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Abstract: The time scale theory is introduced to study the stability of a class of
switched linear systems on non-uniform time domains, where the dynamical system
commutes between a continuous-time linear subsystem and a discrete-time linear
subsystem during a certain period of time. Without assuming that matrices are
pairwise commuting, some conditions are derived to guarantee the exponential
stability of the switched system by considering that the continuous-time subsystem
is stable and the discrete-time subsystem can be stable or unstable. Some examples
show the effectiveness of the proposed scheme.

1. INTRODUCTION

Switched systems are systems involving both continuous
and discrete dynamics. They consists of a finite number
of subsystems and a discrete rule that dictates switching
between them. Stability of these systems have been widely
studied during these two last decades Liberzon [2003],
Liberzon and Morse [1999], Lin and Antsaklis [2009], Sun
and Ge [2005] because they can describe a wide range of
physical and engineering applications. Most of the existing
methods can be categorized into two separated directions
depending on whether each subsystem is continuous-time
Geromel and Colaneri [2006a] or discrete-time Geromel
and Colaneri [2006b], Zhang and Yu [2009].

Motivated by this observation, in this paper, the stability
of switched linear systems on non-uniform time domains
is analyzed. There are many interesting applications in-
volving non-uniform time domains. For example, impulsive
systems (which are a relevant class of switched systems, in
which the state jumps occur only at some time instants
Amato et al. [2013]) with non-instantaneous state jumps,
indeed, their temporal nature cannot be represented by the
continuous or the discrete line. Cooperative control over
network under intermittent information transmissions is
another example Guo et al. [2014], Taousser et al. [2016].

The theory of system dynamics on an arbitrary time scale
is promising because it demonstrates the interplay between
the theory of continuous-time and discrete-time systems
Bohner and Peterson [2001, 2003], Hilger [1990]. It leads
to a new understanding and analysis of dynamical systems
on any non-uniform time domains that are closed subsets
of R. As expected, time scale dynamic equations reduce to

standard continuous differential equations (resp. standard
difference equations) when the time scale is the continuous
line (resp. homogeneous discrete domain). Exponential
stability was derived for linear systems using the time
scale exponential function in DaCuhna [2005], Doan et al.
[2010], Peterson and Raffoul [2005], Potzsche et al. [2003].
Dynamic equations with general structured perturbations
Du et al. [2011] and nonlinear finite-dimensional con-
trol systems Bartosiewicz and Piotrowska [2013] on time
scales have also been investigated. The dynamical systems
evolving on a discrete time scale are studied by using a
stochastic approach in D. R. Poulsen and Gravagne [2013],
D. R. Poulsen and Gravagne [2017].

In general, the stability analysis of switched systems is
based on the existence of a common (or multiple) Lya-
punov function which imposed some algebraic conditions
on the matrices of subsystems. In Zhai et al. [2006],
some stability conditions were derived for switched nor-
mal linear systems, which are given by two subsystems
evolving on continuous-time and discrete uniform time
domains with fixed sampling periods. However, the ex-
tension to a larger class of systems evolving on a non-
uniform time domain is not trivial. To solve this issue,
the theory of system dynamics on an arbitrary time scale
T seems to be appropriate. The stability of a class of
switched linear systems on time scale which consists of
a set of stable linear continuous-time and stable linear
discrete-time subsystems was studied in Taousser et al.
[2016, 2015a], Davis et al. [2010], Taousser et al. [2014,
2017]. However, in these papers, the matrices of each
subsystem were assumed to be pairwise commuting. In
Eisenbarth et al. [2014], the stability of simultaneously
triangularizable switched systems on arbitrary time scale



was analyzed using a common Lyapunov function. One can
note that the approaches given in Taousser et al. [2015a],
Gravagne et al. [2011], Davis et al. [2010], Eisenbarth
et al. [2014] do not work if one individual subsystem is
not asymptotically stable. In Taousser et al. [2016, 2014,
2017] the studied system switches between a continuous-
time and a discrete-time dynamic subsystem with bounded
graininess function where the matrices of the two sub-
systems are pairwise commuting. Using the time scale
exponential function properties, some sufficient conditions
were derived to guarantee the exponential stability of this
class of switched systems when the subsystems are possibly
stable or unstable using the spectrum of the system ma-
trices. In Taousser et al. [2015b], a necessary and sufficient
conditions of exponential stability of this class of switched
systems are derived by determining a region of exponential
stability.

