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Abstract. During a course on model checking we developed BMoth, a
full-stack model checker for classical B, featuring both explicit-state and
symbolic model checking. Given that we only had a single university term
to finish the project, a particular focus was on reusing existing libraries
to reduce implementation workload.

In the following, we report on a selection of reusable libraries, which
can be combined into a prototypical model checker relatively easily. Ad-
ditionally, we discuss where custom code depending on the specification
language to be checked is needed and where further optimization can take
place. To conclude, we compare to other model checkers for classical B.

1 Introduction and Motivation

During a course on model checking we developed BMoth, a model checker for
classical B [I]. BMoth is based on a translation to SMT-LIB, using the well-
known SMT solver Z3 [12] as backend. Our model checker is mostly written in
Java and a clean-room implementation not built upon other model checkers.
This allows us to use BMoth as a secondary toolchain for other B method tools.
BMoth’s source code, benchmarks used in this article and further information
can be found on https://github.com/bmoth-mcl

A typical university course on model checking features different techniques
such as explicit-state and symbolic model checking as well as temporal model
checking, e.g., using LTL formulas. All algorithms and techniques discussed in the
lectures were supposed to be at least rudimentarily implemented by the students
in the programming project, whereas parser and type checker were given by the
tutors. To achieve the goal of developing the full model checker during a single
university term, we focused on the integration of different publicly available
general purpose libraries.

We believe that our selection of libraries and their composition can be useful
to other developers and help developing model checkers for new languages. To
do so, the following article


https://github.com/bmoth-mc

— introduces the B language and some of its key concepts,

— identifies several publicly available libraries that can be used to implement
various parts of a typical model checker,

— highlights how these libraries can be integrated,

— exemplarily discusses language-dependent implementation on top, and

— evaluates BMoth by comparing to the state-of-the-art model checker PROB.

2 A Primer on the B-method

The formal specification language B and the B-method [1] follow the correct-
by-construction approach. Their models consist of a set of machines. A machine
consists of variable and type definitions together with a predicate describing the
initial states. By defining machine operations, one is able to specify transitions
between states. A machine operation has a unique name and consists of B sub-
stitutions [I] defining the machine state after its execution. An operation can
have a precondition allowing or prohibiting execution based on the current state.

Transitions can be non-deterministic and might be nested. Futhermore, B
features different constructs to define operations, ranging from simple variable
assignment to if-then-else and while loops as well as parallel execution. All of
these are supported to be executed automatically.

To ensure correctness of a specification, the user can define machine invari-
ants, i.e., safety properties that have to hold in every state. Inside predicates and
expressions, one can make use of a multitude of high-level language constructs
featuring arithmetics, set logic and set comprehensions, sequences, as well as
existential and universal quantification.

Besides using data types explicitly provided by the B language, one can define
custom types in the form of sets. A set is defined by a unique name and may be
initialized by a finite enumeration of distinct elements. Sets not enumerated are
called deferred sets which are assumed to be non-empty and finite.

Below, we focus on classical B [I], but our approach also works for Event-
B [2] and could be extended to other languages such as TLAY [21I]. While a
simpler language would be a more appropriate target for a university course, we
decided to stick with what is used at our chair.

3 Libraries and Tools Used

As stated in the introduction, we focused on integrating different reusable li-
braries, avoiding to reinvent the wheel as much as possible. Below, we introduce
the libraries and tools we used and discuss how they contribute to our model
checker. Figure[I] gives an overview of the libraries and where they are employed.

3.1 ANTLR

ANTLR [30] is a parser generator getting a grammar as input. In our case,
we were able to closely follow a subset of the B language grammar given by



Abrial [I]. ANTLR then automatically generates code, in our case Java classes,
for the lexer as well as the parser in the form of accepting finite-state machines.

