What is the Foreign Function Interface
of the CoQ Programming Language 7

Sylvain Boulmé

Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France

{sylvain.boulme}@univ-grenoble-alpes.fr

The ComPCERT certified compiler [Leroy, 2009] is a success story of software verification in CoQ
(see [Yang et al., 2011}, Bedin Franca et al., 2012 [K&stner et al., 2018]). This success partly comes from
the use of untrusted oracles invoked from the certified code. For example, register allocation in compilers
— being related to a graph coloring problem — is a NP-complete problem: finding a valid allocation is
difficult, while checking the validity of an allocation is easy. In CoOMPCERT, finding the allocation is done
by an oracle, i.e. an untrusted OCAML function; and, only the checker of the allocation is programmed
and certified correct in CoqQ [Rideau and Leroy, 2010]. Generally speaking, introducing such an oracle
has the following benefits: first, this avoids to program and prove a difficult algorithm in C0Q; second,
this offers the opportunity to use (or even reuse) an efficient imperative implementation as the oracle;
at last, this makes the software more modular. Indeed, the checker is actually certified for a family of
oracles: the oracle can still be improved, without requiring to reprove the checker.

In some certified software like certified SAT solvers, oracles are invoked before certified code which only
checks their outputs [Cruz-Filipe et al., 2017]. This is not the case in COMPCERT: oracles are directly
invoked in the middle of certified transformations of the input. Hence, COMPCERT uses a standard
FFI (Foreign Function Interface) of the COQ programming language, in order to invoke external code
from certified code. However, there is no formal justification that using this FFI is sound. Below, I will
illustrate some pitfalls of this FFI and propose how to overcome them. Moreover, I will conjecture that
by using an adequate FFI, we can derive “theorems for free” a la [Wadler, 1989 in Coq from the OCAML
type of polymorphic oracles, and thus discharge a part of the certification on the OCAML typechecker.
However, my proposal raises more issues than it solves: in other words, it opens a new topic of research.
I propose to discuss these ideas in a talk of the CoQ Workshop 2018.

Unsoundness of the Standard FFI. The register allocation of COMPCERT is declared in Coq by!

Parameter regalloc: RTL.function — res LTL.function.

Here, “Parameter” is synonymous of “Axiom” and “res” is quite similar to the “option” type trans-
former. Some CoQ directive in COMPCERT instructs CoQ extraction [Letouzey, 2008] to replace this
“regalloc” axiom by a function of the same name from the Regalloc.ml OCAML module. While very
common, this approach is potentially unsound.

Let us consider the CoQ example on the right
hand-side. It first defines a constant one as the
Peano’s natural number representing 1. Then, it |,,i.n test: nat — bool.

declares an axiom test replaced at extraction by & |Extract Constant test = "oracle".
function oracle. At last, a lemma congr is proved,
using the fact that test is a function. But, im- |Lemma congr: test one = test (S 0).
plementing oracle by “let oracle x = (x == one)” auto.

in OCAML makes the lemma congr false at runtime. |Qed.

Definition one: nat := (S 0).

Indeed, (oracle omne) returns true whereas (oracle (S 0)) returns false, because == tests the equality
between pointers. Hence, the COQ axiom is unsound w.r.t this implementation. A similar unsoundness
is obtained if oracle uses a reference in order to return true at the first call, and false otherwise.

This unsoundness comes fundamentally from the fact that a CoQ function f satisfies Vz, (f z) = (f ).
But, an OCAML function may not satisfy this property. Actually, COMPCERT is probably free from such
a bug, because its CoQ proof does probably not depend on this property of regalloc.

!See https://github.com/AbsInt/CompCert/blob/master/backend/Allocation.v


https://github.com/AbsInt/CompCert/blob/master/backend/Allocation.v

Toward a formalized FFI. [Fouilhé and Boulmé, 2014] propose to avoid this unsoundness by axiom-
atizing external O CAML functions using a notion of non-deterministic computations. For example, if the
result of test is declared to be non-deterministic, then the property congr is no more provable. For a
given type A, type 77A represents the type of non-deterministic computations returning values of type
A: it can be interpreted as P(A). Formally, the type transformer “ ??7.” is axiomatized as a monad that
provides a may-return relation ~» 4: 7?7A — A — Prop. Intuitively, when “k : 7?7 A” is seen as “k € P(A)”,
then “k ~» a” means that “a € k”. At extraction, ?7A is extracted like A, and its binding operator is
efficiently extracted as an OCAML let-in. See [Fouilhé and Boulmé, 2014] for more details.

For example, replacing the test axiom by “Axiom test: nat — ??bool” avoids the above un-
soundness w.r.t the OCAML oracle. The lemma congr can still be expressed as below, but it is no
longer provable — because it is not satisfied when interpreting 774 as P(A).

V b b’, (test one)~b — (test (S 0))~b’> — b=b’.

Of course, this approach does not suffice to avoid all pitfalls of axiomatizing oracle types in Co0Q.
In the following, a CoQ type T is said permissive iff any “safe’ OCAML function? compatible with the
extraction of T can be soundly axiomatized in CoQ with type T

Typically, nat —+bool is not permissive while I conjecture that nat —??bool is permissive. But,
nat —??{n:nat | n < 10} is not. And, nat—??(nat —nat) neither. Indeed, for these two last
examples, the CoQ axiom assumes a postcondition that the OCAML typechecker can not ensure. On
the contrary, I conjecture that nat — ??(nat —??nat) and (nat—??nat)— ??nat are permissive. And
also{n | n < 10} —7?7?nat. On this last example, the CoQ axiom requires a precondition that OCAML
typechecker can safely ignore. Actually, a similar phenomenon happens with (nat —nat)— ?7nat.

