
Rule-based design of computational DNA devices

Carlo Spaccasassi1, Matthew R. Lakin2, Andrew Phillips1

1Microsoft Research, Cambridge, UK
2Department of Computer Science, University of New Mexico, Albuquerque, NM, USA

1 Introduction

As the state of the art in DNA nanotechnology continues to develop, highly sophisticated computational molecular
devices are being designed and subsequently implemented in DNA. These devices employ a broad range of imple-
mentation strategies to perform computation, including DNA strand displacement, localisation to substrates, and
the use of enzymes with polymerase, nickase and exonuclease functionality. However, existing computational design
tools are unable to account for these different strategies in a unified manner.

This paper presents a programming language that allows a broad range of computational DNA systems to be
expressed and analyzed. We define a semantic framework that allows DNA molecular motifs to be expressed as sub-
graphs, and automatically identifies matching motifs in the full system, in order to apply a specified transformation
expressed as a rule. The framework also supports the definition of predicates, which provide additional constraints in
order for rules to apply. The framework is sufficiently expressive to encode the semantics of DNA strand displacement
systems with complex topologies, together with computation performed by a broad range of enzymes.

Our language, called Rules DSD, is a logic programming language that extends Prolog with a novel equational
theory to express DNA molecular motifs in a system. Molecular motifs are interpreted as sub-graphs occurring in
a system of strand graphs[6]. Transformations of such motifs are safely handled in the Single Pushout approach,
drawing from the theory of graph grammars[1]. The syntax and semantics of the language is presented in Section
2. Several encodings of molecular systems are provided in Section 3, including ribocomputing logical circuits[2].

2 Language definition

We extend the syntax of strand graphs[6] with tags and logical variables:

dom ::= d p d∗ p dˆ p d∗ˆ p X Domains
bond ::= i p X Bonds
tag ::= n p c p f(tag1, . . . , tagN) Tags: number n, string c, structure
site ::= dom p dom!bond p {dom : tag} p {dom!bond : tag} Sites
S ::= site1 . . . siteN Consecutive sites, N ≥ 1
P ::= <S1> | . . . | <SN> Processes, N ≥ 0

The basic abstraction of our language is the domain, which is a nucleotide sequence dom orthogonal to all other
domains in a given system. We indicate domains with lower-case letters (d, e, ...), complementary domains with a
star (d∗) and toeholds with a caret (dˆ). A strand < S > is modeled as a non-empty list S of domains ordered from
the 5’ end to the 3’ end. A process P is a possibly empty set of strands. Tags model particular properties or states
of a domain. Logical variables X are placeholders for concrete domains or bonds.

DNA molecular motifs are expressed in terms of patterns occurring in strand contexts:

loc ::= l p X Locations
patternSite ::= site p site@loc p X Indexed site

S ::= patternSite1...patternSiteN Indexed sites,N ≥ 1
π ::= <S> p <S p S> p S p S> | <S p nil Patterns

ctxN ::= CN p X N-holes context, N ≥ 1
CN ::= [·]i p P p <S CN p S CN p CN S> p CN | CN Context instance, 1 ≤ i ≤ N

A pattern π is a motif that may occur in one or more strands. Pattern < S > indicates a strand whose sequence
of domains matches S exactly. The 3’ and 5’-end patterns S > and < S indicate the respective ends of a strand.
The segment pattern S matches a sub-sequence of domains anywhere in a strand. The nicking pattern S > | < S
indicates the two ends where the nick occurs. Pattern nil is the empty set of strands, and is used to model strand
creation or deletion. Domains in a pattern are also assigned a unique location identifier loc.

2 Carlo Spaccasassi1, Matthew R. Lakin2, Andrew Phillips1

A context ctxN [π1]...[πN] is a ”process with N holes”[7], where each hole [·]i is filled by a pattern πi for i ∈ N .
An example of context is C2 =< d1 d2 [·]2 | < d4 [·]1 d6 >. A context CN is well-formed whenever it contains exactly
N holes, and each hole [·]i occurs exactly once. We only consider well-formed contexts. The context body can be a
logical variable X; the context X[πi]...[πN] specifies that a process must contain patterns π1 ... πN to match.

Apart from contexts, Rules DSD logic programs follow the standard syntax and semantics of Prolog [5]:

t ::= X p n p c p π p ctxN [π1] . . . [πN] Terms: numbers n, strings c, patterns, contexts,
p f(t1, . . . , tn) p [t1; . . . ; tn] functors, lists

A ::= p(t1, . . . , tn) Atomic predicate
L ::= A p not A Literal
C ::= A :−L1, . . . , Ln Definite clause

Contexts are the core mechanism to programmatically identify and manipulate DNA motifs. Motifs are identified
when a clause defines equality constraints of the form P

.
= X[π1] . . . [πn]. Our unification theory solves such equations

by finding all well-formed contexts CN and variable substitutions θ for the logical variables in π1 . . . πN such that
P = CN [θ(π1)] . . . [θ(πn)]. Patterns π1 ... πN can be substituted by some other patterns π′1 ... π′N of a similar kind
in a context. For example, a sequence S1S2 can be replaced by S1 > | < S2 to model nicking by nickase, or a strand
< S > by nil to model degradation by exonuclease. 3’ and ’5 ends are only replaced by the same kind of pattern.

Context substitution follows the Single Pushout (SPO) approach from the theory of graph grammars[1]. In SPO,
graph transformations are sound as long as no dangling edge is removed, and no node is added and removed at
the same time. The first condition translates to checking that a bond is always removed from both the domains
it connects, and that patterns are substituted with similar patterns. The second condition is always satisfied by
well-formedness: in such contexts no two holes overlap, therefore no part of a system can be added and removed at
the same time. Unification fails at run-time whenever a predicate breaks these conditions.

