this point, we do not analyse here whether
call or write statement are in a branch or in dead code.

Example 5. Consider the following code and its abstract dependency graph

1 object X {
2 Bool b1 = False; Bool b2 = False;
3 m(){ b1 = True; await b2; }
4 n(){ await !b1; b2 = True; }
5 }
6 main { async X.m(); async X.n();}

X.mX.n

To incorporate the side-e�ects of computations, we make two additional
steps. The �rst improvement aims to discards cycles because there is no reach-
able deadlock con�guration to which they correspond. In De�nition 9, the whole
method was checked for written �elds. A cycle, however, only represents some
concrete con�guration where the processes hold at speci�c guards: every �eld in a
deadlocked con�guration must be written after some synchronization statement.

De�nition 10 (Feasibility). A cycle m1, . . . , mn in A(P) is feasible, if for each
k < n, every write causing the edge (mk, mk+1) is after the �rst guard of mk+1.

Nonfeasible cycles contain edges that refer to information �ow that happens
during the execution of an involved method, but before the stuck con�guration
is reached:

Example 6. Consider again Example 5. The edge from X.n to X.m is added,
because the �eld b1 is written in m and read in a guard in n. This edge is missing
in all concrete dependency graphs of reachable stuck con�gurations, because in
the stuck con�gurations X.m has already reached its guard and thus will not
change b1. I.e., the cycle (X.n,X.m,X.n) is not feasible.

We may increase the accuracy further by analyzing the transmitted informa-
tion: We ensure that every edge is refering to a write statement which actually
may release the guard. To do so for a guard e and a method mk,l with method
body s, we must ensure that after some suspension of inside of s the guard e

evaluates to true. We may ignore the �rst suspension, as all side e�ects before
it cannot in�uence the heap afterwards. I.e., if the formula 〈[s]〉¬e is valid, then
after no execution of mk,l can resolve the blocking guard and we can remove the
dependency edge.

De�nition 11 (Re�ned Abstract Dependency Graphs). Let G = (V,E)
be an abstract dependency graph. Let (mi,j , mk,l) be an edge, added because of
a statement await e in mi,j. Let s be the body of mk,l The edge (mi,j , mk,l) is
dispensable if the formula 〈[s]〉¬e holds.

The re�ned abstract dependency graph of a program is the graph that results
from removing all dispensable edges from its abstract dependency graph.

The use of the 〈[·]〉 is necessary, as we only reason about stuck con�gurations,
thus we can ignore any side e�ects that happen before the �rst guard - they do
not refer to information �ow that may release another guard afterwards.

Example 7. Consider the right program in Figure 4. As discussed this program
will starve, but deadlock. The left graph below is its abstract dependency

graph, the right graph the re�ned abstract dependency graph:

X.mX.n X.m X.n

Theorem 1 (Soundness). If a program has a reachable deadlocked con�gura-
tion, then its re�ned abstract dependency graph has a feasible cycle.

6 Evaluation

We implemented our approach in the SACO [1] framework for coreABS and use
KeY-ABS [5] as the theorem prover to check the condition for re�ned abstract
dependency graphs1. Existing tools did not support conditional synchronization,
so only six case studies made use of this feature. Our work is the �rst to imple-
ment a deadlock analysis for boolean guards and we rely on micro-benchmarks

1 class Server implements S{
2 List<Work> wList = Nil;
3 Int status = 0;
4 Unit in_pool(){
5 await status == 1;
6 wList = 1;}
7 Unit add_worker(Fut f){
8 await f?;
9 wList = [new Work()| wList];}

10 Unit run(){
11 this!init_all();
12 Fut f = this!in_pool();
13 this!add_worker(f) }
14 Unit init_all(){
15 status = 1;
16 await length(wList) >= 2;
17 wList = [new Work()| wList];
18 status = 2; }}

Fig. 5. An ABS class modeling the internal synchronization structure of a server during
initialization. The main block is omitted and the ABS code is pretti�ed.

to evaluate on a wider code base. Case studies and micro-benchmarks cover full
coreABS, including loops. The implementation is fully automatic.

