
Role-Based Access Control via JASP

Roberta Costabile1, Alessio Fiorentino1, Nicola Leone1,2,
Marco Manna1, Kristian Reale1,2, and Francesco Ricca1

1University of Calabria, Italy – <lastname>@mat.unical.it
2DLVSystem s.r.l, Italy

Abstract. In this paper, we answer the Role-Based Access Control
(RBAC) challenge by showcasing the solution of RBAC components by
using JASP, a flexible framework integrating ASP with Java. In JASP
the programmer can simply embed ASP code in a Java program with-
out caring about the interaction with the underlying ASP system. This
way, it is possible solve seamlessly both tasks suitable for imperative and
declarative specification as required by RBAC.

1 Introducing JASP

Answer Set Programming (ASP) [1] is a fully-declarative logic programming
paradigm proposed in the area of knowledge representation and non-monotonic
reasoning. Its idea is to represent a given computational problem by a logic
program whose answer sets correspond to solutions, and use a solver to find them.
After many years of research, the formal properties of ASP are well-understood;
notably, ASP is expressive: it can solve problems of complexity beyond NP [4, 5].
Moreover, the availability of robust and efficient solvers [8] made ASP an effective
powerful tool for advanced applications, and stimulated the development of many
interesting applications [6]. Recently, we have employed ASP for developing some
industrial application, such as: building systems for workforce management [10],
e-tourism [3], and solving complex industry-relevant problems [2].

The experience we gained has confirmed the viability of the industrial ex-
ploitation of ASP. However, it has evidenced the strong need of integrating
ASP technologies (i.e., ASP programs and solvers) with well-assessed software-
development processes and platforms, which are tailored for modern imper-
ative object-oriented programming languages [9]. Indeed, the lesson we have
learned, while building real-world ASP-based applications, confirms that com-
plex business-logic features can be developed in ASP at a lower (implementation)
price than in traditional imperative languages. Indeed, from a software engineer-
ing viewpoint, the employment of ASP brings many advantages not only in terms
of readability, but also in flexibility, extensibility, and ease of maintenance. How-
ever, since ASP is not a fully general-purpose language, declarative specifications
have to be “embedded”, at some point, inside imperative modules that are nec-
essary to develop user-friendly applications making use, for example, of visual
user-interfaces. To this end, we have introduced a new programming framework
integrating ASP with Java [7]. The framework is based on a hybrid language,



called JASP, that transparently supports a bilateral interaction between ASP
and Java. The programmer can simply embed ASP code in a Java program with-
out caring about the interaction with the underlying ASP system. The logical
ASP program can access Java variables, and the answer sets, resulting from the
execution of the ASP code, are automatically stored in Java objects, possibly
populating Java collections, transparently.

2 Modeling the RBAC Challenge with JASP

In this section, we sketch a JASP-based solution to the Role-Based Access Con-
trol (RBAC) challenge.1 According to JASP’s philosophy, we associate a Java
class to each RBAC-set occurring in the five components. Then, we define a class
Manager to implement all methods performing updates and queries from check-
ing to planning. In what follows, we report the implementation of method trans

—computing the transitive closure of role hierarchy (encoded via relation rh)
unioned with the reflexive role (encoded via relation role) pairs— to appreciate
the succinctness and elegance of the approach:

public List<RH> trans() {

List<RH> jtr = new ArrayList<RH>();

<#

IN = jrole::role;

IN = jrh::rh;

OUT = jtr::tr;

tr(R, R) :- role(R).

tr(R1, R2) :- rh(R1, R2).

tr(R1, R3) :- tr(R1, R2), tr(R2, R3).

#>

return jtr;

}

In particular, we create the Java object jtr and state, via the keyword OUT, that
it will host —after the subsequent three ASP rules will have been evaluated—
all tuples of predicate tr, which occurs in the head of those ASP rules. Then, we
use the keyword IN to specify that all roles in the Java object jrole (resp., jrh)
will populate the EDB predicate role (resp., rh) used in the body of the first
(resp., second) ASP rule to “feed” the answer set computation. Other functions
of the challenge can be developed similarly.

The same applies to getRolesShortestPlan, the hardest function in the chal-
lenge. In particular, we drafted an encoding that combines: (i) functional terms
to encode in a uniform way different kind of updating actions given as input; (ii)
arithmetic operators to design a “temporal” encoding involving at most 2n up-
dating steps, where n is the number of possible actions; (iii) disjunction to guess,
at each step, the next action; (iv) aggregates, negation and strong constraints

1 See http://lpop.cs.stonybrook.edu/preparing-your-position-paper



to guarantee consistency after each update; and (v) weak constraints to mini-
mize the number of steps. A more complete description of all solutions can be
downloaded from www.mat.unical.it/ricca/downloads/LPOP-RBAC-18.zip.
Finally, database-oriented features as well as data persistence can be also added
by integrating a standard RDBMS in the application. Indeed, update functions
can be implemented via DML statement in SQL, and the evaluation of the pre-
scribed constraints can be specified as ASP rules inside Java function and the
execution (if needed) can be delegated to the DBMS integrating DLVDB [11].

Concluding remarks. JASP allows to combine in the same environment main-
stream technologies for developing applications and ASP. This allowed us to
model RBAC Challenge problems and obtain quite rapidly a prototype system.2

Of course, obtaining a “real”, complete and also efficient solution, which takes
into account also other real-world nonfunctional and functional requirements,
would very likely require to adopt more advanced coding strategies and addi-
tional tools (e.g., to develop a graphical interface or a WEB service).

References

1. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

2. Dodaro, C., Gasteiger, P., Leone, N., Musitsch, B., Ricca, F., Schekotihin, K.: Com-
bining answer set programming and domain heuristics for solving hard industrial
problems. TPLP 16(5-6), 653–669 (2016)

3. Dodaro, C., Leone, N., Nardi, B., Ricca, F.: Allotment problem in travel industry:
A solution based on ASP. In: In proc. of RR’15. pp. 77–92 (2015)

4. Eiter, T., Gottlob, G.: Expressiveness of stable model semantics for disjuncitve
logic programs with functions. J. Log. Program. 33(2), 167–178 (1997)

5. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans. Database
Syst. 22(3), 364–418 (1997)

6. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI
Magazine 37(3), 53–68 (2016)

7. Febbraro, O., Leone, N., Grasso, G., Ricca, F.: JASP: A framework for integrating
answer set programming with java. In: In proc. of KR’12 (2012)

8. Gebser, M., Maratea, M., Ricca, F.: The sixth answer set programming competi-
tion. J. Artif. Intell. Res. 60, 41–95 (2017)

9. Leone, N., Ricca, F.: Answer set programming: A tour from the basics to advanced
development tools and industrial applications. In: In proc. of Reasoning Web’15.
pp. 308–326 (2015)

10. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.:
Team-building with answer set programming in the gioia-tauro seaport. TPLP
12(3), 361–381 (2012)

11. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries
in database and logic programming systems. TPLP 8(2), 129–165 (2008)

2 Two 1st year PhD students dedicated about two weeks to the project, including the
time to study the challenge and the JASP framework. On the technical side they
were advised by maintainer of JDLV.


