
What is the Foreign Function Interface

of the Coq Programming Language ?

Sylvain Boulmé

Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France
{sylvain.boulme}@univ-grenoble-alpes.fr

The CompCert certi�ed compiler [Leroy, 2009] is a success story of software veri�cation in Coq

(see [Yang et al., 2011, Bedin França et al., 2012, Kästner et al., 2018]). This success partly comes from
the use of untrusted oracles invoked from the certi�ed code. For example, register allocation in compilers
� being related to a graph coloring problem � is a NP-complete problem: �nding a valid allocation is
di�cult, while checking the validity of an allocation is easy. In CompCert, �nding the allocation is done
by an oracle, i.e. an untrusted OCaml function; and, only the checker of the allocation is programmed
and certi�ed correct in Coq [Rideau and Leroy, 2010]. Generally speaking, introducing such an oracle
has the following bene�ts: �rst, this avoids to program and prove a di�cult algorithm in Coq; second,
this o�ers the opportunity to use (or even reuse) an e�cient imperative implementation as the oracle;
at last, this makes the software more modular. Indeed, the checker is actually certi�ed for a family of
oracles: the oracle can still be improved, without requiring to reprove the checker.

In some certi�ed software like certi�ed SAT solvers, oracles are invoked before certi�ed code which only
checks their outputs [Cruz-Filipe et al., 2017]. This is not the case in CompCert: oracles are directly
invoked in the middle of certi�ed transformations of the input. Hence, CompCert uses a standard
FFI (Foreign Function Interface) of the Coq programming language, in order to invoke external code
from certi�ed code. However, there is no formal justi�cation that using this FFI is sound. Below, I will
illustrate some pitfalls of this FFI and propose how to overcome them. Moreover, I will conjecture that
by using an adequate FFI, we can derive �theorems for free� a la [Wadler, 1989] in Coq from the OCaml
type of polymorphic oracles, and thus discharge a part of the certi�cation on the OCaml typechecker.
However, my proposal raises more issues than it solves: in other words, it opens a new topic of research.
I propose to discuss these ideas in a talk of the Coq Workshop 2018.

Unsoundness of the Standard FFI. The register allocation of CompCert is declared in Coq by1

Parameter regalloc: RTL.function → res LTL.function.

Here, � Parameter� is synonymous of � Axiom� and � res� is quite similar to the � option� type trans-
former. Some Coq directive in CompCert instructs Coq extraction [Letouzey, 2008] to replace this
� regalloc� axiom by a function of the same name from the Regalloc.ml OCaml module. While very
common, this approach is potentially unsound.

Let us consider the Coq example on the right
hand-side. It �rst de�nes a constant one as the
Peano's natural number representing 1. Then, it
declares an axiom test replaced at extraction by a
function oracle. At last, a lemma congr is proved,
using the fact that test is a function. But, im-
plementing oracle by �let oracle x = (x == one)�
in OCaml makes the lemma congr false at runtime.

Definition one: nat := (S O).

Axiom test: nat → bool.

Extract Constant test ⇒ "oracle".

Lemma congr: test one = test (S O).

auto.

Qed.

Indeed, (oracle one) returns true whereas (oracle (S O)) returns false, because == tests the equality
between pointers. Hence, the Coq axiom is unsound w.r.t this implementation. A similar unsoundness
is obtained if oracle uses a reference in order to return true at the �rst call, and false otherwise.

This unsoundness comes fundamentally from the fact that a Coq function f satis�es ∀x, (f x) = (f x).
But, an OCaml function may not satisfy this property. Actually, CompCert is probably free from such
a bug, because its Coq proof does probably not depend on this property of regalloc.

