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How to count linear and affine closed lambda terms?

Pierre Lescanne∗

University of Lyon, École normale supérieure de Lyon †

In this paper we propose a method for counting and generating (including random generation) linear
and affine closed λ -terms based on a data structure which we call SwissCheese because of its holes.
Actually we count those λ -terms up to α-conversion. Therefore it is adequate to use de Bruijn indices [1],
because a term with de Bruijn indices represents an α-equivalence class. For instance, generated by a
Haskell program, here are 16 linear terms of natural size 8:

(λ0 (λ0 λ0)) (λ0 λ (λ0 0)) (λ0 λ (0 λ0)) ((λ0 λ0) λ0) (λ (λ0 0) λ0) (λ (0 λ0) λ0) λ (λ0 (λ0 0)) λ (λ0 (0 λ0))

λ ((λ0 λ0) 0) λ (λ (λ0 0) 0) λ (λ (0 λ0) 0) λ (0 (λ0 λ0)) λ (0 λ (λ0 0)) λ (0 λ (0 λ0)) λ ((λ0 0) λ0) λ ((0 λ0) λ0)

The Haskell programs of this development are on GitHub: https://github.com/PierreLescanne/
CountingGeneratingAfffineLinearClosedLambdaterms and a full version of th paper is in [3].

1 Notations

In this paper we use specific notations.
Given a predicate p, the Iverson notation written [p(x)] is the function taking natural values which

is 1 if p(x) is true and which is 0 if p(x) is false.
Let m ∈ Np be the p-tuple (m0, ...,mp−1). Thus m ∈ Nω is the sequence (m0,m1, ...). Notice in the

case of infinite tuples, we are only interested in infinite tuples equal to 0 after some index.

• p is the length of m, which we write also length m.

• The p-tuple (0, ...,0) is written 0p. 0ω is the infinite tuple made of 0’s.

• The increment of a p-tuple at i is:

m↑i = n ∈ Np where n j = m j if j 6= i and ni = mi +1

• Putting an element x as head of a tuple is written

x : m = x : (m0, ...) = (x,m0, ...)

tail removes the head of a tuple:
tail(x : m) = m.

• � is the componentwise addition on tuples.
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2 Counting linear and affine closed terms
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Figure 1: Building a SwissCheese by application

2 SwissCheese

The basic concept is that of m-SwissCheese or Swisscheese of characteristic m or simply SwissCheese
if there is no ambiguity on m. A m-SwissCheese or a SwissCheese of characteristic m, where m is of
length p, is a λ -term with holes at p levels, which are all counted, using m. Holes at level i are written
�i. An m-SwissCheese contains holes �0,... �p−1. A hole �i is meant to be a location for a variable
at level i, that is under i λ ’s. Beside holes a SwissCheese contains variables, represented by de Bruijn
indices. But all these variables are bound and each binder binds at most one variable, like in closed and
affine λ -terms. A Swisscheese can be seen as an affine or a linear closed λ -terms to which holes have
been added. According to the way bound variables are inserted when creating abstractions (see below),
we consider linear or affine SwissCheeses. The holes have size 0. An m-SwissCheese or a SwissCheese
of characteristic m has m0 holes at level 0, m1 holes at level 1, ... mp−1 holes at level p− 1. Let ln,m
(resp. an,m) count the linear (resp. the affine) m-SwissCheese of size n. ln,m = ln,m′ and an,m = an,m′ if m
is finite, length m ≥ n, mi = m′i for i ≤ length m, and m′i = 0 for i > length m. ln,0n (resp. an,0n) counts
the linear closed (resp. the closed affine) λ -terms of size n, since it counts SwissCheeses with no hole.

Growing a SwissCheese

Given two SwissCheeses, we can build a SwissCheese by application like in Figure 1. In Figure 1, c1 is
a (0,1,0,0,0)-SwissCheese, c2 is a (1,1,0,0,0)-SwissCheese and c1@c2 is a (1,2,0,0,0)-SwissCheese.
Said otherwise, c1 has characteristic (0,1,0,0,0), c2 has characteristic (1,1,0,0,0) and c1@c2 has char-
acteristic (1,2,0,0,0). According to what we said, c1@c2 has characteristic (1,2) as well as character-
istic (1,2,0,0, ...) (a tuple starting with 1, followed by 2, followed by infinitely many 0’s). We could
also say that c1 has characteristic (0,1) and c2 has characteristic (1,1) making @ a binary operation on
SwissCheeses of length 2 whereas previously we have made @ a binary operation on SwissCheeses of
length 5. In other words, when counting SwissCheeses of characteristic m, the trailing 0’s are irrelevant.
In actual computations, we make the lengths of characteristics consistent by adding trailing 0’s to too
short ones.