We can show that the right example in Figure 4 is deadlock free. Figure 5
mixes conditional synchronization and synchronization on futures. The imple-
mentation can deal with deadlocks where some dependencies are caused by fu-
tures and some dependencies are caused by condition synchronization. This ex-
ample requires the application of the theorem prover: two false positive deadlock
risks are found otherwise. Similarly, Example 2 requires the theorem prover to
be shown as deadlock-free.

We analyzed the two largest examples in ABS, the FredHopper trading and
replicate systems which model industrial software systems [6], and found 20
deadlock risks in the trading system and 52 in the replicate system. One reason
for this is that the replicate system uses deployment components [13] modeling
cloud architecture, which are not supported by KeY-ABS. In [2, 8] the trading
system was already analyzed in a setting with conditional synchronization as
deadlock free. In that work, only the MHP analysis was adjusted for conditional
synchronization, the deadlock analysis however was not sound and does not
detect the deadlock in the left program in Figure 4. We were able to manually
identify all 20 deadlock risks as false postives and con�rm that the trading system
is deadlock free. Manual post-processing is acceptable as the tool outputs the
methods involved in the deadlock risk and 18 of the 20 deadlock share one edge.

We analyzed the non-trivial models for industrial architecture from Hy-
Var [18] and FormbaR [14]. Additionally, we evaluated an ABS model for weak
memory [15], an ABS model for resource consumption in YARN clusters [17],
and the Compugene model for computational biology2. The analysis returns
3 (resp. 3 and 1) potential deadlocks, which are easily manually identi�ed as
false positives. The false positives in the YARN model are again due to the use
of deployment components. The analysis con�rms deadlock-freedom of an ABS
Blockchain model [19]. The right side of Table 1 summarizes our evaluation on
these case studies. The critical edge column shows how many edges needs to be

1 Available under formbar.raillab.de/deadlock
2 http://www.compugene.tu-darmstadt.de

Selected Microbenchmarks (5 of 42)
Name LoC deadlock-free time found deadlocks
back_dead 39 × 8ms 1
OneQueue 37 × 13ms 2
Figure 5 43 X 7ms 0
Transitive 52 × 10ms 1
Loop 39 × 8ms 1

Case Studies
Study LoC potential deadlocks time critical edges
BlockChain 620 0 1312ms -
Compugene 860 1 83ms 1
Memory 351 3 49ms 2
YARN 199 3 144ms 3
HyVar 632 6 200ms 2
trading 1466 20 31s 3
replicate 2101 52 5s 11
FormbaR 2200 Timeout

Table 1. Evaluation on selected examples

removed from the graph to remove all cycles. The lower the number, the more
feasible manual post-processing is. Except the mentioned industrial examples,
the Compugene, HyVar and weak memory models, all examples are written by
us. The tool was run on a Intel E5-2643 with 6 cores 3,4 GHz and 64 GB RAM.

Our analysis does not scale only for the FormbaR model. This has two main
reasons: (1) FormbaR models communication during railway operations and con-
tains little computation, while the other example systems are less communication-
heavy. (2) FormbaR makes heavy use of maps and contains several guards that
read 4 �elds of the class and every �eld is written in several methods - the model
contains a lot of information �ow through �elds. Maps complicate analysis, as
they require to ensure that the keys are passed around correctly. Such global
properties cannot be derived by analyzing methods in isolation.

7 Conclusion

We presented an approach for deadlock detection in presence of conditional syn-
chronization, which integrates a theorem prover to analyze side-e�ects. The im-
plementation is the �rst sound deadlock analysis for full coreABS. We are able to
analyze all ABS case studies, but are not precise if models contain synchroniza-
tion points that access many �elds of a class: the abstract dependency graph sub-
sumes all information �ow in a program and is highly connected in those cases.
This re�ects the inherent di�culty of reasoning about arbitrary side-e�ects.