While parser and lexer are generated automatically, the resulting AST is
often too concrete and has to be restructured into a more abstract syntax tree.
This is done manually, by rewriting rules on top of the generated classes. Details
are given in Section

3.2 JGraphT

Storage of the state space used for explicit-state and LTL model checking is
handled by JGraphT [29]. As the state space is just a directed graph, using a
general purpose graph library seems appropriate. Furthermore, this allowed us to
use efficient (graph focused) algorithms provided by JGraphT for finding shortest
paths between two nodes, e.g. an initialisation node and a node occurring after
a few steps, and for finding strongly connected components in the state space.

3.3 Z3

We use the SMT solver Z3 [12] as a backend for checking the satisfiability and
computing valuations of formulas. This is done both for computing states as well
as for invariant checking. Furthermore, for LTL model checking, Z3 computes
state transitions in a Biichi automaton. This will be discussed in Section [£.3l
Of course, Z3 and its input language SMT-LIB do not support all high-
level constructs available in B. In consequence, we have to translate B to SMT-
LIB. While for most language features this can be implemented using a simple
AST walker on top of ANTLR, translation is more complicated for others. In
particular, we will look at the translation of exponentiation in Section where
we will discuss different translation alternatives and their performance impact.

3.4 UI libraries

We decided to create a graphical user interface for more flexibility (especially
while testing), as it allows the user to edit machines directly in BMoth. For
this GUT we used JavaFX in combination with MvvmFX [9]. In particular, we
follow the MVVM pattern. To create an efficient editor in which the machine
to be checked can be edited we used RichTextFX [28], which also allows custom
syntax highlighting.

3.5 Infrastructure

For source code management we worked with GitHub. Code quality and per-
formance where surveyed and improved using the Travis CI [35] and Sonar-
Qube [34]. While not as crucial as using the right set of libraries, infrastructure
had a tremendous impact on progress. While GitHub provided us with the means
of remote synchronization and project management, Travis CI and SonarQube-
helped us to detect bugs early and thus avoid spending time fixing them. Without
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Fig. 1. Architecture Overview and Libraries Used

the right infrastructure, our project would have been delayed way beyond the
scope of a university term.

4 Implementation Details

In this section, we will discuss several parts of our implementation, focusing on
the libraries used to realize different aspects of our model checker. In particular,
we will discuss custom, e.g., language-dependent, implementation where needed.

4.1 Backend and Translation of B to Z3

A key question within the development process of BMoth was how to connect a
suitable backend to the JVM-based parts of the project. Our approach consisted
in using the Z3 solver, connected via the Z3 Java API for solving B formulas
translated to SMT. In particular, we translate into a logic natively supporting
sets and quantifiers.

Each input instance of BMoth contains a specification of a machine written
in B and a property given as a B or LTL formula to be checked. As of course
B and LTL cannot be directly processed by Z3, a translation process from B to
an SMT-LIB constraint is needed. An overview of the full translation process is
visualized in Figure

If an input instance contains an LTL formula, it is normalized, reducing avail-
able features in order to simplify translation rules. LTL conversion is covered in
more detail in Section An input instance may contain both LTL proper-
ties (given as separate formula) and B properties (as machine invariants or as
separate formula), which will individually be checked by BMoth.

In order to be evaluated, a B predicate is parsed to a concrete syntax tree
using the lexer and parser generated by ANTLR. Afterwards, the CST is simpli-
fied to an AST using common compiler construction techniques [4]. Following,
we implemented a syntax-directed translation to SMT-LIB using Z3’s Java API.

While the syntax-directed conversion visits each node of the AST and replaces
it with an equivalent node of Z3’s AST, in some cases additional constraints are
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generated, e.g., for well-definedness. Any additional constraints are conjugated
appropriately after translation.

