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Process calculi based on logic, such as πDILL and CP, provide a foundation for deadlock-free con-
current programming. However, in previous work, there is a mismatch between the rules for con-
structing proofs and the term constructors of the π-calculus. We introduce Hypersequent Classical
Processes (HCP), which addresses this mismatch using hypersequents (collections of sequents) to
register parallelism in the typing judgements. We prove that HCP enjoys deadlock-freedom and a
series of properties that relate it back to CP.

1 Introduction

Classical Processes (CP) (Wadler, 2012) is a process calculus inspired by the correspondence between
the session-typed π-calculus and linear logic (Caires and Pfenning, 2010), where processes correspond to
proofs, session types (communication protocols) to propositions, and communication to cut elimination.
This correspondence allows for exchanging methods between the two fields. For example, the proof
theory of linear logic can be used to guarantee progress for processes (Caires and Pfenning, 2010; Wadler,
2012).

The main attraction of CP is that its semantics are prescribed by the cut elimination procedure of
Classical Linear Logic (CLL). This permits us to reuse the metatheory of linear logic “as is” to reason
about the behaviour of processes. However, there is a mismatch between the structure of the proof terms
of CLL and the term constructs of the standard π-calculus (Milner et al., 1992a,b). For instance, the term
for output of a linear name is x[y].(P | Q), which is read “send y over x and proceed as P in parallel to
Q”. Note that this is a single term constructor, which takes all four arguments at the same time. This
is caused by directly adopting the (⊗)-rule from CLL as the process calculus construct for sending: the
(⊗)-rule has two premises (corresponding to P and Q in the output term), and checks that they share no
resources (in the output term, x can be used only by P, and y can be used only by Q).

There is no independent parallel term (P | Q) in the grammar of CP terms. Instead, parallel compos-
ition shows up in any term which corresponds to a typing rule which splits the context. Even if we were
to add an independent parallel composition via the MIX-rule, as suggested in the original presentation of
CP (Wadler, 2012), there would be no way to allow the composed process P and Q to communicate as
in the standard π-calculus, as there is no independent name restriction either! Instead, synchronisation
is governed by the “cut” operator (νx)(P | Q), which composes P and Q, enabling them to communicate
along x. Worse, if we naively add an independent parallel composition as well as a name restriction,
using the rules shown below, we lose cut elimination, and therefore deadlock-freedom!

P ` Γ Q ` ∆
MIX

P | Q ` Γ,∆

P ` Γ,x : A,y : A⊥
“CUT”

(νxy)P ` Γ

This syntactic mismatch has an effect on the semantics as well. For instance, the β -reduction for
output and input in CP is (νx)(x[y].(P | Q) | x(y).R) =⇒ (νy)(P | (νx)(Q | R)). Here, the parallel com-
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position (P | Q) is of no relevance to this communication, yet the rule needs to inspect it to be able to
nest the name restrictions appropriately in the resulting term.

In this paper, we introduce Hypersequent Classical Processes (HCP), which addresses this mismatch.
The key insight is to register parallelism in the typing judgements using hypersequents (Avron, 1991),
a technique from logic which generalises judgements from one sequent to many. This allows us to take
apart the term constructs used in Classical Processes (CP) to more closely match those of the standard
π-calculus. We proceed as follows. We start by introducing CP (Section 2). Then, we introduce HCP
and prove it enjoys subject reduction and progress (Section 3). We prove that every CP process is an
HCP process, and that HCP supports the same communication protocols as CP, and no more (Section 4).
Finally, we discuss related work (Section 5).

2 Classical Processes

In this section, we introduce CP. In order to keep the discussion of HCP in Section 3 simple, we restrict
ourselves to the multiplicative-additive subset of CP. We foresee no problems in extending the proofs in
Section 3 to cover the remaining features of CP (polymophism and the exponentials).

2.1 Terms

The term language of CP is a variant of the π-calculus. The variables x, y, and z range over channel
names. The construct x↔y links two channels (Boreale, 1998; Sangiorgi, 1996), forwarding messages
received on x to y and vice versa. The construct (νx)(P | Q) creates a new channel x, and composes two
processes, P and Q, which communicate on x, in parallel. Therefore, in (νx)(P | Q) the name x is bound
in both P and Q. In x(y).P and x[y].(P | Q), round brackets denote input, square brackets denote output.
CP uses bound output (Sangiorgi, 1996), meaning that both input and output bind a new name. In x(y).P
the new name y is bound in P. In x[y].(P | Q), the new name y is only bound in P, while x is only bound
in Q.