Discussion of the Use of Deductive Veri�cation Our analysis integrates a heavy-
weight deductive veri�cation tool into a light-weight static analysis. This allows
us to reason about heap memory beyond analyzing the �eld names occurring in
a method, but also o�ers other bene�cial features from a design perspective.

Theorem provers have a clear interface and our implementation is not mono-
lithic: Our deadlock tool bene�ts from any future advance in the precision or
performance of KeY-ABS. Every invocation of KeY-ABS is caused by a pair of

one guard and one method. This gives us modularity of the analysis results: If
method and guard are unchanged, the prover does not have to be run again.
We are able to handle unbounded data types and recursion without perfor-
mance loss: KeY-ABS works on symbolic values and analyzes single methods.
Non-termination is handled implicitly and we do not need to provide a maxi-
mal number of unrolling for loops or similar. Contrary to that, model checking
would involve rerunning the whole program after each change and relies on �nite
domains and traces. We are still fully automatic, but we propose that in some
situations it would be acceptable to interact with the theorem prover.

Related Work To the author's best knowledge, no deadlock analysis for condition
synchronization in a object-oriented setting has been proposed. Some work has
been done on simpler concurrency models, e.g., Owicki and Gries [21], which
does not to models with an arbitrary number of threads. For Active Objects
(without condition synchronization) the following approaches are proposed: (1)
The discussed approach of Flores-Montoya et al. [8]. (2) Giachino et al. [9] use
behavioral types to detect deadlocks in ABS code. Contracts, descriptions of
the dependency-structure of methods, are inferred and cycles are detected in
their composition. For boolean guards, manual annotations are proposed, but
not implementeted and no inference algorithm is given. (3) Gkol� et al. [10] use
Petri Nets for deadlock detection and do not consider or discuss boolean guards.

As described, conditional synchronization is similar to condition variables.
Leino et al. [16] presented an approach to deadlock detection of locks that gen-
eralizes to condition variables. Deadlocks are checked on a manually annotated
global order for releasing and acquiring locks, receiving and sending messages
over channels, and joining on threads. de Carvalho-Gomes et al. [4] translate
Java programs into colored Petri nets for deadlock detection. While translation
into Petri nets and the analysis of these Petri nets are automatic, the approach
requires manual annotations. Recently, Hamin and Jacobs [11] presented an ap-
proach that works directly on condition variables in C code, based on symbolic
execution and veri�ed in Coq. Java PathFinder [22] also uses symbolic execution,
but does so on low-level primitives in Java bytecode.

Future Work For precision, we aim to integrate user-provided speci�cations in
SDL� while this would no longer be fully automatic, such invariants are available
for many ABS case studies. To automate rejection of assumed false positives, we
plan to adopt the approach of Albert et al. [3] to generate tests. For scalability,
we plan an incremental approach to summarize detected cycles based on critical
edges. We did not discuss starvation analysis, which is also an open question.

Acknowledgments

This work is supported by FormbaR, part of AG Signalling/DB RailLab. We
thank Antonio Flores-Montoya and Michael Lienhardt for insightful discussions
and the anonymous reviewers for valueable feedback.

References

1. E. Albert, P. Arenas, A. Flores-Montoya, S. Genaim, M. Gómez-Zamalloa,
E. Martin-Martin, G. Puebla, and G. Román-Díez. SACO: static analyzer for
concurrent objects. In TACAS 2014, Proceedings, 2014.

2. E. Albert, A. Flores-Montoya, and S. Genaim. May-happen-in-parallel analysis
with condition synchronization. In Foundational and Practical Aspects of Resource
Analysis (FOPARA 2015), 2015.

3. E. Albert, M. Gómez-Zamalloa, and M. Isabel. Combining static analysis and
testing for deadlock detection. In iFM 2016, Proceedings, pages 409�424, 2016.