The approach chosen allows direct conversion of nodes in many cases, namely
where BMoth’s B node has a semantically equivalent node in the Z3 AST and
no additional constraints are required. Examples are, among others, =/2, </2,
+/2,-/2,-/1,€/2, C/2,U/2 and T/0. A counterexample would be the division
:/2, which requires an additional constraint, stating that the divisor may not
be zero, in B. A significant number of node types can be transformed by simple
additions or rewrites. Examples are B’s #/2, which corresponds to Z3’s =(=/2),
or C/2, which can be split into A(#/2, C/2).

The AST rewrites are easily implemented on top of the AST provided by
ANTLR. Listing [I] shows the code used to rewrite expr € N into expr > 0.
Essentially, we just have to check whether the node to be rewritten has the €
operator and whether the right argument is N. If so, we return a new AST node
with the target predicate, which is inserted into the AST replacing the old node.

Another interesting example illustrating the flexibility of our compositional
approach is the exponentiation expression ** /2 in BMoth: Rather than using Z3’s
integrated exponentiation, we can experiment with alternative encoding, e.g.,
using recursive functions. By doing so, we can force the solver to use distinct ways
of evaluation. The potential of recursive definitions for Z3 via AST manipulation
and the advantages of a flexible approach to work around weaknesses of the
backend are described in detail later in this section.



Listing 1. AST Rewriting

if (node.getOperator () = ELEMENT.OF) {
ExprNode left = node.getExpressionNodes () .get (0);
ExprNode right = node.getExpressionNodes().get(1);
if (right instanceof OperatorNode
&& ((OperatorNode) right).getOperator () = NATURAL) {
return new OperatorWithArgsNode (..., GREATEREQUAL,
Arrays.asList (left , new NumberNode (..., ZERO)));
}
}

return node;

Just like formulas, BMoth parses machines into an abstract syntax tree repre-
sentation before further conversion. Afterwards, before-after-predicates are com-
puted for all operations and Z3 representations of all occurring predicates are
precomputed and stored.

Observe that there is no closed representation of B’s while loops in terms
of a before-after-predicate [I]. In case of BMoth, this means that we cannot
model check machines using the current evaluation architecture. However, one
could think of a small-step semantic for B, in which the body of a while loop
is computed individually until the loop condition eventually evaluates to false.
This would enable explicit-state model checking using our architecture. For the
symbolic model checking algorithms, other approaches are needed and should be
part of future research both in BMoth and PROB.

Once all additional predicates are computed, all model checking algorithms
solely rely on the SMT-LIB translation of predicates, while the B representation
is only used for textual representation and user feedback.

As can be seen in Table[T] the list of language features implemented in BMoth
only covers a subset of B. Of those not yet implemented, some can be considered
variants of implemented features that they can be rewritten to to be expressed.
For instance, relations can be expressed via set theory constraints, while the
missing kinds of functions can be constructed in a more general way as relations
with additional constraints (consisting of already implemented features).

What remains among those features not implemented so far, but yet has to
be taken care of in an efficient way, is the cardinality of sets. In principle, it
could be dealt with by finding a bijection to an integer interval. However, that
yields an expensive solution, which often does not perform well [19].

Custom Encodings. The system design and selection of libraries we presented
facilitates experimenting with different encodings and other optimization tech-
niques. To give an example, we discuss one of the problems we encountered de-
veloping BMoth: Due to the undecidability of the underlying logic, Z3 performed
comparably poor when confronted with a combination of quantifiers and non-
linear arithmetic (in particular exponentiation). While both individually could




Table 1. Overview of Implemented and Unimplemented Features

] [ implemented [ not implemented |
equation/number
. = ) <, >
predicates > S 2 7
arithmetics +, % -/, %,
sic logical
basic .oglca A, V, true, false, V, 3, =
predicates
set predicates €,¢,C,¢,C, ¢, X
deferred and enumerated sets,
basic sets (0, intervals, Z, N, N, INT,

