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Abstract. We propose a systematic approach to approximate the be-
haviour of models of polymers synthesis/degradation. Our technique con-
sists in discovering time-dependent lower and upper bounds for the con-
centration of some patterns of interest. These bounds are obtained by
approximating the state of the system by a hyper-box, with differential
equations defining the evolution of the coordinates of each hyper-face.
The equation of each hyper-face is obtained by pessimistically bounding
the derivative with respect to the corresponding coordinate when the
system state ranges over this hyper-face.
In order to synthesise these bounds, we use Kappa to describe our models
of polymers. This provides symbolic equalities and inequalities which
intentionally may be understood as algebraic constructions over patterns,
and extensionally as sound properties about the concentration of the bio-
molecular species that contain these patterns.
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1 A model of polymers synthesis/degradation

We study here a simple system of polymers with only one kind of protein having
two identified sites that we will call left and right. We assume that the rightmost
site of a polymer instance may bind to the leftmost site of another polymer
instance at rate k. We also assume that the leftmost bond in a polymer is stronger
that the other bonds. The leftmost bond may break at rate kd whereas the other
bonds may be broken at rate kd + k′d.

We denote as [`Ana ] the concentration of polymers made of n connected
proteins. The semantics of our system is obtained by applying the principle of
Mass action. More precisely, the following system of equations:

d[ Àna ]

dt
= t+1 (n) + t+2 (n) + t+3 (n)− t−1 (n)− t−2 (n)− t−3 (n)

where:

– t+1 (n)
4
= k ·

∑
i+j=n [ Àia ] · [ Àja ]; t+2 (n)

4
= 2 · kd ·

∑+∞
i=n+1 [ Àia ];
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– t+3 (n)
4
=

{
k′d ·

∑+∞
i=3 [ Àia ] if n = 1

k′d ·
∑+∞

i=n([ Ài+1a ] + [ Ài+2a ]) if n ≥ 2;

– t−1 (n)
4
= 2·k·[ Àna ] ·

∑+∞
i=1 [ Àia ]; t−2 (n)

4
= kd · (n− 1) · [ Àna ];

– t−3 (n)
4
=

{
k′d · (n− 2) · [ Àna ] if n ≥ 3,

0 otherwise.

with the side-condition that the infinite sum
∑

n∈N n · [ Àna ] is converging, is an
evolution system in the Banach space of the tempered sequences of real numbers
(with the norm

∑
n∈N n · [ Àna ]). Indeed, this system is made of a linear part

inducing a continuous semi-group and a second part that is Lipschitz on every
bounded subset. As a consequence [3, Th 8.6], it has a unique maximal con-
tinuous solution. Since additionally, the system is norm invariant, the maximal
solution is defined over the interval [0,+∞) [3, Th 8.6].

2 Box approximation

Theory of differential equation comparison allows to bound the state of finite
ordinary differential systems by a time-dependent hyper-box. For this we need
one function to continuously update the position of each hyper-face. A given
coordinate is associated with a lower and an upper hyper-face. Whenever, for
each coordinate, the function associated to the upper hyper-face over-estimates
over the whole upper hyper-face the derivative of the initial function with respect
to this coordinate and the function associated to the lower hyper-face under-
estimates over the whole lower hyper-face the same derivative, then the solution
of the initial system remains in the time-dependent hyper-box (that is defined
as the solution of the approximate equations) [4, Prop 1.7]. This proposition
requires all the functions to be continuous with respect to time and locally
Lipschitz with respect to the state of the system.

3 Kappa

The models that are generated by a finite number of generic context-free mecha-
nisms, can be described in Kappa [2]. Not only, this provides a finite description
of them by the means of rewriting rules, but also patterns are good candidates
to define observables of interest. Intensionally, a pattern P is a part of a bio-
molecular species. Extensionally it may be interpreted as a function [P ] mapping
each Kappa graph G to the set of the embeddings from P to G, or even as a
function JP K from the states of the system to the sum of the concentrations of
each bio-molecular species containing occurrences of the pattern P .

Kappa comes with universal categorical constructions to reason symboli-
cally over the extensional interpretation of patterns. Their soundness is formally
proven once for all at the language level. In particular, we use two kinds of con-
struction. Orthogonal refinements (e.g see Fig. 1) refine patterns by the means
of decision trees by gradually inserting new information about the state of sites.
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Fig. 1. An orthogonal refinement.
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Fig. 2. Specialisation of the rule that
binds two polymers to the case where
the second agent is the first agent of a
pattern made of two connected proteins,
the first one with a left site bound and
the second one the second site free.

Each width-cut of such decision tree induces a partition over the set of the em-
beddings that is denoted by the pattern at the root of the tree, hence ensuring
preservation of the concentration of the initial pattern. Rule refinements (e.g see
Fig. 2) specialise rules for the consumption or the production of a given pattern
according to a potential overlap between this pattern and the left hand side or
the right hand side of a rule. From an algebraic point of view, rule refinements
are defined by the means of pushouts in the category of partial embeddings.
Interestingly, these constructions allow to prove that the concentration of each
pattern is differentiable and to express the derivative of each pattern as an ex-
pression of the concentration of some patterns. This result is proven in [1, Chp
5] in the finite case. Extension to infinite systems requires the permutation of
two limits, which has been proven once for all at the language level.

Only a subset of Kappa induces evolution systems. In particular we require
that every rule is either a unary one that splits patterns into smaller ones, or a
rule where each connected component in the left hand side has a free site. We
also require that the number of free sites in reachable bio-molecular species is
uniformly bounded. By rigidity [5], such sets of rules induce evolution systems.

4 Application

We use our framework to bound the concentration of monomers in our
model. Our abstraction is parameterised by a number N . We keep as pat-
terns the 9 · N (according to their length and whether the leftmost and the
rightmost sites are free, bound, or not speci-
fied) patterns containing at most N connected
agents. There are two variables per patterns.
In Fig. 3, we show the bounds that we obtain
with N = 3, the rate constants k = 10−4,
kd = 10−2, and k′d = 10−1, and an initial
state made of monomers only at concentra-
tion 10000. By construction, the curves pro-
vide time-dependent lower and upper bounds
on the concentration of monomers in the ini-
tial model.

Fig. 3: Time-dependent bounds on
the concentration of monomers.
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