4. P. de Carvalho Gomes, D. Gurov, and M. Huisman. Speci�cation and veri�cation
of synchronization with condition variables. In FTSCS, volume 694 of Communi-
cations in Computer and Information Science, pages 3�19, 2016.

5. C. C. Din, R. Bubel, and R. Hähnle. KeY-ABS: A deductive veri�cation tool for
the concurrent modelling language ABS. In A. P. Felty and A. Middeldorp, editors,
Automated Deduction - CADE'15, Proceedings, pages 517�526, 2015.

6. C. C. Din, R. Bubel, R. Hähnle, E. Giachino, C. Laneve, and M. Lienhardt. Deliv-
erable D3.2 Veri�cation of project FP7-610582 (ENVISAGE), Mar. 2015. available
at http://www.envisage-project.eu.

7. C. C. Din and O. Owe. Compositional reasoning about active objects with shared
futures. Formal Asp. Comput., 27(3):551�572, 2015.

8. A. Flores-Montoya, E. Albert, and S. Genaim. May-happen-in-parallel based dead-
lock analysis for concurrent objects. In FORTE 2013, Proceedings, 2013.

9. E. Giachino, C. Laneve, and M. Lienhardt. A framework for deadlock detection in
coreABS. Software & Systems Modeling, pages 1�36, 2015.

10. A. Gkol�, C. C. Din, E. B. Johnsen, M. Ste�en, and I. C. Yu. Translating active
objects into colored Petri nets for communication analysis. In FSEN, volume 10522
of LNCS. Springer, 2017.

11. J. Hamin and B. Jacobs. Deadlock-free monitors. In ESOP, volume 10801 of
Lecture Notes in Computer Science, pages 415�441. Springer, 2018.

12. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Ste�en. ABS: A core
language for abstract behavioral speci�cation. In B. K. Aichernig, F. S. de Boer,
and M. M. Bonsangue, editors, FMCO, pages 142�164, 2010.

13. E. B. Johnsen, R. Schlatte, and S. L. T. Tarifa. Modeling resource-aware virtualized
applications for the cloud in real-time ABS. In T. Aoki and K. Taguchi, editors,
ICFEM 2012, Proceedings, pages 71�86, 2012.

14. E. Kamburjan and R. Hähnle. Uniform modeling of railway operations. In C. Artho
and P. Ölveczky, editors, Proc. Fifth Intl. Workshop on Formal Techniques for
Safety-Critical Systems (FTSCS), volume 694 of CCIS. Springer, 2016.

15. E. Kamburjan and R. Hähnle. Prototyping formal system models with active ob-
jects. In ICE'18, to appear, 2018. Preprint: http://formbar.raillab.de/en/paper/.

16. K. R. M. Leino, P. Müller, and J. Smans. Deadlock-free channels and locks. In
ESOP'10, Proc., pages 407�426, 2010.

17. J. Lin, I. C. Yu, E. B. Johnsen, and M. Lee. ABS-YARN: A formal framework
for modeling hadoop YARN clusters. In FASE, volume 9633 of Lecture Notes in
Computer Science, pages 49�65. Springer, 2016.

18. J.-C. Lin, J. Mauro, T. B. Røst, and I. C. Yu. A Model-Based Scalability Optimiza-
tion Methodology for Cloud Applications. In 7th IEEE International Symposium
on Cloud and Service Computing, IEEE SC2 2017, 2017.

19. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

20. N. Ng and N. Yoshida. Static deadlock detection for concurrent go by global session
graph synthesis. In CC, pages 174�184. ACM, 2016.

21. S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.
Acta Inf., 6:319�340, 1976.

22. C. S. Pasareanu, W. Visser, D. H. Bushnell, J. Geldenhuys, P. C. Mehlitz, and
N. Rungta. Symbolic path�nder: integrating symbolic execution with model check-
ing for java bytecode analysis. Autom. Softw. Eng., 20(3):391�425, 2013.

