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Abstract

Working with a particular notion of computability over general, �rst-

order structures, we argue that computability classes over certain locally

�nite structures should capture Turing machine complexity classes. We

exhibit this phenomenon for some locally �nite structures from algebra.

The central thesis of implicit complexity theory is that Turing machine com-
plexity classes can be pro�tably identi�ed with computability by programs that
satisfy some syntactic constraint. In this talk, we show that we can also iden-
tify Turing machine complexity classes with computability by programs that are
syntactically general, but which operate over �atypical� structures, i.e., struc-
tures unlike the natural numbers or binary strings. In other words, we connect
complexity theory to recursion over abstract structures.

Any structure A has an associated family rec(A) of partial functions and
relations recursive over A. As our model of computation we use (McCarthy)
recursive programs [6, 7]. These are minimal, functional programs that allow
calls to the primitive operations (i.e., calls to Φ), branching, and recursive calls.
We also restrict them to be �rst-order, forbidding higher-type objects like lists
or sets over our base data type. (For a precise de�nition, see the Appendix on
page 3.)

An important subclass of recursive programs are those which are tail re-
cursive. These exactly capture iterative algorithms; i.e., those expressible with
recursion no more complicated than while loops. If tail(A) is the family of tail
recursive partial functions and relations, then tail(A) ⊆ rec(A) in general, but
the converse is not necessary [5, 8].

In the case of N = (N, 0, 1, S, Pd,=) where S is the successor and Pd the
predecessor function, rec(N) and tail(N) coincide with the classically recursive
functions. For general structures A, there are several conditions, equivalent
under weak hypotheses [3], that assert that rec(A) is �like rec(N):�

• A interprets N (in the appropriate sense),
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• rec(A) has pairing and unpairing functions, and

• rec(A) admits a Gödel numbering with universal and s−m−n functions.

As a fourth condition we may add tail(A) = rec(A), which is implied by these
conditions, but cannot imply them without resolving some hard questions in
computational complexity.

The family of recursive functions of such structures clearly more closely
resembles classical computability rather than complexity classes. However, over
other structures with �less computational power� it turns out that the family
of recursive functions captures complexity classes. We focus our attention on
locally �nite structures, structures all of whose �nitely generated substructures
are �nite. The fact that recursive programs, which lack quanti�ers, are �local�
in the sense that their computation on particular input takes place entirely in
the substructure generated by that input, means that rec(A) for locally �nite
A cannot be �classical� in the �rst three senses above.

Among locally �nite structures, there are some whose family of recursive
functions is so weak that they are not obviously comparable to complexity
classes. We ignore these, though it's a compelling open question to identify
a clean model-theoretic property guaranteeing or forbidding such comparabil-
ity. Among positive examples, our starting point is cons-free computation of
Neil Jones [4], who looked at the structure

(2<ω; ε, head, tail,=)

obtained by taking the usual structure of binary strings1 and deleting the con-
structors �add 0� and �add 1.� Here the unary recursive and tail recursive re-
lations are exactly polynomial time and logarithmic space decidable languages
respectively.

An almost identical analysis holds for the structure (n<ω; ε, head, tail,=) for
n < ω; when n = 1 we (basically) get the structure of �predecessor arithmetic�
NPd = (N; 0, 1, Pd,=) whose recursive and tail recursive relations correspond
to exponential time and linear space under the standard bijection N ' 2<ω.

Our own contribution is connecting computability over some locally �nite
algebraic structures to cons-free computation, and hence to complexity classes.2

We consider certain in�nite locally �nite abelian groups and �elds, for example,
the �eld

Fp = (F̄p; 0, 1,+,−,×,÷,=),

where F̄p is the algebraic closure of the �nite �eld of size p. Here we can prove
that:

Theorem. X ⊆ F̄p is recursive over F i� ρ[X] ⊆ 2<ω is decidable in exponential
time. Similarly, X is tail recursive i� ρ[X] is decidable in linear space.

1Here head and tail refer to the operations that return the �rst character of a list and all
but the �rst character respectively.

2This refers to work published in our thesis [1] and a subsequent paper [2].
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(For an element x ∈ F̄p, ρ(x) is obtained by taking the minimal polynomial
of x over Fp[t] and �converting it to binary.�)

Using this, we can prove several recursion-theoretic consequences, such as:

Theorem. rec(F) does not admit a Gödel numbering with a recursive universal
function.

Theorem. rec(F)=tail(F) i� linear space is exponential time.

Uniform families of interpretations The standard notion of interpretation
from model theory is too �rigid� to identify, e.g., rec(F) with rec(NPd). Part
of our technical contribution is in identifying an appropriate notion of inter-
pretation, for the time being a loose interpretation, that allows us to connect
computability over di�erent structures. This is roughly a family of interpreta-
tions over substructures of the two structures that �cohere� in the right way.

Goals and future work One immediate goal is to expand our �library�
of locally �nite structures which loosely interpret cons-free computation, and
hence complexity classes. More conjecturally, we wonder whether there is a set
of recursion-theoretic or model-theoretic conditions that assert that rec(A) is
�similar� to rec(NPd) or a similar cons-free structure, thus showing that such
properties are robust. We have some ideas for these which we will review at the
end of the talk.

Appendix: Recursive and tail recursive programs

Given a signature Φ, a Φ-recursive program is a set of simultaneous recursive
equations of the form

{pi(~xi) = Ei(~xi,~p)}i<k

where ~p = (p0, . . . , pk−1), and the functionals Ei are given by the grammar

M := xn | φ(M1, . . . ,Mn) | pn(M1, . . . ,Mn) | if M0 then M1 else M2

where xn and pn come from some countable stock of variables and function-
valued variables respectively. Semantics may be de�ned operationally or de-
notationally, with the function denoted by the �head� p0 being the function
computed by the whole program. For example,

p0(x) = p1(1, x, x)

p1(x1, x2, x3) = if x1 = 0 then x3 else p1(x1 + 1, x2, x2 · x3),

computes the Frobenius automorphism x 7→ xp when interpreted over a �eld of
characteristic p, and computes the everywhere diverging function when inter-
preted over a �eld of characteristic 0.
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A recursive program is tail recursive in case it has the form

p0(~x0) = p1(G(x̄0))

p1(~x1) = if τ(~x1) then o(~x1) else p(F (~x1))

where G, τ , o, and F are explicit terms, i.e., generated by the grammar

M := xn | φ(M1, . . . ,Mn) | if M0 then M1 else M2.

The Frobenius-computing program is, then, tail recursive.
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