Definition 2.1 (Terms). Process terms are given by the following grammar:

P,Q,R ::= x↔y link | (νx)(P | Q) parallel composition, “cut”
| x[y].(P | Q) output | x(y).P input
| x[].0 halt | x().P wait
| x/inl.P select left choice | x/inr.P select right choice
| x.{inl : P;inr : Q} offer binary choice | x.{} offer nullary choice

Terms in CP are identified up to structural congruence, which states that links are symmetric, and parallel
compositions (νx)(P | Q) are associative and commutative.

Definition 2.2 (Structural congruence). The structural congruence ≡ is the congruence closure over
terms which satisfies the following additional axioms:

(↔-sym) x↔y ≡ y↔x
(ν-comm) (νx)(P | Q) ≡ (νx)(Q | P)
(ν-assoc) (νx)(P | (νy)(Q | R)) ≡ (νy)((νx)(P | Q) | R) if x 6∈ R and y 6∈ P

Reductions relate processes with their reduced forms e.g., a reduction P =⇒ Q denotes that the process
P can reduce to the process Q in a single step.
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Definition 2.3 (Reduction). Reductions are described by the smallest relation =⇒ on process terms
closed under rules below.

(↔) (νx)(w↔x | P) =⇒ P{w/x}
(β⊗O) (νx)(x[y].(P | Q) | x(y).R) =⇒ (νy)(P | (νx)(Q | R))
(β1⊥) (νx)(x[].0 | x().P) =⇒ P
(β⊕N1) (νx)(x/inl.P | x.{inl : Q;inr : R}) =⇒ (νx)(P | Q)
(β⊕N2) (νx)(x/inr.P | x.{inl : Q;inr : R}) =⇒ (νx)(P | R)
(κ⊗1) (νx)(y[z].(P | Q) | R) =⇒ y[z].((νx)(P | R) | Q) if x 6∈ Q
(κ⊗2) (νx)(y[z].(P | Q) | R) =⇒ y[z].(P | (νx)(Q | R)) if x 6∈ P
(κO) (νx)(y(z).P | R) =⇒ y(z).(νx)(P | R)
(κ⊥) (νx)(y().P | R) =⇒ y().(νx)(P | R)
(κ⊕1) (νx)(y/inl.P | R) =⇒ y/inl.(νx)(P | R)
(κ⊕2) (νx)(y/inr.P | R) =⇒ y/inr.(νx)(P | R)
(κN) (νx)(y.{inl : P;inr : Q} | R) =⇒ y.{inl : (νx)(P | R);inr : (νx)(Q | R)}
(κ>) (νx)(y.{} | R) =⇒ y.{}

P =⇒ P′
(γν)

(νx)(P | Q) =⇒ (νx)(P′ | Q)

P ≡ Q Q =⇒ Q′ Q′ ≡ P′
(γ≡)

P =⇒ P′

Relations =⇒+ and =⇒? are the transitive, and the reflexive, transitive closures of =⇒, respectively.

2.2 Types

Channels in CP are typed using a session type system which corresponds to classical linear logic.
Definition 2.4 (Types).

A,B,C ::= A⊗B pair of independent processes | 1 unit for ⊗
| AOB pair of interdependent processes | ⊥ unit for O
| A⊕B internal choice | 0 unit for ⊕
| ANB external choice | > unit for N

A channel of type A⊗B represents a pair of channels, which communicate with two independent
processes—that is to say, two processes who share no channels. A process acting on a channel of type
A⊗B will send one endpoint of a fresh channel, and then split into a pair of independent processes. One
of these processes will be responsible for an interaction of type A over the fresh channel, while the other
process continues to interact as B.

A channel of type AOB represents a pair of interdependent channels, which are used within a single
process. A process acting on a channel of type AOB will receive a channel to act on, and communicate
on its channels in whatever order it pleases. This means that the usage of one channel can depend on that
of another—e.g., the interaction of type B could depend on the result of the interaction of type A, or vise
versa, and if A and B are complex types, their interactions could likewise interweave in complex ways.