In this paper, we are interested in extending the existing
results for stability of switched systems on non-uniform
time domains formed by a union of disjoint intervals with
variable length and variable gap Taousser et al. [2016,
2014, 2015a]. Without assuming restrictive conditions on
the subsystems (pairwise commuting or simultaneously
triangularizable conditions, etc.), sufficient conditions are
derived to guarantee the exponential stability of this class
of switched systems under bounded graininess condition
by supposing that the continuous-time subsystem is stable
and the discrete-time subsystem can be stable or instable.
Notice that in this work as in Taousser et al. [2016,
2014, 2015a], we suppose that the time scale T is given
in advance (i.e the switching times is known) and the
conditions of stability are derived with respect it. Some
examples are presented to validate the results.

The paper is organized as fellows. A preliminary on time
scale theory are presented in Section II. Conditions of
exponential stability of the proposed switched system are
derived in Section III. Numerical examples which validate
the proposed scheme are given in Section IV.

2. PROBLEM STATEMENT

2.1 Preliminaries on time scale theory

In this subsection, we recall some basics on time scale
theory Bohner and Peterson [2001, 2003]. A time scale T is
a nonempty closed subset of R. For t ∈ T, the forward jump
operator σ : T→ T is defined by σ(t) = inf{s ∈ T : s > t}.
The mapping µ : T → R+, called the graininess function,
is defined by µ(t) = σ(t)− t. A point t ∈ T is called right-
scattered if σ(t) > t and right-dense if σ(t) = t. The set
Tκ is defined as follows: if T has a left-scattered maximum
m, then Tκ = T− {m}; otherwise Tκ = T. Let f : T→ R
be ∆-differentiable on Tκ. The ∆-derivative of f at t ∈ Tκ
is

f∆(t) = lim
s→t

f(σ(t))− f(s)

σ(t)− s
(1)

One can notice that if T = R, then f∆(t) = ḟ(t),
which is the usual derivative of f ; and if T = hZ, then

f∆(t) = f(t+h)−f(t)
h (using the time scale theory, the

theory of differential and difference equations is unified).

A function f : T → R is said to be rd-continuous, if it
is continuous at right-dense points in T and its left-hand
limit exists at left-dense points in T. A function p : T→ R
is regressive if 1+µ(t)p(t) 6= 0,∀t ∈ Tκ. We denote the set
of regressive and rd-continuous functions by R and by R+

if they satisfy 1 + µ(t)p(t) > 0, ∀t ∈ Tκ (i.e positively
regressive functions). Similarly, a matrix function A :
T → Rn is called regressive, if ∀t ∈ Tκ , I + µ(t)A(t)
is invertible, where I is the identity matrix. Equivalently,
A(t) is regressive if and only if all its eigenvalues are
regressive.

The generalised exponential function of p ∈ R on time
scale T is expressed by

ep(t, s) =


e

∫ t
s

log(1+µ(τ)p(τ))
µ(τ)

∆τ
if µ(t) 6= 0, s, t ∈ T

e

∫ t
s
p(τ)∆τ

if µ(t) = 0, s, t ∈ T
(2)

where log is the principal logarithm function. Let p be
constant, so for T = R, ep(t, t0) = ep(t−t0) and for T = hZ,

ep(t, s) =
∏t−h
τ=s(1 + hp(τ)).

Theorem 1. Bohner and Peterson [2003] Let a regressive
constant matrix A ∈ Rn×n, the unique solution of

x∆(t) = Ax(t), x(t0) = I, t0 ∈ T (3)

is the generalized exponential function eA(t, t0).

The definitions of stability of dynamical systems on time
scales are achieved by modifications of the standard sta-
bility concepts for continuous and discrete dynamical sys-
tems.
System (3) is exponentially stable on a time scale T, if
there exists a constant β ≥ 1 and a negative constant
α ∈ R+, such that the corresponding solution satisfies

‖x(t)‖ ≤ β‖x0‖eα(t, t0), ∀t ∈ T.

This characterization of exponential stability is a general-
ization of the definition of exponential stability for systems
defined in R or hZ. More specifically, the condition that
α < 0 and α ∈ R+ in the characterization of exponential
stability is reduced to α < 0 for T = R and to 0 < 1+hα <
1 for T = hZ (in this case eα(t, t0) > 0, ∀t ≥ t0, t, t0 ∈ T).
In Potzsche et al. [2003], the exponential stability of dy-

namical system (3) is given by determining a region of
exponential stability SC on an arbitrary, unbounded, time
scale T. To get around the computational difficulties of
this region of exponential stability, the authors showed in
Gard and Hoffacker [2003], that for any T, the Hilger circle
at time t defined as

Hµ(t) =

{
z ∈ C : |z +

1

µ(t)
| < 1

µ(t)

}
is a subset of SC. When the graininess function is bounded
(i.e. µmax = supt∈T µ(t)), the smallest Hilger circle (de-
noted Hmin) is the Hilger circle associated with µmax.
When µ(t) = 0, the Hilger circle is defined as H0 =
{z ∈ C : Re(z) < 0}, the open left-half complex plane.
Furthermore, a regressive constant matrix A is said Hilger
stable if spec(A) ⊂ Hmin (i.e all eigenvalues of A are in
Hmin) Eisenbarth et al. [2014], Potzsche et al. [2003].