NAT, NAT1, BOOL
\, U, N, U, domain, range, set |, finite subsets, [, cardinality,
enumeration, min, max set summation, set product

set operators

couples, enumerated sequences,

tuples/sequences
uples/sequen empty sequence
set of finite subsequences,
sequence front, last, first permutatior%s, concat, prepend,
operators append, size, reverse, take,
drop, tail, strings
forward composition, backward
. . composition, identity, relational
relations inverse . . .
image, override, domain/range
restriction/subtraction
partial functions (and less
functions function call general variants), lambda

abstraction

often be solved, test cases combining both usually resulted in the constraints
being unsolvable for Z3. We investigated different possible solutions:

— use other backends, possibly in parallel with Z3,

— changing the way BMoth handles quantified formulas, e.g., try unrolling
them where possible,

— changing the way BMoth handles exponentiation, and
— search for ways to alter Z3’s behavior by configuration of Z3.

Since the undecidability limits Z3’s support for non-linear integer arithmetic
combined with quantifiers, relying on a different backend might have helped
However, additional solvers would have been a rather severe change in design,
quite impossible to perform withing our time restrictions. We thus decided to
evaluate the other approaches first.

In comparison, examining various encodings of exponentiation was a compar-
atively lightweight solution and thus appeared more promising. Our alternative
approach to Z3’s internal exponentiation consists in translating the exponen-



tiation nodes of the internal B AST to a recursive function. More concretely,
exponentiation is realized using the well-known square-and-multiply methodEl

Square-and-multiply is introduced in Z3 by defining a function and recur-
sively assigning a value to certain invocations by means of universal quantifica-
tion. In particular, the special cases z° and 2! are used as termination cases of
the recursion. The recursive cases implement the square-and-multiply pattern.

With the alternative encoding, some of the problematic combinations ceased
posing an obstacle to checking satisfiability and finding a valuation. For certain
models, the approach was able to compensate for Z3’s inability to solve combi-
nations of quantifiers and non-linear arithmetic, showing a notable advantage of
the flexible architecture used in BMoth.

4.2 Explicit-State Model Checker

BMoth’s explicit-state model checker (ESMC) works on a state space, a directed
graph made up of the possible states of the system. These states are successively
checked for invariant violations. To build this state space we use Z3. For each
new state found by evaluating the conjunction of an already discovered state and
the before-after-predicate, a new vertex is added to JGraphT’s representation of
the state space.

The basic ESMC algorithm [I1I] is simple: Determine the initial states by
finding all solutions to the initial state predicate using Z3, put them in a queue,
check each one for invariant violations, add all successors to the queue and
repeat the last two steps until the queue is empty. In case of a violation the
counterexample found is returned and presented to the user together with the
path to the offending state. If desired, we could return the shortest path (so far)
using the implementation of Dijkstra’s algorithm in JGraphT. If we encounter
undecidability because of used quantifiers, ESMC may run into a timeout. It
then returns a partial state space and the result Unknown.

To improve the efficiency of the implementation BMoth aggregates different
before-after-predicates disjunctively for finding successors. Further optimization
in the future could include the aggregation of states.

4.3 LTL Model Checker

So far, we only discussed how to implement checking of safety properties, i.e.,
the absence of faulty states. However, to be considered a fully fledged model
checker, BMoth has to also process liveness properties.

As LTL is more common in the B community, we decided to implement an
LTL rather than a CTL model checker. To do so, we follow an automaton-based
approach, i.e., the formula in question is negated and transformed into a Labeled
generalized Biichi automaton (LGBA) [7] using the algorithm suggested by Gerth

3 Square-and-multiply significantly reduces the number of multiplications, thus im-
proving performance when computing on given values as done for computing suc-
cessor states



Listing 2. State Space Cycle Detection using JGraphT

if (lgba != null) {
labelStateSpace(); // assigns LGBA nodes to state nodes
List<List <State>> cycles = new
TarjanSimpleCycles<>(stateSpace).findSimpleCycles () ;
for (List<State> cycle : cycles) {
for (State state : cycle) {
if (lgba.isAcceptingSet(state.getBuechiNodes())) {
return LTLCounterExample(state);
}

}
}

return verified (stateSpace);

et al. [I6]. Afterwards, BMoth searches for a counterexample by combining the
automaton with the model’s state space. As BMoth executes the LTL Model
Checking subsequent to ESMC, we can reuse the same state space.

