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Cyclic arithmetic, proposed by Simpson in [6],1 is a deduction system based in
the language of arithmetic where proofs may be non-wellfounded, as opposed
to usual approaches to infinitary proof theory via an omega-rule. Naturally,
some form of correctness condition must be imposed to ensure sound reasoning,
and this is implemented by a trace condition at the level of the ’flow graph’
of the proof (cf. [2]). Cyclic arithmetic (CA) itself consists of such proofs that
are regular, i.e. that have only finitely many distinct subtrees, and so may be
expressed as a finite directed graph (with cycles). It was independently shown
in [6] and [1] that CA and PA are equivalent, and recently by the present author
that logical complexity in the two theories is similar [3].

We consider the issue of cut-elimination for CA. Such a procedure cannot
preserve regularity of proofs, so the issue is to show that cut-elimination is
productive. To this end, continuous cut-elimination procedures have long been
studied in the proof theory of arithmetic, originating from Mints’ seminal article
[5]. However the difficulties arising from the repetition rule, ensuring continu-
ity, and the need to preserve trace conditions seems to warrant an alternative
approach.

In this work-in-progress, we show how cut-elimination can be similarly achieved
by a certain reduction to finitary cut-elimination. We compute certain runs
through a non-wellfounded proof which must be finite thanks to the trace con-
dition, and show that these are preserved in the image of cut-elimination. Pro-
ductivity follows since cut-free runs must be non-empty, and validity follows by
the finiteness of runs.

The computation of runs, naively, makes use of a semantic oracle, though we
believe that this can be replaced by purely syntactic concepts via a geometry of
interaction approach to cut-elimination, cf. [4]. This would yield a novel proof
of the consistency of PA indirectly via CA.
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1In fact, while [6] is the first publication on cylic arithmetic, Simpson proposed it and

already had his main equivalence result in 2012, cf. https://homepages.inf.ed.ac.uk/als/
Talks/collog12.pdf.
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