A process acting on a channel of type A⊕B either sends the value inl to select an interaction of type
A or the value inr to select one of type B. A process acting on a channel of type A N B receives such a
value, and then offers an interaction of either type A or B, correspondingly.

Duality plays a crucial role in both linear logic and session types. In CP, the two endpoints of a
channel are assigned dual types. This ensures that, for instance, whenever a process sends across a
channel, the process on the other end of that channel is waiting to receive. Each type A has a dual,
written A⊥. Duality is an involutive function i.e., (A⊥)⊥ = A.
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Definition 2.5 (Duality).

(A⊗B)⊥ = A⊥ OB⊥ 1⊥ = ⊥ (AOB)⊥ = A⊥⊗B⊥ ⊥⊥ = 1
(A⊕B)⊥ = A⊥ NB⊥ 0⊥ = > (ANB)⊥ = A⊥⊕B⊥ >⊥ = 0

An environment associates channels with types. Names in environments must be unique, and two envir-
onments Γ and ∆ can only be combined as Γ,∆ if fv(Γ)∩ fv(∆) =∅.
Definition 2.6 (Environments). Γ,∆,Θ := · | Γ,x : A
A typing judgement associates a process with collections of typed channels.
Definition 2.7 (Typing judgements). A typing judgement P ` x1 : A1, . . . ,xn : An denotes that the process
P communicates along channels x1, . . . , xn following protocols A1, . . . , An. Typing judgements are
derived using rules below.
Structural rules

AX
x↔y ` x : A,y : A⊥

P ` Γ,x : A Q ` ∆,x : A⊥
CUT

(νx)(P | Q) ` Γ,∆

Logical rules
P ` Γ,y : A Q ` ∆,x : B

(⊗)
x[y].(P | Q) ` Γ,∆,x : A⊗B

P ` Γ,y : A,x : B
(O)

x(y).P ` Γ,x : AOB
P ` Γ (⊥)

x().P ` Γ,x : ⊥
(1)

x[].0 ` x : 1
P ` Γ,x : A

(⊕1)x/inl.P ` Γ,x : A⊕B
P ` Γ,x : B

(⊕2)x/inr.P ` Γ,x : A⊕B
P ` Γ,x : A Q ` Γ,x : B

(N)
x.{inl : P;inr : Q} ` Γ,x : ANB

(norule f or0) (>)
x.{} ` Γ,x : >

2.3 Metatheory

CP enjoys subject reduction, termination, and progress (Wadler, 2012).
Lemma 2.8 (Preservation for ≡). If P ≡ Q, then P ` Γ iff Q ` Γ.

Proof. By induction on the derivation of P ≡ Q.

Theorem 2.9 (Preservation). If P ` Γ and P =⇒ Q, then Q ` Γ.

Proof. By induction on the derivation of P =⇒ Q.

Theorem 2.10 (Termination). If P ` Γ, then there are no infinite =⇒-reduction sequences.

Proof. Every reduction reduces a single cut to zero, one or two cuts. However, each of these cuts is
smaller, measured in the size of the cut term. Furthermore, each instance of the structural congruence
preserves the size of the cut. Therefore, there cannot be an infinite =⇒-reduction sequence.

Theorem 2.11 (Progress). If P ` Γ, then there exists a Q such that P =⇒? Q and Q is not a cut.

Proof. By induction on the derivation of P ` Γ. If the last rule is CUT, there are four cases: a) if either
side of the cut is an axiom, we apply (↔); b) if either side of the cut is itself a cut, we recursively
eliminate the cut; c) if both sides are logical rules acting on the cut formula, we apply one of the β -rules;
d) otherwise, at least one side is a logical rule acting on a formula other than the cut formula, in which
case we apply one of the κ-rules.
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3 Hypersequent Classical Processes

In this section, we introduce Hypersequent Classical Processes (HCP), a variant of CP which registers
parallelism in the typing judgements using hypersequents, allowing us to take apart the monolithic term
constructors of CP (e.g., x[y].(P | Q)) into the corresponding π-calculus term constructs.

