
What makes guarded types tick?

Patrick Bahr, Bassel Mannaa, and Rasmus Ejlers Møgelberg

IT University of Copenhagen (paba,basm,mogel@itu.dk)

Abstract

We give an overview of the syntax and semantics of Clocked Type Theory (CloTT), a
dependent type theory for guarded recursion with many clocks, in which one can encode
coinductive types and capture the notion of productivity in types. The main novelty of
CloTT is the notion of ticks, which allows one to open the delay type modality, and, e.g.,
define a dependent form of applicative functor action, which can be used for reasoning
about coinductive data. In the talk we will give examples of programming and reasoning
about guarded recursive and coinductive data in CloTT, and we will present the main
syntactic results: Strong normalisation, canonicity and decidability of type checking. If
time permits, we will also sketch the main ideas of the denotational semantics for CloTT.
The results presented in this talk have previously been published in [2, 5].

Guarded recursion

The idea of guarded recursion [6], is to ensure productivity of recursive definitions by guarding
all recursive calls by a delay type modality . (pronounced later). We think of .A as classifying
data of type A that is available one time step from now. The assumptions on . are a term
next : A → .A and a fixed point operator fix : (.A → A) → A. The latter can be used in
combination with guarded recursive types to define recursive programs. Suppose for example,
that Str is a type of guarded streams satisfying the type equation Str ≡ N×.Str. One can then
define a constant stream of zeros as fix(λx. (0, x)). For higher order programming with guarded
streams, one needs to assume that . is an applicative functor, with applicative action

~ : .(A→ B)→ .A→ .B

For example, given f : N→ N one can define map f : Str→ Str as

fix(λg.λ (x, xs) . (f(x), g ~ xs))

Ticks

Suppose now, that we want to reason about guarded streams using guarded recursion. As
a simple motivating example, suppose we are given some predicate on N in the form of a
dependent type x : N ` P (x) type. A lifting of P to guarded streams should be a dependent
type xs : Str ` P̂ (xs) type satisfying P̂ (x, xs) iff P (x) and “P̂ (xs)”. However, the latter
statement is not well typed, since xs has type .Str and P̂ expects an element of Str. Rather,
it should be true that one time step from now, P̂ holds of the stream delivered at that time by
xs. Ticks are evidence that time has passed, and they allow us to open elements of type .A.
The rules for ticks can be described in a small dependently typed tick calculus:

Γ `
Γ, α:tick `

Γ, α:tick ` A
Γ ` .(α:tick)A

Γ, α:tick ` t : A

Γ ` λ(α:tick)t : .(α:tick)A

Γ ` t : .(α:tick)A

Γ, β:tick,Γ′ ` t [β] : A[β/α]

paba, basm, mogel@itu.dk


What makes guarded types tick? Bahr, Mannaa and Møgelberg

A tick in a context Γ, β:tick,Γ′ can be thought of as dividing the context into variables (Γ),
that arrive before the tick, and variables (Γ′) that arrive after. The rule for tick application
t [β] can be thought of as stating that t must be typed already before the tick β occurs. We
write .A for .(α:tick).A whenever α does not occur in A, and similarly next t for λ(α:tick).t
whenever α does not occur in A.

The requirement for the lifting P̂ can now be described as P̂ (x, xs) ≡ P (x)× .(α:tick)P̂ (xs[α]).
Moreover, one can generalise the applicative action to dependent types as follows:

λf.λy.λ(α:tick).f [α](y [α]) : . (
∏

(x : A) .B)→
∏

(y : .A) . . (α:tick).B[y [α]/x]

We can now use fix also for reasoning. For example a proof p : Π(x:N)P can be lifted to a proof
of Π(y:Str)P̂ (y) as follows: Consider first

f : .(Π(y:Str)P̂ (y))→ Π(y:Str)P̂ (y)

f q ((x, xs))
def
= (p(x), λ(α:tick)q [α](xs [α]))

then fix(f) : Π(y:Str)P̂ (y).

Clocked Type Theory

The goal of Clocked Type Theory (CloTT) is to allow programming and reasoning with guarded
recursive types but also with coinductive types. In order to work with coinductive types,
CloTT combines ticks with multiple clocks and clock quantification as pioneered by Atkey &
McBride [1]. To this end, the typing judgement includes a clock context ∆, which is a finite set
of clocks. Moreover, each tick belongs to a clock κ; instead of α:tick, we write α:κ to indicate
that α is a tick on the clock κ. Correspondingly, the later modality is written as .(α:κ).A and
we write .κA if α does not appear in A. The type of guarded streams over clock κ then becomes
Strκ, satisfying Strκ ≡ N× .κStrκ.

For guarded streams, we can construct head and tail functions as follows:

hdκ : Strκ → N

hdκ
def
= λx : Strκ.π1 x

tlκ : Strκ → .κ Strκ

tlκ
def
= λx : Strκ.λ(α:κ).(π2 x) [α]

We can use them to get the second element of a stream like this:

λ(xs : Strκ).λ(α:κ).hdκ(tlκ xs [α]) : Strκ → .κN

Note that the result type is .κN as opposed to N. To get the second element of the stream as
a term of type N we have to consider coinductive streams.

To form coinductive types, we use clock quantification ∀κ.A. An element of type ∀κ.A is a
term of type A that can compute for an arbitrary number of ticks on clock κ. This intuition is
realised in CloTT by the addition of a tick constant � : κ, for any clock κ. The tick constant �
can be used arbitrarily often for a term of type ∀κ.A, which is expressed in the typing rule for
tick constant application t [�]:

Γ `∆,κ t : A Γ `∆

Γ `∆ Λκ.t : ∀κ.A
Γ `∆ t : ∀κ.A κ′ ∈ ∆

Γ `∆ t[κ′] : A[κ′/κ]

Γ `∆,κ t : . (α:κ).A Γ `∆

Γ `∆,κ t [�] : A [�/α]

For the consistency of the calculus it is crucial that the typing rule for t [�] requires the clock
κ to be fresh for the context Γ. While this rule provides sufficient expressivity of the calculus,

2



What makes guarded types tick? Bahr, Mannaa and Møgelberg

the rule has to be generalised slightly in order to obtain standard syntactic properties such as
closure under substitution and subject reduction.