Given a SwissCheese, there are two ways to grow a SwissCheese to make another SwissCheese by
abstraction.

1. We put a λ on the top of a m-SwissCheese c. This increases the levels of the holes: a hole �i

becomes a hole �i+1. λc is a (0 : m)-SwissCheese. See Figure 2. This way, no index is bound
by the top λ , therefore this does not preserve linearity (it preserves affinity however). Therefore
this construction is only for building affine SwissCheeses, not for building linear SwissCheeses.
In Figure 2, we colour the added λ in blue and we call it abstraction with no binding.
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Figure 2: Abstracting a SwissCheese with no binding
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Figure 3: Abstracting a SwissCheese with binding

2. In the second method for growing a SwissCheese by abstraction, we select first a hole �i, we top
the SwissCheese by a λ , we increment the levels of the other holes and we replace the chosen hole
by Si0, i.e., by the de Bruijn index i. In Figure 3 we colour the added λ in green and we call it
abstraction with binding.

Measuring SwissCheese

We considers several ways of measuring the size of a SwissCheese derived from what is done on λ -terms.
In all these sizes, applications @ and abstractions λ have size 1 and holes have size 0. The differences
are in the way variables are measured.

• Variables have size 0, we call this variable size 0.

• Variables have size 1, we call this variable size 1 .

• Variables (or de Bruijn indices) Si0 have size i+1, we call this natural size.

3 Counting linear closed terms

We start with counting linear terms since they are slightly simpler. We will give recursive formulas first
for the numbers lν

n,m of linear SwissCheeses of natural size n with holes set by m, then for the numbers
l0
n,m of linear SwissCheeses of size n, for variable size 0, with holes set by m, eventually for the numbers

l1
n,m of linear SwissCheeses of size n, for variable size 1, with holes set by m. When we do not want to

specify a chosen size, we write only ln,m without superscript. This is for specific cases when the value
does not depend of the measure of the size.



4 Counting linear and affine closed terms

Natural size

First let us count linear SwissCheeses with natural size. This is given by the coefficient lν which has
two arguments: the size n of the SwissCheese and a tuple m which specifies the number of holes of each
level, i.e, which specifies the characteristics of the SwissCheese. In other words we are interested in the
quantity lν

n,m. We assume that the length of m is p, greater than n.

Size is 0 Whatever size is considered, there is only one SwissCheese of size 0 namely �0. This means
that the number of SwissCheeses of size 0 is 1 if and only if m = (1,0,0, ...):

lν
0,m = l0

0,m = l1
0,m = [m0 = 1∧

p−1∧
j=1

m j = 0]

Size is n+1 and application If a SwissCheese of size n+ 1 has holes set by m and is an application,
then it is obtained from a SwissCheese of size k with holes set by q and a SwissCheese of size
n− k with holes set by r, with m = q� r:

∑
q�r=m

n

∑
k=0

lk,q ln−k,r.

Size is n+1 and abstraction with binding Consider a level i, that is a level of hole �i. If one wants to
get a SwissCheese of size n+1 by abstraction with binding, first this SwissCheese must be a 0:m-
SwissCheese (there is no hole at level 0 is this SwissCheese), second the SwissCheese in which
one chooses the hole �i is a m↑i-SwissCheese, since one removes a hole �i. Therefore, there are
mi + 1 ways to choose a hole �i. In this hole we put a term Si−1 0 of size i. Hence, among lν

n,0:m
SwissCheeses, there are (mi+1) lν

n−i,m↑i 0:m-SwissCheeses which are abstractions with binding in
which a �i has been replaced by the de Bruijn index Si−1 0. Hence by summing over i, the part of
abstraction with binding contributes to lν

n+1,0:m as:

p−1

∑
i=0

(mi +1) lν

n−i,m↑i .