1See https://github.com/AbsInt/CompCert/blob/master/backend/Allocation.v

1

https://github.com/AbsInt/CompCert/blob/master/backend/Allocation.v

Toward a formalized FFI. [Fouilhé and Boulmé, 2014] propose to avoid this unsoundness by axiom-
atizing external OCaml functions using a notion of non-deterministic computations. For example, if the
result of test is declared to be non-deterministic, then the property congr is no more provable. For a
given type A, type ??A represents the type of non-deterministic computations returning values of type
A: it can be interpreted as P(A). Formally, the type transformer � ?? . � is axiomatized as a monad that
provides a may-return relation ;A: ??A → A → Prop. Intuitively, when �k : ??A� is seen as �k ∈ P(A)�,
then �k ; a� means that �a ∈ k�. At extraction, ??A is extracted like A, and its binding operator is
e�ciently extracted as an OCaml let-in. See [Fouilhé and Boulmé, 2014] for more details.

For example, replacing the test axiom by � Axiom test : nat → ?? bool� avoids the above un-
soundness w.r.t the OCaml oracle. The lemma congr can still be expressed as below, but it is no
longer provable � because it is not satis�ed when interpreting ??A as P(A).

∀ b b', (test one);b → (test (S O));b' → b=b'.

Of course, this approach does not su�ce to avoid all pitfalls of axiomatizing oracle types in Coq.
In the following, a Coq type T is said permissive i� any �safe� OCaml function2 compatible with the
extraction of T can be soundly axiomatized in Coq with type T .

Typically, nat→ bool is not permissive while I conjecture that nat→ ?? bool is permissive. But,
nat→ ??{n : nat | n ≤ 10} is not. And, nat→ ??(nat→ nat) neither. Indeed, for these two last
examples, the Coq axiom assumes a postcondition that the OCaml typechecker can not ensure. On
the contrary, I conjecture that nat→ ??(nat→ ??nat) and (nat→ ??nat)→ ??nat are permissive. And
also {n | n ≤ 10}→ ??nat. On this last example, the Coq axiom requires a precondition that OCaml
typechecker can safely ignore. Actually, a similar phenomenon happens with (nat→ nat)→ ??nat.

These examples illustrate that it would be useful to formalize such a notion of permissive Coq types
in order to extend the correctness theorem of Coq extraction for (some) open Coq terms.3 Such a work
could also result in a new Coq directive �External� that declares an axiom and checks the permissivity
of its type. Actually, as brie�y introduced in the next paragrah, studying the class of permissive Coq

types is both challenging and an opportunity to introduce new proof paradigms in Coq+OCaml.

Toward �Theorems for Free� about Polymorphic Oracles. Let us conjecture that the Coq type
�∀ A , A→ ??A� is permissive. We can then formally prove that for all �safe� OCaml implementation f

of type 'a -> 'a, when f returns normally some output, this ouput equals the input. We say below that
such a f is a pseudo-identity. Our formal proof mimicks a �theorem for free� a la [Wadler, 1989]: we
derive a non-trivial theorem about f only from its polymorphic type. More exactly, assuming an oracle
f of type �∀ A , A→ ??A�, we build below a Coq function cpid of the same type and whose extraction is
�let cpid x = f x�, and which is proved to be a pseudo-identity. In the Coq source, for a type B and a
value x : B, (cpid x) invokes f on the type {y | y=x}, and returns the �rst projection of its result. Here,
operators>>= and ret are respectively the bind and unit operators of the may-return monad.

Axiom f: ∀ A, A → ?? A.

Program Definition cpid {B} (x:B): ?? B :=

(f {y|y=x} x) >>= (fun z ⇒ ret (proj1_sig z)).

Lemma cpid_correct A (x y:A): (cpid x);y → y=x.