Reaction enumeration follows the approach delineated in [3]. Reactions are specified by the special clause
reaction([P1; ...;PN], R,Q), which specifies N-molecular reactions from P1 ... PN reactants to a product Q with
rate R. Each species Pi is guaranteed to be a connected component of strands; Q is automatically split into species.

3 Rule modeling

3.1 Elementary DNA strand displacement rules

DNA strand displacement rules (omitting the symmetrical rule for displace) can be expressed as follows:

reaction([P1;P2], "bind",Q) :- P1 = C1 [D], P2 = C2 [D’], compl(D, D’),
Q = C1 [D!i] | C2 [D’!i], freshBond(D!i, P1|P2).

reaction([P],"displace",Q) :- P = C [E!j D] [D!i] [D’!i E’!j],
Q = C [E!j D!i] [D] [D’!i E’!j].

reaction([P],"unbind",Q) :- P = C [D!i] [D’!i], toehold(D),
Q = C [D] [D’], not adj(D!i,_,P).

adj(D!i,E!j,P) :- P = C [D!i E!j] [E’!j D’!i].
adj(D!i,E!j,P) :- P = C [E!j D!i] [D’!i E’!j].

The first reaction describes the binding of two complexes. The rule looks for unbound complementary domains D and
D’ in the input species P1 and P2, where compl(D, D’) is an inbuilt predicate that tests complementarity. The
resulting species Q adds a new bond i to both domains and composes the two contexts C1[D!i] and C2[D’!i].
Rate parameters such as "unbind" are mapped to concrete rates elsewhere in the program. The displace rule
models the displacement of a bound domain D!i by an unbound domain D when the strands are connected on the
same backbone E’ D’. The last rule models the spontaneous unbinding of toeholds, when not anchored.

3.2 Enzymatic reactions

The following rules encode the enzymes from the PEN toolbox[4], which includes polymerase, nickase and exonucle-
ase. The user-defined predicate recognition indicates a recognition site of nickase. The exonuclease rule makes
use of tags to avoid degrading phosphorothioated domains.

Rule-based design of computational DNA devices 3

g
fp

a1

a1*

a2

a2
*

blank

top
rbs

top*aug
a2
*

lin
ke
r
gf
p

u

u*

expression

u*

lin
ke
r

gfp

a1
*a1

a2a
2*

blank

top

rb
s

to
p*

aug

a1

lin
ke
r

gfp

a2a2
*

blank

au
g

topto
p*

rbs

bind

u
*

a1
*

bind

a2
*

u a2*

a1
*

uu*

bind

bind

Fig. 1: Reaction network of a ribocomputing AND gate with input triggers < u ∗ a1∗ > and < a2∗ u >. After the
triggers bind to the AND gate, the ribosome binding site rbs is exposed and translation of < gfp > is activated in
a catalytic loop.

reaction([P], "polymerase", Q) :- P = C(d!j>, E* d*!j),
Q = C(d!j E!k>, E*!k d*!j).

reaction([P], "nickase", Q) :- P = C(D!j E!k, E*!k D*!j), recognition([D]),
Q = C(D!j> | <E!k, E*!k D*!j).

reaction([P], "exonuclease", Q) :- P = C(<d>), Q = C(nil).
reaction([P], "exonuclease", Q) :- P = C[<A B], unbound(A), Q = C[<B], not protected(A).
protected({ _ : "phosphorothioated"}).

3.3 Ribocomputing AND gate

As a final example we encoded the ribocomputing AND gate [2]. Ribocomputing devices are structures that inhibit
the expression of an output gene by hiding its ribosome binding site in a hairpin. The hairpin opens only when a
particular input logic is available. Figure 1 shows the resulting reaction network.

reaction([P], "expression", Q) :-
P = C [rbs T augˆ B] [nil], unbound(T), unbound(B), Q = C [rbs T augˆ B] [<gfp>].

...
[<u* a1*>] // input A1
| [<a2* u>] // input A2
| [<a1 a2!0 blank topˆ!1 rbs topˆ*!1 augˆ a2*!0 linker gfp>] // AND gate

References

1. Ehrig, H., et al.: Algebraic approaches to graph transformation - part II: single pushout approach and comparison with
double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transforma-
tions, Volume 1: Foundations, pp. 247–312. World Scientific (1997)

2. Green, A., et al.: Complex cellular logic computation using ribocomputing devices 548 (07 2017)
3. Lakin, M.R., Paulevé, L., Phillips, A.: Stochastic simulation of multiple process calculi for biology. Theor. Comput. Sci.

431, 181–206 (may 2012). https://doi.org/10.1016/j.tcs.2011.12.057
4. Montagne, K., Plasson, R., Sakai, Y., Fujii, T., Rondelez, Y.: Programming an in vitro DNA oscillator using a molecular

networking strategy. Mol. Syst. Biol. 7(466), 466 (feb 2011). https://doi.org/10.1038/msb.2010.120
5. Nilsson, U., Maluszynski, J.: Logic, Programming, and Prolog. John Wiley & Sons, Inc., New York, NY, USA, 2nd edn.
6. Petersen, R.L., Lakin, M.R., Phillips, A.: A strand graph semantics for DNA-based computation. Theor. Comput. Sci.

632, 43–73 (2016). https://doi.org/10.1016/j.tcs.2015.07.041
7. Sangiorgi, D., Walker, D.: PI-Calculus: A Theory of Mobile Processes. Cambridge University Press, New York, NY, USA

https://doi.org/10.1016/j.tcs.2011.12.057
https://doi.org/10.1038/msb.2010.120
https://doi.org/10.1016/j.tcs.2015.07.041

	Rule-based design of computational DNA devices