3.1 Terms

The term language of HCP is a variant of CP where the term constructs have been taken apart into
primitives which more closely resemble the π-calculus primitives.
Definition 3.1 (Terms).

P,Q,R ::= x↔y link | 0 terminated process
| (νx)P name restriction, “cut” | (P | Q) parallel composition, “mix”
| x[y].P output | x(y).P input
| x[].P halt | x().P wait
| x/inl.P select left choice | x/inr.P select right choice
| x.{inl : P;inr : Q} offer binary choice | x.{} offer nullary choice

A pleasant effect of our updated syntax is that it makes our structural congruence much more standard: it
has associativity, commutativity, and a unit for parallel composition, commutativity of name restrictions,
and scope extrusion.
Definition 3.2 (Structural congruence). The structural congruence ≡ is the congruence closure over
terms which satisfies the following additional axioms:

(↔-sym) x↔y ≡ y↔x (halt) P | 0 ≡ P
(|-comm) P | Q ≡ Q | P (|-assoc) P | (Q | R) ≡ (P | Q) | R
(ν-comm) (νx)(νy)P ≡ (νy)(νx)P (scope-ext) (νx)(P | Q) ≡ P | (νx)Q if x 6∈ P

There are two changes to the reduction system. First, since x[y].P and x[].P are now terms in their
own right, the (β⊗O) and (β1⊥) rules are simpler. Second, since we decomposed (νx)(P | Q) into an
independent name restriction and parallel composition, the κ-rules and the relevant γ-rule all decompose
as well.
Definition 3.3 (Reduction). Reductions are described by the smallest relation =⇒ on process terms
closed under the rules in Figure 1. Relations =⇒+ and =⇒? are the transitive, and the reflexive, trans-
itive closures of =⇒, respectively.

3.2 Types

We use the same definitions for types and environments for HCP as we used for CP. However, we in-
troduce a new layer on top of sequents: hypersequents. As CP is a one-sided logic, and it uses the
left-hand side of the turnstile to write the process, the traditional hypersequent notation can look con-
fusing: “P ` Γ1 | . . . | ` Γn” seems to claim that P acts according to protocol Γ1. What are all the
other Γs doing there? Are they typing empty processes? Therefore, we opt to leave out the repeated
turnstile, and instead work with the notion of “hyper-environments”. However, we will still refer to our
system as a hypersequent system. A hyper-environment is either empty, or consist of a series of typing
environments, separated by vertical bars. A hyper-environment Γ1 | . . . | Γn types a series of n entangled,
but independent processes.
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(↔) (νx)(w↔x | P) =⇒ P{w/x}
(β⊗O) (νx)(x[y].P | x(y).R) =⇒ (νx)(νy)(P | R)
(β1⊥) (νx)(x[].P | x().Q) =⇒ P | Q
(β⊕N1) (νx)(x/inl.P | x.{inl : Q;inr : R}) =⇒ (νx)(P | Q)
(β⊕N2) (νx)(x/inr.P | x.{inl : Q;inr : R}) =⇒ (νx)(P | R)
(κν⊗) (νx)y[z].P =⇒ y[z].(νx)P
(κνO) (νx)y(z).P =⇒ y(z).(νx)P
(κν1) (νx)y[].P =⇒ y[].(νx)P
(κν⊥) (νx)y().P =⇒ y().(νx)P
(κν⊕1) (νx)y/inl.P =⇒ y/inl.(νx)P
(κν⊕2) (νx)y/inr.P =⇒ y/inr.(νx)P
(κνN) (νx)y.{inl : P;inr : Q} =⇒ y.{inl : (νx)P;inr : (νx)Q}
(κν>) (νx)y.{} =⇒ y.{}
(κ|⊗) (y[z].P | R) =⇒ y[z].(P | R)
(κ|O) (y(z).P | R) =⇒ y(z).(P | R)
(κ|1) (y[].P | R) =⇒ y[].(P | R)
(κ|⊥) (y().P | R) =⇒ y().(P | R)
(κ|⊕1) (y/inl.P | R) =⇒ y/inl.(P | R)
(κ|⊕2) (y/inr.P | R) =⇒ y/inr.(P | R)
(κ|N) (y.{inl : P;inr : Q} | R) =⇒ y.{inl : (P | R);inr : (Q | R)}
(κ|>) (y.{} | R) =⇒ y.{}

P =⇒ P′
γν

(νx)P =⇒ (νx)P′
P =⇒ P′

γ|
P | Q =⇒ P′ | Q

P ≡ Q Q =⇒ Q′ Q′ ≡ P′
γ≡

P =⇒ P′

Figure 1: Hypersequent Classical Processes, reduction relation.