The subtle case of abstraction with binding is pictured in Figure 3. It works as follows. Consider the
case where the (0,1,1)-SwissCheese λ (λ (�2 0)((λS0)�1)) is obtained from the (1,2)-SwissCheese
λ (�1 0)((λ�1)�0) of Figure 1 (right) by abstraction with binding. Notice that (0,1,1) = 0 : (1,1) and
that (1,2) = (1,1)↑1. Focus on level 1 in λ (�1 0)((λ�1)�0). There are 2 holes at level 1, then 2 ways to
choose a hole �1 at level 1, because 2 is the second index of (1,2), which corresponds to level 1. Assume
we choose the second hole from the left, the one in red. Put a (green) lambda on the top. Because of this
lambda on the top, raise the levels of the other holes (the leftmost one becomes �2, the rightmost one
becomes �1). Then replace the chosen hole �1 by S0. We get λ (λ (�2 0)((λS0)�1)).

We have the following recursive definitions of lν
n+1,m:

lν
n+1,0:m = ∑

q�r=0:m

n

∑
k=0

lν
k,q lν

n−k,r +
p−1

∑
i=0

(mi +1) lν

n−i,m↑i

lν

n+1,(h+1):m = ∑
q�r=(h+1):m

n

∑
k=0

lν
k,q lν

n−k,r
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Variable size 0

The only difference is that the inserted de Bruijn index has size 0. Therefore we have (mi + 1) l0
n,m↑i

where we had (mi +1) lν

n−i,m↑i for natural size. Hence the formulas:

l0
n+1,0:m = ∑

q�r=0:m

n

∑
k=0

l0
k,q l0

n−k,r +
p−1

∑
i=0

(mi +1) l0
n,m↑i

l0
n+1,(h+1):m = ∑

q�r=(h+1):m

n

∑
k=0

l0
k,q l0

n−k,r

The sequence l0
n,0n of the numbers of linear closed λ terms is 0,1,0,5,0,60,0,1105,0,27120,0,828250,

which is sequence A062980 in the On-line Encyclopedia of Integer Sequences with 0’s at even indices.

Variable size 1

The inserted de Bruijn index has size 1. We have (mi +1) l1
n−1,m where we had (mi +1) lν

n−i,m for natural
size.

l1
n+1,0:m = ∑

q�r=0:m

n

∑
k=0

l1
k,q l1

n−k,r +
p−1

∑
i=0

(mi +1) l1
n−1,m↑i

l1
n+1,(h+1):m = ∑

q�r=(h+1):m

n

∑
k=0

l1
k,q l1

n−k,r

As noticed by Grygiel et al. [2] (§ 6.1), there are no linear closed λ -terms of size 3k and 3k + 1.
However for the values 3k + 2 we get the sequence: 1,5,60,1105,27120, ... which is again sequence
A062980 of the On-line Encyclopedia of Integer Sequences.

4 Counting affine closed terms

We have just to add the case n 6= 0 and abstraction without binding. Since no index is added, the size
increases by 1. The numbers are written aν

n,m, a0
n,m, a1

n,m, and an,m when the size does not matter. There
are an,m (0 : m)-SwissCheeses of size n that are abstractions with no binding. We get the recursive
formulas:

Natural size

aν
n+1,0:m = ∑

q�r=0:m

n

∑
k=0

aν
k,q aν

n−k,r +
p−1

∑
i=0

(mi +1) aν

n−i,m↑i +aν
n,m

aν

n+1,(h+1):m = ∑
q�r=(h+1):m

n

∑
k=0

aν
k,q aν

n−k,r
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Variable size 0

a0
n+1,0:m = ∑

q�r=0:m

n

∑
k=0

a0
k,q a0

n−k,r +
p−1

∑
i=0

(mi +1) a0
n,m↑i +a0

n,m

a0
n+1,(h+1):m = ∑

q�r=(h+1):m

n

∑
k=0

a0
k,q a0

n−k,r

The sequence is A287045 in the On-line Encyclopedia of Integer Sequences. It corresponds to the
coefficients of the generating function A (z,0) where

A (z,u) = u+ z(A (z,u))2 + z
∂A (z,u)

∂u
+ zA (z,u).

Variable size 1

a1
n+1,0:m = ∑

q�r=0:m

n−1

∑
k=0

a1
k,q a1

n−k,r +
p−1

∑
i=0

(mi +1) a1
n−1,m↑i +a1

n,m

a1
n+1,(h+1):m = ∑

q�r=(h+1):m

n

∑
k=0

a1
k,q a1

n−k,r

The sequence is A281270 in the On-line Encyclopedia of Integer Sequences. It corresponds to the
coefficient of the generating function ˆA (z,0) where ˆA (z,u) is the solution of the functional equation:

ˆA (z,u) = zu+ z( ˆA (z,u))2 + z
∂ ˆA (z,u)

∂u
+ z ˆA (z,u).
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