For BMoth, LTL formulae over a set AP of atomic propositions are formed
according to the basic grammar

¢u=true|a|dpN¢| =g [ Xo[oU S

for a € AP, together with the LTL operators ¢ (finally), O (globally), W (weak-
until) and R (release), which are all derived from X and U. As of now, BMoth
does not support past-LTL. However, this could be added using rewriting rules
(increasing the size of the formulas to check [22]).

As discussed for basic B predicates, we use ANTLR for parsing and rewriting
of LTL formulae. The algorithm in [I6] can only process the negation normal
form, which just allows the operators A, V, XU, R and —. Furthermore negations
may only appear directly in front of a predicate. In consequence, the input
formula has to be normalized, again following the patterns introduced for the
normalization of a regular B predicate.

BMoth searches for counterexamples differently than proposed in [16]. In-
stead of checking the product automaton of state space and LGBA for empti-
ness, BMoth finds loops in the state space that are accepted in the LGBA. This
is realized by assigning each state of the state space the LGBA nodes the model
can be in in this state. Initial state space states are assigned the initial LGBA
nodes. Next, successors are assigned LGBA nodes recursively. Based on the as-
signed LGBA nodes of the current state we determine which LGBA nodes can
be reached. For every successor in the state space we check whether the labels of
all those reachable LGBA nodes do not contradict the propositions supposed to
be true in the successor state. If Z3 states that labels and propositions match,
that LGBA node is assigned to the successor. State space traversal is realized
using the accessors provided for graph nodes by JGraphT.




As shown in Listing 2] BMoth uses Tarjan’s strongly connected components
algorithm provided by JGraphT to find loops in the state space created during
ESMC. For each loop in the state space, BMoth checks whether there is a node
from each accepting set of the LGBA assigned to the states in the loop. If so, a
counterexample is found and the model does not satisfy the LTL property.

4.4 Symbolic Model Checker

Selecting states from the state space one by one can be very inefficient, partic-
ularly for systems with a large number of transitions. To counteract this ineffi-
ciency symbolic model checkers analyze multiple states at once. BMoth includes
two symbolic model checking algorithms: BMC and k-induction.

Bounded Model Checker. A bounded model checker looks for counterex-
amples that can be reached after a number k of steps, which implies that a
counterexample that occurs later than after k steps will not be found unless the
system is checked again with an increased k [5]. BMoth’s BMC works the same
way: sequentially increasing the bound from 1 to k, all transitions as well as the
negated invariant are added to the constraint in question. The query is given to
Z3 to check the satisfiability. If a valuation is found, the model is not correct
and the path to the counterexample is extracted from the model and returned.

Implementing BMC on top of our library selection is simple. The complete
implementation is given in Listing [3| As you can see, the amount of custom
code is quite small. Essentially, we combine Z3 (calls to the solver object) with
the results of the AST transformations mentioned earlier. Most notably, init,
transition and negatedInvariant return three predicates translated from the
B machine to Z3’s AST: the initial state predicate, the conjunction of the before-
after-predicates and the negated invariant. Finally, stateFromModel accesses the
valuation found by Z3 and extracts the values of the state variables.

K-Induction Model Checker. BMC can only refute the correctness of a
system by finding a counterexample in the first k steps. However, the absence of
such a counterexample cannot be proven, i.e., BMC can never verify a system
as correct unless there is some upper bound known for k [10].

This limitation can be avoided by employing induction in the model checker,
called k-induction [33]. Essentially, k-induction uses mathematical induction to
conclude the entire absence of an invariant violation from the absence of an
invariant violation in the first k£ steps. The implementation uses an additional
constraint and otherwise is similar to the one of BMC presented above.