Definition 3.4 (Hyper-environments). G ,H ::=∅ | G | Γ

A hyper-environment is a multiset of environments. While names within environments must be unique,
names may be shared between multiple environments in a hyper-environment. We write G | H to com-
bine two hyper-environments.

Typing judgements in HCP associate processes with hyper-environments. H-MIX composes two
processes in parallel, but remembers that they are independent in the sequent. H-CUT and (⊗) take
as their premise a process which consists of at least two independent processes, and connects them,
eliminating the vertical bar. Each logical rule has the side condition that x 6∈ G , which can be read
as “you cannot act on one end-point of x if you are also holding its other end-point”. This prevents
self-locking processes, e.g., x[].x().0.

Definition 3.5 (Typing judgements). A typing judgement P ` Γ1 | . . . | Γn denotes that the process P
consists of n independent, but potentially entangled processes, each of which communicates according
to its own protocol Γi. Typing judgements can be constructed using the inference rules below.

Structural rules

AX
x↔y ` x : A,y : A⊥

P ` G | Γ,x : A | ∆,x : A⊥
H-CUT

(νx)P ` G | Γ,∆
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P ` G Q ` H
H-MIX

P | Q ` G | H H-HALT0 ` ∅

Logical rules

P ` G | Γ,y : A | ∆,x : B
⊗

x[y].P ` G | Γ,∆,x : A⊗B
P ` G | Γ,y : A,x : B

(O)
x(y).P ` G | Γ,x : AOB

P ` ∅ 1
x[].P ` x : 1

P ` G | Γ
(⊥)

x().P ` G | Γ,x : ⊥
P ` G | Γ,x : A

(⊕1)x/inl.P ` G | Γ,x : A⊕B
P ` G | Γ,x : B

(⊕2)x/inr.P ` G | Γ,x : A⊕B
P ` G | Γ,x : A Q ` G | Γ,x : B

(N)
x.{inl : P;inr : Q} ` G | Γ,x : ANB

(norule f or0) (>)
x.{} ` G | Γ,x : >

Furthermore, each logical rule has the side condition that x 6∈ G .

3.3 Metatheory

HCP enjoys subject reduction, termination, and progress.

Lemma 3.6 (Preservation for ≡). If P ≡ Q, then P ` G iff Q ` G .

Proof. By induction on the derivation of P ≡ Q.

Theorem 3.7 (Preservation). If P ` G and P =⇒ Q, then Q ` G .

Proof. By induction on the derivation of P =⇒ Q.

Theorem 3.8 (Termination). If P ` G , then there are no infinite =⇒-reduction sequences.

Proof. As Theorem 2.10.

Theorem 3.9 (Progress). If P ` G , then there exists a Q such that P =⇒? Q and Q is not a cut or a mix.

Proof. By induction on the derivation of P ` G . If the last rule is a cut, there are three cases: a) if the
rule under the cut is the corresponding mix, we eliminate both as in Theorem 2.11; b) if the rule under
the cut is an unrelated mix, we rewrite by (scope-ext), and recursively eliminate the cut; c) if the rule
under the cut is a logical rule, we apply one of the κν-rules. If the last rule is mix, there are two cases:
a) if the rule under the mix is a cut or another mix, we recursively eliminate it; b) if the rule under the
mix is a logical rule, we apply one of the κ|-rules.
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4 Relation between CP and HCP

In this section, we discuss the relationship between CP and HCP. We will prove two important theorems:
every CP process is an HCP process; and HCP supports the same protocols as CP. We define a translation
from terms in CP to terms in HCP which breaks down the term constructs in CP into their more atomic
constructs in HCP.

Definition 4.1.