These examples illustrate that it would be useful to formalize such a notion of permissive C0Q types
in order to extend the correctness theorem of C0oQ extraction for (some) open CoQ terms.® Such a work
could also result in a new CoQ directive “External” that declares an axiom and checks the permissivity
of its type. Actually, as briefly introduced in the next paragrah, studying the class of permissive C0OQ
types is both challenging and an opportunity to introduce new proof paradigms in CoQ+OCAML.

Toward “ Theorems for Free” about Polymorphic Oracles. Let us conjecture that the CoQ type
“Y A,A—?7A” is permissive. We can then formally prove that for all “safe” OCAML implementation £
of type ’a -> ’a, when f returns normally some output, this ouput equals the input. We say below that
such a f is a pseudo-identity. Our formal proof mimicks a “theorem for free” a la [Wadler, 1989]: we
derive a non-trivial theorem about £ only from its polymorphic type. More exactly, assuming an oracle
£ of type “V A4,A— 774" we build below a CoqQ function cpid of the same type and whose extraction is
“let cpid x = £ x”, and which is proved to be a pseudo-identity. In the CoQ source, for a type B and a
value x:B, (cpid x) invokes £ on the type {y|y=x}, and returns the first projection of its result. Here,
operators >>= and ret are respectively the bind and unit operators of the may-return monad.

Axiom f: V A, A — 7?7 A.
Program Definition cpid {B} (x:B): ?7 B :=

(f {yly=x} x) >>= (fun z = ret (projl_sig z)).
Lemma cpid_correct A (x y:A): (cpid x)~y — y=x.

This illustrates that the permissivity of such polymorphic types requires a parametricity theo-
rem on the OCAML type-system. This theorem is very similar to the one of an imperative exten-
sion of SYSTEM F, which has been progressively established by [Ahmed et al., 2002 [Appel et al., 2007,
Birkedal et al., 2011]. See [Boulmé and Maréchal, 2017] for details. This last preprint actually describes
how such “theorems for free” avoid the need of the certificate format introduced in [Fouilhé and Boulmé, 2014]
for our Verified Polyhedra Library. Hence, replacing certificate generating oracles by polymorphic ora-
cles greatly simplifies both the OCAML oracles and the CoQ code. Moreover, generic loops and some
exception handling operators are also proved in CoQ by such “theorems for free”.

2In a first approximation, a “safe” OCamML function could be defined as a well-typed function without calls to external
constants like Obj.magic. But this definition is probably both too restrictive in practice, and too permissive in theory...
3Currently, extraction is only proved correct for closed terms!



References

[Ahmed et al., 2002] Ahmed, A. J., Appel, A. W., and Virga, R. (2002). A stratified semantics of general
references embeddable in higher-order logic. In Symposium on Logic in Computer Science (LICS), page 75.
IEEE.

[Appel et al., 2007] Appel, A. W., Melliés, P.-A., Richards, C. D., and Vouillon, J. (2007). A very modal model
of a modern, major, general type system. In Principles of Programming Languages (POPL), pages 109-122.
ACM Press.

[Bedin Franca et al., 2012] Bedin Franga, R., Blazy, S., Favre-Felix, D., Leroy, X., Pantel, M., and Souyris, J.
(2012). Formally verified optimizing compilation in ACG-based flight control software. In ERTS2.

[Birkedal et al., 2011] Birkedal, L., Reus, B., Schwinghammer, J., Stgvring, K., Thamsborg, J., and Yang, H.
(2011). Step-indexed kripke models over recursive worlds. In Principles of Programming Languages (POPL),
pages 119-132. ACM Press.

[Boulmé and Maréchal, 2017] Boulmé, S. and Maréchal, A. (2017). Toward Certification for Free! preprint.
[Cruz-Filipe et al., 2017] Cruz-Filipe, L., Heule, M. J. H., Hunt, W. A., Kaufmann, M., and Schneider-Kamp,
P. (2017). Efficient certified RAT verification. In CADE, volume 10395 of LNCS, pages 220-236. Springer.
[Fouilhé and Boulmé, 2014] Fouilhé, A. and Boulmé, S. (2014). A certifying frontend for (sub)polyhedral abstract
domains. In Verified Software: Theories, Tools, Experiments (VSTTE), volume 8471 of LNCS, pages 200-215.
Springer.

[Késtner et al., 2018] Kastner, D., Barrho, J., Wiinsche, U., Schlickling, M., Schommer, B., Schmidt, M., Fer-
dinand, C., Leroy, X., and Blazy, S. (2018). CompCert: Practical Experience on Integrating and Qualifying
a Formally Verified Optimizing Compiler. In ERTS2 2018 - 9th European Congress Embedded Real-Time
Software and Systems, pages 1-9, Toulouse, France. 3AF, SEE, SIE.

[Leroy, 2009] Leroy, X. (2009). Formal verification of a realistic compiler. Communications of the ACM, 52(7).

[Letouzey, 2008] Letouzey, P. (2008). Extraction in Coq: An overview. In Computability in Europe (CiE), volume
5028 of LNCS, pages 359-369. Springer.

[Rideau and Leroy, 2010] Rideau, S. and Leroy, X. (2010). Validating register allocation and spilling. In Compiler
Construction (CC 2010), volume 6011 of LNCS, pages 224-243. Springer.

[Wadler, 1989] Wadler, P. (1989). Theorems for free! In Functional Programming Languages and Computer
Architecture (FPCA), pages 347-359. ACM Press.

[Yang et al., 2011] Yang, X., Chen, Y., Eide, E., and Regehr, J. (2011). Finding and understanding bugs in C
compilers. In Programming Language Design and Implementation (PLDI)), pages 283-294. ACM Press.