5 Empirical Evaluation

To detect flaws and strengths of our implementation we compared it to PROB [23]
in various benchmarks, mostly using examples provided with PROB. Benchmarks



Listing 3. Implementation of BMC

for (int k = 0; k < maxSteps; k++) {
// get a clean solver
solver.reset ();

// INIT(V0)
solver.add(init ());

// CONJUNCTION i from 1 to k T(Vi—1, Vi)

for (int 1 = 1; i <= k; i++) {
solver.add(transition (i — 1, 1));

}

// nmot INV(Vk)
solver.add(negatedInvariant (k));

// i from 1 to k, j from i + 1 to k (Vi I= Vj)
solver .add(distinctVectors(k));

Status check = solver.check();

if (check = Status.SATISFIABLE) {
// counter example found!
State ceState = stateFromModel(solver.getModel(), k);
return createCounterExampleFound (k, ceState, null);

}

// mo counter example found after mazStep steps
return createExceededMaxSteps (maxSteps) ;

were executed on a laptop running Ubuntu 16.04 and featuring a 2.4 GHz i7 CPU
and 8 GB of RAM. Most of our benchmarks are comparably small. As BMoth
does not support all of B (see Section , there are not that many larger ma-
chines available. The used B machines can be assorted into the following classes:

— Counters Counters are suitable to investigate qualities like speed and the
capability of a model checker to detect invariant violations in a potentially
large (but linear) state space. Even though symbolic model checkers (espe-
cially BMC) often have trouble verifying these models because of the possibly
tremendous length of paths to counterexamples, we were also curious to find
out how long it would take them to examine the k first steps. Presented
machines of this class are SimpleCounter, DoubleCounter, FaultyCounter,
InfiniteMachine and Finitelnfinite Machine.

— Puzzles Solving a puzzle that was translated to a B machine is done by
finding an invariant violation in the initial state. As this happens very fast
for the SendMoreMoney machine, model checking it to find a solution of the
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puzzle demonstrates how fast the model checkers kick off without actually
having much to do.

— Laws ArithmeticLaws and BooleanLaws are two more extensive machines
consisting of invariants stating basic laws of arithmetics and Boolean algebra.

— Miscellaneous Apart from these special machines we included simple mod-
els to get more results for basic machines containing violations. Presented
here are SetVarToConstant (which assigns the given value of a constant to
a state variable and thus violates the invariant) and DecOneOfTwo.

Results are given in Table [2} The average runtimes of explicit-state model
checking (ESMC), bounded model checking (BMC) and k-induction applied to
our examples are shown in Figure [3|for both BMoth and PROB. Only the execu-
tions leading to a clear result are considered, whereas those ending in a timeout
or an exceeding of the maximum steps were left out of the calculation.

Summarizing, BMoth is not as fast as PROB. This is unsurprising, as we
did focus on ease of implementation and code reuse rather than performance.
Furthermore, PROB has been in development for more than 10 years and is
thus more mature than our prototypical implementation. While the compar-
isons generally show that PROB’s model checking algorithms are faster than our
counterparts, especially for more extensive models, there are some interesting
outcomes when looking at single results in Table

Startup. For machines with small state spaces or counterexamples reachable
within few steps, our implementation performed better than PROB. In contrast,
for larger machines (e.g. see ESMC’s results for FaultyCounter and FiniteIn-
finiteMachine in Table [2), BMoth took longer than PrROB. We assume that
BMoth’s startup is faster, while the actual model checking is quicker in PROB.
The poor performance of BMoth’s ESMC is mainly caused by the computation of



Table 2. Runtimes in Minutes and Results - Number of Steps Performed in Parentheses