Jx↔yK := x↔y J(νx)(P | Q)K := (νx)(JPK | JQK)
Jx[y].(P | Q)K := x[y].(JPK | JQK) Jx(y).PK := x(y).JPK
Jx[].0K := x[].0 Jx().PK := x().JPK
Jx/inl.PK := x/inl.JPK Jx/inr.PK := x/inr.JPK
Jx.{inl : P;inr : Q}K := x.{inl : JPK;inr : JQK} Jx.{}K := x.{}

We will use this relation in the first proof, and its analogue for derivations in the second.

4.1 Every CP process is an HCP process

First, we prove that each CP process can be translated by this trivial translation to an HCP process, and
that this translation respects structural congruence and reduction. Reductions from CP can be trivially
translated to reductions in HCP. However, as we took apart each κ-rule into two separate rules, the
reduction relation of HCP is a slight refinement over that of CP.

Theorem 4.2. If P ` Γ in CP, then JPK ` Γ in HCP.

Proof. By induction on the derivation of P ` Γ. We show the interesting cases:

• Case CUT. We rewrite as follows:

P ` Γ,x : A Q ` ∆,x : A⊥
CUT

(νx)(P | Q) ` Γ,∆
⇒

JPK ` Γ,x : A JQK ` ∆,x : A⊥
H-MIX

JPK | JQK ` Γ,x : A | ∆,x : A⊥
H-CUT

(νx)(JPK | JQK) ` Γ,∆

• Case (⊗). We rewrite as follows:

P ` Γ,y : A Q ` ∆,x : B ⊗
x[y].(P | Q) ` Γ,∆,x : A⊗B

⇒
JPK ` Γ,y : A JQK ` ∆,x : B

H-MIXJPK | JQK ` Γ,y : A | ∆,x : B
⊗

x[y].(JPK | JQK) ` Γ,∆,x : A⊗B

• Case (1). We rewrite as follows:

1
x[].0 ` x : 1 ⇒

H-HALT0 ` ∅ 1
x[].0 ` x : 1

Theorem 4.3. P ≡ Q in CP iff JPK ≡ JQK in HCP.

Proof. By induction on the derivation of P ≡ Q.

Theorem 4.4. If P =⇒ Q in CP, then JPK =⇒+ JQK in HCP.
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Proof. By induction on the the derivation of P =⇒ Q.

Theorem 4.5. If JPK =⇒ R in HCP, then there is a Q such that P =⇒ Q in CP and R =⇒+ JQK in HCP.

Proof. By induction on the derivation of JPK =⇒ R. The cases for (↔) and the β -rules are trivial. For
the κν-rules, we rewrite by the appropriate κ| rule, and vice versa.

4.2 HCP supports the same communication protocols as CP

HCP exhibits some behaviours which are impossible to directly translate back into CP. For instance, in
the process below, the choice sent on x will affect the choice between P and P′, even though neither has
access to the channel x.

P ` Γ Q ` ∆,x : A
H-MIX

P | Q ` Γ | ∆,x : A
P′ ` Γ Q′ ` ∆,x : B

H-MIX
P′ | Q′ ` Γ | ∆,x : B

N
x.{inl : P | Q;inr : P′ | Q′} ` Γ | ∆,x : ANB

Instead, we will prove that HCP supports the same communication protocols as CP. This is the same
as saying that it inhabits the same session types, or that the associated logical systems derive the same
theorems. We show this by proving that we can internalise the hyper-environments as formulas in the
logic. This is a standard method for proving the soundness of a hypersequent calculus.

We start off by defining a relation on derivations of HCP, which we call “disentanglement”. This
relation allows us to move applications of H-MIX downwards in the proof tree. We can use this relation
to rewrite any derivation to a form in which all mixes are either attached to their respective cuts or tensors,
or at the top-level.

Definition 4.6. Disentanglement is described by the smallest relation  on proof derivations closed
under the rules in Figure 2, plus the associativity and commutativity of mixes. The relation  ? is the
reflexive, transitive closure of .

We named this relation “disentanglement” to reflect the intuition that proof in HCP represent multiple
entangled CP proofs, which we can disentangle. However, this is not entirely accurate. The proof
structure of HCP is slightly richer than that of CP. This can be seen in the example process above. In this
case, when disentangling, we are forced to forget some of the proof structure. This can be seen in the
last rule in Figure 2. Nonetheless, the relation is type preserving, and so it suffices for showing that HCP
supports the same communication protocols as CP.