Γ `∆,κ t : . (α:κ).A Γ `∆ κ′ ∈ ∆

Γ `∆ (t [κ′/κ]) [�] : A[κ′/κ] [�/α]

In this more general rule, the clock κ is substituted away in the conclusion.
Given the type of guarded streams Strκ over κ, we can construct the type of coinductive

streams by a simple clock quantification: Strc
def
= ∀κ.Strκ. Returning to the example of obtaining

the second element of a stream, the coinductive type allows us to get that second element of
the stream of type N, because we may use the tick constant �:

hd : Strc → N

hd
def
= λx : Str.hdκ0 (x [κ0])

tl : Strc → Strc

tl
def
= λx : Strc.Λκ.(tlκ (x [κ])) [�]

λ(xs : Strc).hd(tlxs) : Strc → N

Reduction semantics

The main motivation for introducing ticks is to be able to compute with guarded recursive de-
pendent types. Bizjak et al. [4] introduced delayed substitutions as a means to combine guarded
types with dependent types. However, delayed substitutions turn out to be inappropriate for
devising a reduction semantics. With ticks, computations on later types can be expressed as
straightforward beta and eta reductions:

(λ(α:κ).t) [α′]→ t [α′/α] λ(α:κ).(t [α])→ t

(Λκ.t)[κ′]→ t[κ′/κ] (Λκ.t[κ])→ t

However, this still leaves us with the fixed point combinator fixκ : (.κA → A) → A. Al-
lowing arbitrary unfolding of fixed points by adding the rule fixκ t → t(nextκ (fixκ t)), would
immediately yield a non-normalising reduction system.

Instead, we introduce a combinator dfixκ : (.κA→ A)→ .κA as a primitive and derive fixκ

from it by defining fixκ
def
= λx.x(dfixκ x). Since a term dfixκt is of type .κA rather than A, we

are not forced to unfold dfixκ for the sake of canonicity. We only have to unfold it if that term
is applied to the tick constant � and thus forms a term of type A:

(dfixκ t) [�]→ t (dfixκ t)

With the above rule we still maintain canonicity since any term (dfixκ t) [α], where α is a tick
variable, is considered an open term. Moreover, the rule is restricted enough to ensure strong
normalisation:

Theorem 1 (Strong normalisation & canonicity).

1. If Γ `∆ t : A, then t is strongly normalising.

2. If `∆ t : N, then t→∗ sucn 0 for some n ∈ N.

Since the reduction semantics is confluent as well, we also obtain a decision procedure for
the equational theory of the calculus. Details of CloTT and its reduction semantics can be
found in Bahr et al. [2].

3



What makes guarded types tick? Bahr, Mannaa and Møgelberg

Denotational semantics

If time permits, we will also discuss the denotational semantics of CloTT. Dependent type
theory with guarded recursion on a single clock can be given a denotational semantics in the
topos of trees [3], modelling a closed type as a family of sets Xn indexed by natural numbers,
together with restriction maps rnX : Xn+1 → Xn for each n. The delay type operator is modelled
as (.X)0 = 1 (the singleton set) and (.X)n+1 = Xn. This allows the fixed point operator to be
modelled using natural number induction. For example, the type of guarded streams satisfying
Str ≡ N × .Str can be modelled as Strn = Nn+1 × 1 (associating the products to the right for
strict equality of types), and the lifting of P satisfying P̂ (x, xs) ≡ P (x)× .(α:tick)P̂ (xs[α])
can be modelled as

P̂ (xn, (xn−1, . . . , (x0, ?) . . . ) = {(pn, (pn−1, . . . , (p0, ?) . . . ) | ∀i.pi ∈ P (xi)}

There is no object of ticks in this model. Instead, ticks in contexts are modelled using the left
adjoint / to . defined as (/X)n = Xn+1 by defining JΓ, α : tickK = /JΓK. The multiclock case is
more complex, but follows the same pattern: To model clocks, one needs a category with family
(a standard notion of model of dependent type theory), an adjunction of endofunctors L a R
on the underlying category, an extension of R to types and terms, and a projection L → id to
model tick weakening. The details of this model can be found in [5].

References

[1] R. Atkey and C. McBride. Productive coprogramming with guarded recursion. In ICFP, pages
197–208. ACM, 2013.

[2] P. Bahr, H. B. Grathwohl, and R. E. Møgelberg. The clocks are ticking: No more delays! In LICS,
pages 1–12. IEEE, 2017.

[3] L. Birkedal, R. E. Møgelberg, J. Schwinghammer, and K. Støvring. First steps in synthetic guarded
domain theory: step-indexing in the topos of trees. Logical Methods in Computer Science, 8(4),
2012.

[4] A. Bizjak, H. B. Grathwohl, R. Clouston, R. E. Møgelberg, and L. Birkedal. Guarded dependent
type theory with coinductive types. In FOSSACS, pages 20–35, 2016.

[5] Bassel Mannaa and Rasmus Ejlers Møgelberg. The clocks they are adjunctions: Denotational
semantics for clocked type theory. arXiv preprint arXiv:1804.06687, 2018.

[6] H. Nakano. A modality for recursion. In LICS, pages 255–266. IEEE, 2000.

4