Machine|  Value ESMC BMC k-induction
BMoth ‘ ProB BMoth ‘ ProB BMoth ‘ ProB
Simpl Runtime 00:00.68 00:01.72 00:00.96 00:07.11 00:01.10 00:01.72
mmple Verified i Exceeded Timeout Verified Verified
Counter| Result ©6) Verified (20) (13) 6) 0)
Doubl Runtime | 00:00.64 00:01.65 00:03.31 00:08.37 00:05.74 00:03.58
ouble Verified Exceeded | Timeout Verified Verified
Counter| Result Verified
©) (20) (17 (14) (11)

I Runtime 01:18.81 00:02.91 00:01.13 00:05.77 00:01.27 07:27.97
CFau ty Result CE found | CE found | Exceeded | Timeout | Exceeded | Timeout
ounter (5001) (5001) (20) (9) (20) (9)
Arith- | Runtime | 00:00.82 00:07.10 01:11.74 00:05.31 02:50.82 00:01.94
metic ) . Exceeded Timeout Exceeded Timeout

Laws Result Unknown Verified (20) 6) (20) (0)
Bool Runtime 00:00.72 00:01.71 00:01.04 00:12.43 00:00.72 00:01.73
oolean Verified Exceeded | Exceeded Verified Verified
Laws Result Verified
(8) (20) (24) (0) (0)

[ Runtime - 02:58.50 | 00:00.89 | 00:07.14 | 00:01.14 | 08:49.15
I\I/[nﬁlﬁl.te Result ) CE found | Exceeded Timeout Exceeded Timeout
achime (999999) (20) (16) (20) (16)
Finite | Runtime | 11:00.31 00:02.33 00:01.35 00:04.28 00:01.40 02:55.55
Infinite Result CE found | CE found | Exceeded Timeout Exceeded Timeout

Machine (19819) (203) (20) (6) (20) (6)
SetVar | Runtime | 00:00.62 | 00:01.66 | 00:00.61 | 00:01.67 | 00:00.62 | 00:01.69
ToCon- Result CE found | CE found | CE found | CE found | CE found | CE found
stant (2) (2) 1) 1) 1) (1
Runtime | 00:00.64 00:01.67 00:00.64 00:01.70 00:00.63 00:01.74
%ef(fgﬁrf Result CE found | CE found | CE found | CE found | CE found | CE found
(2) ) 1) 1) 1) 1)
Send | Runtime | 00:00.66 | 00:01.72 | 00:00.66 | 00:01.72 | 00:00.64 | 00:0L.71
More Result CE found | CE found | CE found | CE found | CE found | CE found
Money ) 1) (0) (0) (0) (0) (0)

successor states via Z3. The fast startup might be owing to a short parsing time.
The average shares of parser and model checker in the total runtime of BMoth
for some examples in Table [2] are depicted in Figure 4l PROB only reports the
time consumed overall, we thus cannot compare the parsers individually.

Solver Limits. The backends of both tools were overstrained by different ma-
chines respectively when performing BMC and k-induction. Occasionally, PROB
aborted the model check due to a timeout caused by an error that is described as
“Solvers too weak for predicate”. In these cases, BMoth could conduct the model
check further and execute more steps (e.g. see ArithmeticLaws in Table [2)).
While this did not lead to more results, as BMoth’s BMC and k-induction still
always reached the specified maximum number of steps to be executed without
a falsification or verification, it shows that the backend of PROB has issues with
certain machines that BMoth can handle. We assume that these difference are
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Fig. 4. Average Shares of Parser and Model Checker in the Runtime of BMoth’s ESMC

either due to different approaches to encoding or due to the synchronization of
different backends in PROB. A more thorough analysis should be performed in
future and might aid the development of both BMoth and PrROB.

The other way around, we found machines troubling BMoth but not PROB.
The explicit-state model checking could not be completed because of limitations
of Z3, e.g. incomplete quantifiers when using exponentiation.