Disentanglement is terminating, and confluent up to the associativity and commutativity of mixes.

Lemma 4.7 (Disentangle). If there exists a derivation ρ of ` Γ1 | . . . | Γn in HCP, then there exist
derivations ρ1, . . . ,ρn of ` Γ1, . . . , ` Γn in CP such that

ρ  ? Jρ1K . . . JρnK
H-MIX` Γ1 | . . . | Γn

Proof. We repeatedly apply the  -rules to the derivation ρ to move the mixes downwards. There are
three cases: a) if a mix gets stuck under a cut, it forms a CP cut; b) if a mix gets stuck under a (⊗), it
forms a CP (⊗); c) otherwise, it moves all the way to the top. All applications of (1) are followed by an
application of H-HALT, forming a CP (1).
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An environment can be internalised as a type by collapsing it as a series of pars.

Definition 4.8.
O( ·) = ⊥
O(x1 : A1, . . . ,xn : An) = A1 O · · ·OAn if n ≥ 1

Lemma 4.9. If ` Γ in CP, then ` OΓ in CP.

Proof. By repeated application of (O).

Furthermore, a hyper-environment can be internalised as a type by collapsing it as a series of tensors,
where each constituent environment is internalised using O. The empty hyper-environment ∅ is intern-
alised as the unit of tensor.

Definition 4.10.
⊗(∅) = 1
⊗(Γ1 | . . . | Γn) = OΓ1 ⊗ . . .⊗OΓn if n ≥ 1

Theorem 4.11. If ` G in HCP, then ` ⊗G in CP.

Proof. By case analysis on the structure of the hyper-environment G . If G = ∅, we apply (1). If
G = Γ1 | . . . | Γn, we apply Lemma 4.7 to obtain proofs of ` Γ1, . . . , ` Γn in CP, then we apply
Lemma 4.9 to each of those proofs to obtain proofs of ` OΓ1, . . . , ` OΓn, and join them using (⊗)
to obtain a single proof of ` ⊗G in CP.

5 Related Work

Since its inception, linear logic has been described as the logic of concurrency (Girard, 1987). Cor-
respondences between the proof theory of linear logic and variants of the π-calculus emerged soon
afterwards (Abramsky, 1994; Bellin and Scott, 1994), by interpreting linear propositions as types for
channels. Linearity inspired also the seminal theories of linear types for the π-calculus (Kobayashi et al.,
1999) and session types (Honda et al., 1998). Even though the two theories do not have a direct corres-
pondence with linear logic, the link is still strong enough that session types can be encoded into linear
types (Dardha et al., 2017).

It took more than ten years for a formal correspondence between linear logic and (a variant of) session
types to emerge, with the seminal paper by Caires and Pfenning (2010). This inspired the development
of Classical Processes by Wadler (2012).

The idea of using hypersequents to capture parallelism in linear logic judgements is not novel: Car-
bone et al. (2018) extended the multiplicative-additive fragment of intuitionistic linear logic with hyper-
sequents to type global descriptions of process communications known as choreographies. This work is
distinct from our approach in that HCP is based on classical linear logic and manipulates hypersequents
differently: in Carbone et al. (2018), hypersequents can be formed only when sequents share resources
(cf., H-MIX), and resource sharing is then tracked using an additional connection modality (which is not
present in HCP).



12 Taking Linear Logic Apart

References

Abramsky, S. (1994). Proofs as processes. Theoretical Computer Science, 135(1):5–9.

Avron, A. (1991). Hypersequents, logical consequence and intermediate logics for concurrency. Annals
of Mathematics and Artificial Intelligence, 4(3-4):225–248.

Bellin, G. and Scott, P. (1994). On the π-calculus and linear logic. Theoretical Computer Science,
135(1):11–65.

Boreale, M. (1998). On the expressiveness of internal mobility in name-passing calculi. Theoretical
Computer Science, 195(2):205–226.

Caires, L. and Pfenning, F. (2010). Session Types as Intuitionistic Linear Propositions, pages 222–236.
Springer Berlin Heidelberg, Berlin, Heidelberg.
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