This illustrates that the permissivity of such polymorphic types requires a parametricity theo-
rem on the OCaml type-system. This theorem is very similar to the one of an imperative exten-
sion of system F, which has been progressively established by [Ahmed et al., 2002, Appel et al., 2007,
Birkedal et al., 2011]. See [Boulmé and Maréchal, 2017] for details. This last preprint actually describes
how such �theorems for free� avoid the need of the certi�cate format introduced in [Fouilhé and Boulmé, 2014]
for our Veri�ed Polyhedra Library. Hence, replacing certi�cate generating oracles by polymorphic ora-
cles greatly simpli�es both the OCaml oracles and the Coq code. Moreover, generic loops and some
exception handling operators are also proved in Coq by such �theorems for free�.

2In a �rst approximation, a �safe� OCaml function could be de�ned as a well-typed function without calls to external

constants like Obj.magic. But this de�nition is probably both too restrictive in practice, and too permissive in theory...
3Currently, extraction is only proved correct for closed terms!

2

References

[Ahmed et al., 2002] Ahmed, A. J., Appel, A. W., and Virga, R. (2002). A strati�ed semantics of general
references embeddable in higher-order logic. In Symposium on Logic in Computer Science (LICS), page 75.
IEEE.

[Appel et al., 2007] Appel, A. W., Melliès, P.-A., Richards, C. D., and Vouillon, J. (2007). A very modal model
of a modern, major, general type system. In Principles of Programming Languages (POPL), pages 109�122.
ACM Press.

[Bedin França et al., 2012] Bedin França, R., Blazy, S., Favre-Felix, D., Leroy, X., Pantel, M., and Souyris, J.
(2012). Formally veri�ed optimizing compilation in ACG-based �ight control software. In ERTS2.

[Birkedal et al., 2011] Birkedal, L., Reus, B., Schwinghammer, J., Støvring, K., Thamsborg, J., and Yang, H.
(2011). Step-indexed kripke models over recursive worlds. In Principles of Programming Languages (POPL),
pages 119�132. ACM Press.

[Boulmé and Maréchal, 2017] Boulmé, S. and Maréchal, A. (2017). Toward Certi�cation for Free! preprint.

[Cruz-Filipe et al., 2017] Cruz-Filipe, L., Heule, M. J. H., Hunt, W. A., Kaufmann, M., and Schneider-Kamp,
P. (2017). E�cient certi�ed RAT veri�cation. In CADE, volume 10395 of LNCS, pages 220�236. Springer.

[Fouilhé and Boulmé, 2014] Fouilhé, A. and Boulmé, S. (2014). A certifying frontend for (sub)polyhedral abstract
domains. In Veri�ed Software: Theories, Tools, Experiments (VSTTE), volume 8471 of LNCS, pages 200�215.
Springer.

[Kästner et al., 2018] Kästner, D., Barrho, J., Wünsche, U., Schlickling, M., Schommer, B., Schmidt, M., Fer-
dinand, C., Leroy, X., and Blazy, S. (2018). CompCert: Practical Experience on Integrating and Qualifying
a Formally Veri�ed Optimizing Compiler. In ERTS2 2018 - 9th European Congress Embedded Real-Time
Software and Systems, pages 1�9, Toulouse, France. 3AF, SEE, SIE.

[Leroy, 2009] Leroy, X. (2009). Formal veri�cation of a realistic compiler. Communications of the ACM, 52(7).

[Letouzey, 2008] Letouzey, P. (2008). Extraction in Coq: An overview. In Computability in Europe (CiE), volume
5028 of LNCS, pages 359�369. Springer.

[Rideau and Leroy, 2010] Rideau, S. and Leroy, X. (2010). Validating register allocation and spilling. In Compiler
Construction (CC 2010), volume 6011 of LNCS, pages 224�243. Springer.

[Wadler, 1989] Wadler, P. (1989). Theorems for free! In Functional Programming Languages and Computer
Architecture (FPCA), pages 347�359. ACM Press.

[Yang et al., 2011] Yang, X., Chen, Y., Eide, E., and Regehr, J. (2011). Finding and understanding bugs in C
compilers. In Programming Language Design and Implementation (PLDI)), pages 283�294. ACM Press.

3