Some results are due to the behavior of PROB’s k-induction in presence of
timeouts. While BMC stops as soon as it runs into a timeout, k-induction contin-
ues, hoping for an inductivity to be proven eventually. This implies a long run-
time (e.g. see FaultyCounter and InfiniteMachine in Table [2} where the timeout
was encountered after just a few steps, but the algorithm continued for minutes
reaching a timeout again and again) and leads to the favorable comparison for
BMoth in Figure 3] Table[2]also contains the example ArithmeticLaws for which
our model checker, contrary to PROB, could not come to a result.

Altogether the runtime results for BMoth were very satisfactory, given that
we had no time for fine-tuning and further experimentation. Often enough our
implementation was about as fast or even faster than PROB for small models.

6 Related Work

Several model checkers for classical B and Event-B have been developed: PROB [23]
features both explicit-state [25124] and symbolic model checking [I8/20]. Sym-
bolic model checking in PROB uses the same algorithms implemented in BMoth.
In contrast to BMoth, PROB supports different backends, such as SICStus Pro-
log’s CLP(FD) library [8], Z3 [19] or SAT via Kodkod [32]. Furthermore, PROB’s
LTL model checker [31] uses a tableau based approach [26] rather than Biichi
automata. PROB supports fairness constraints in LTL, which are currently un-
supported in BMoth but could be implemented as done in [I4].



pyB [37] is another clean-room implementation of an explicit-state model
checker for B. Originally, pyB was designed as a second toolchain to verify re-
sults generated by PROB. Furthermore, Yang et al. implemented JeB [3§], an
animation framework for Event-B written in JavaScript. While it does not yet
reach the level of maturity of PROB, JeB certainly shows that JavaScript can
be a viable alternative to Prolog, which is used in PROB’s kernel. The research
done in JeB could influence BMoth’s further development, especially regarding
alternative backends to overcome the limitations outlined in Section F1l

Model checking aside, B and Event-B have been translated to SMT-LIB for
other purposes. Classical B has been translated in [I9] mostly aiming at (interac-
tive) animation of B models, but also supporting proof. In [19], the authors also
introduce a backend combining SMT solvers and constraint logic programming
in the style of [36l8]. This approach could help overcome limitations of BMoth.

Event-B has been translated to SMT-LIB via the SMT plug-in [I5/13] for
Rodin [3]. The plugin is used inside Rodin’s proving perspective. As B and
TLA™ [2I] feature considerable parallels, the translation of TLA™ [27] to SMT-
LIB also influenced the translation approach employed in BMoth.

7 Discussion and Conclusion

In summary, we presented a selection of libraries and their combination into a
model checker for classical B. Even though BMoth remains a student project and
is merely a prototypical implementation, it shows that reinventing the wheel is
as unnecessary for model checkers as it is in general software development.

Of course, we had to lower our sights regarding completeness and perfor-
mance. Due to the short development period, BMoth does not support all fea-
tures of classical B. However, as B is among the most high-level specification
languages, we suppose a simpler language could have been implemented exhaus-
tively. To gain more benchmarks, existing B specifications could be rewritten to
constructs that BMoth supports. Regarding performance, our evaluations show
that BMoth lacks the years of fine-tuning that went into PROB [23].

In consequence, we should reconsider BMoth’s backend. While we are pleased
with Z3’s API and performance, its input language lacks the expressiveness
needed to translate B. This has been pointed out in [I9] and is a major area of
work in the B community. We want to explore further backends regarding ease
of integration and performance. In particular, following the spirit of code reuse,
projects such as JavaSMT [17] and Why3 [6] can be the way to go. A backend-
agnostic library, connecting to multiple solvers at once, would fit nicely. Addi-
tionally, we could integrate an interpreter for B and use it to compute transitions
on given values, i.e., where no constraint solving is needed.

While BMoth cannot compete with PROB, it shows that developing a pro-
totype for an experimental language can be done quickly, by an inexperienced
development team. This does not only help language experimentation, but also
might be useful to the development of other model checkers, as a prototype can
serve as playground for techniques not easily implemented in an old codebase.
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