2.2 Problem statement

In this paper, time scale theory is introduced to study
the stability of a special class of switched systems where
the dynamical system commutes between a continuous-
time linear subsystem and a discrete-time linear subsystem
during a certain period of time (which may correspond to
the time needed for state jump such as an interruption of
the information transmissions for instance). Consider the
particular time scale T = P{σ(tk),tk+1} = ∪∞k=0[σ(tk), tk+1]
where t0 = σ(t0) = 0 is the initial time, and tk+1, (k ∈ N),
are the switching times. Let {Ac, Ad} be a set of two
constant regressive matrices of appropriate dimensions.
The eigenvalues ofAc (resp.Ad) are denoted λjc ∈ spec(Ac)
(resp. λjd ∈ spec(Ad)). The studied switched linear system
on time scale T = P{σ(tk),tk+1} is written as

x∆(t) =

{
Acx(t) for t ∈ ∪∞k=0[σ(tk), tk+1)

Adx(t) for t ∈ ∪∞k=0{tk+1}
(4)

The first equation of (4) describes the continuous-time
linear dynamics of the system and the second one can be
seen as the non instantaneous jumps. We will consider in
this paper that the dynamical system commutes between
a stable continuous-time linear subsystem and a possibly
instable linear discrete-time subsystem during a certain
period of time.

3. STABILITY ANALYSIS OF SWITCHED LINEAR
SYSTEMS ON TIME SCALES

The stability of (4) with non pairwise commuting matrices
is discussed by using the properties of the generalized
exponential function. Let us derive the explicit solution
of (4). Using time scale theory, one can obtain, ∀k ∈ N, if
t ∈ [σ(tk), tk+1), then the corresponding solution is

x(t) = eAc(t−σ(tk))x(σ(tk))

For t = tk+1, we have

x(σ(tk+1)) = (I + µ(tk+1)Ad) x(tk+1)

Therefore, for σ(tk) ≤ t ≤ tk+1, k ∈ N, the solution of (4)
is given by (see Taousser et al. [2014] for more details)

x(t) = eAc(t−σ(tk))(I + µ(tk)Ad) . . .
×(I + µ(t1)Ad)e

Act1x0

= eAc(t−σ(tk))eAd(σ(tk), tk) . . .
×eAd(σ(t1), t1)eAct1x0

(5)

In the following, we will investigate the case on whether
continuous-time subsystem is stable and the discrete-time
subsystem can be stable or instable.

Let us assume that:

(i) Matrix Ac is stable.
(ii) The graininess function is bounded i.e., 0 < µmin ≤

µ(t) ≤ µmax for all t ∈ ∪∞k=0{tk+1}
(iii) Let us define constants αc < 0, αd ∈ R+ and

corresponding constants βc, βd ≥ 1 such that ∀k ∈ N∗
and for t, s ∈ [σ(tk), tk+1], t ≥ s,

‖eAc(t, s)‖ ≤ βc eαc(t, s)
‖eAd(σ(tk), tk)‖ ≤ βd eαd(σ(tk), tk)

(6)

And one of the following conditions is fulfilled:

max
1≤i≤k

(1 + µ(ti)αd) <
1

β2
(7)

or

max
1≤i≤k

(1 + µ(ti) αd) < e−[αc min1≤i≤k(ti−σ(ti−1)) +log(β2)]

(8)
with β = max{βc, βd}.

Remark 1.
There always exist constants αc < 0, αd ∈ R+ and
βc, βd ≥ 1, such that αc ≥ Re(λc) = maxj{Re(λjc), λjc ∈
spec(Ac)} and (1+µ(t)αd) ≥ max1≤j≤n{|1+µ(t)λjd|, λ

j
d ∈

spec(Ad)}, ∀ t ∈ ∪∞k=1{tk}.
If Ac (resp. Ad) are diagonalizable, so the above two

inequalities can be replaced by equalities.

Remark 2.
Condition (7) means that Ad is stable (i.e the eigenvalues
of Ad lie strictly within the Hilger circle). If condition
(7) does not hold, one may check condition (8). Roughly
speaking, this condition means that the effect of the
discrete-time subsystem (stable or instable) is less signif-
icant than the effect of the continuous-time subsystem to
guarantee the exponential stability of the switched system.

Theorem 2.
Under Assumptions (i)-(iii), the switched system (4) is
exponentially stable.

Proof.
According to Assumption (i), the state transition matrix
of the continuous-time subsystem satisfies

‖eAc(t, s)‖ = ‖eAc(t−s)‖ ≤ βc eαc(t−s)

for t, s ∈ [σ(tk), tk+1[, t ≥ s with αc < 0.

Therefore, on [σ(tk), tk+1], k ∈ N, one can derive an upper
bound of solution (5) as follows

‖x(t)‖ ≤ ‖eAc(t−σ(tk))‖‖eAd(σ(tk), tk)‖‖eAc(tk−σ(tk−1))‖

. . . ‖eAd(σ(t1), t1)‖‖eAct1‖ ‖x0‖

≤ βceαc(t−σ(tk)) βd(1 + µ(tk)αd) βce
αc(tk−σ(tk−1))

. . . βd(1 + µ(t1)αd) βce
αct1 ‖x0‖

≤ βk+1
c βkde

αc(t−
∑k

i=1
µ(ti))

k∏
i=1

(1 + µ(ti)αd)

× ‖x0‖

≤ β2k+1eαc(t−
∑k

i=1
µ(ti))( max

1≤i≤k
(1 + µ(ti)αd))

k

× ‖x0‖

≤ βeαc(t−
∑k

i=1
µ(ti))

×ek[log(max1≤i≤k(1+µ(ti)αd))+log(β2)] ‖x0‖
(9)

with β = max{βc, βd}.
Suppose that condition (7) is satisfied, i.e.



log( max
1≤i≤k

(1 + µ(ti)αd)) + log(β2) < 0

Assumption (ii) yields

k ≥
∑k
i=1 µ(ti)

µmax

Then, the upper bound of solution (5) becomes

‖x(t)‖ ≤ β eλt ‖x0‖

with λ = max{αc,
log(max1≤i≤k(1+µ(ti)αd))+log(β2)

µmax
} < 0. In

this case, system (4) is exponentially stable.

Let us now consider that condition (7) of Assumption (iii)
is not satisfied. Hence, one has

log( max
1≤i≤k

(1 + µ(ti)αd)) + log(β2) > 0,

one can derive, for t ∈ [σ(tk), tk+1],

k ≤
t−
∑k
i=1 µ(ti)

min1≤i≤k(ti − σ(ti−1))

Then, the upper bound of solution (5) becomes

‖x(t)‖ ≤ β e
(t−
∑k

i=1
µ(ti))

(
αc+

log(max1≤i≤k(1+µ(ti)αd))+log(β2)

min1≤i≤k(ti−σ(ti−1))

)
‖x0‖

(10)
Suppose that condition (8) is satisfied. Therefore, one can
obtain

log( max
1≤i≤k

(1+µ(ti)αd))+log(β2) < −αc min
1≤i≤k

(ti−σ(ti−1))

It means that

αc +
log(max1≤i≤k(1 + µ(ti)αd)) + log(β2)

min1≤i≤k(ti − σ(ti−1))
< 0 (11)

From Eqs. (10) , (11), the general solution of (4) given by
(5) converges exponentially to zero.

4. NUMERICAL EXAMPLES

Let us consider the following example using the time scale

T =
⋃∞
k=0

[
2k + 1.5k

k+1.25 , 2(k + 1)
]

x∆ =



( −3

2
1

1 −1

)
x, t ∈ ∪∞k=0

[
2k +

1.5k

k + 1.25
, 2(k + 1)

)
( −1

2

1

10
0 −1

)
x, t ∈ ∪∞k=0 {2(k + 1)}

(12)
System (12) can be written as (4) with tk = 2k, σ(tk) =
2k + 1.5k

k+1.25 , 2
3 ≤ µ(tk) = σ(tk) − tk = 1.5k

k+1.25 ≤
3
2 , and 2

3 ≤ (tk+1 − σ(tk)) ≤ 3
2 , k ∈ N∗. λ1

c =

−2.2808, λ2
c = −0.2192, λ1

d = −0.5 and λ2
d = −1. Hence,

the dynamical system (12) commutes between a stable
continuous-time linear subsystem and a stable discrete-
time linear subsystem.
Conditions (i)-(iii) are satisfied. Indeed, condition (7) is
fulfilled with λ1

d = −1
2 and β = 1.2198, such that

max
1≤i≤k

(1 + µ(ti)αd) = max
1≤i≤k

|1 + µ(ti)λ
1
d|

= 0.6667

<
1

β2
= 0.6721.
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Fig. 1. Trajectories of the switched system (12) with
stable subsystems and condition (7) is satisfied. x0 =
[0.5 2]T
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Fig. 2. Trajectories of the switched system (12) with
stable subsystems and condition (8) is satisfied. x0 =
[0.5 2]T

Fig. 1 illustrate the result with initial state x0 = [0.5 2]T .

Let us consider the same system (12) using the time scale

T = P{σ(tk),tk+1} =
⋃∞
k=0

[
5
2k + 3k

2k+7 ,
5
2 (k + 1)

]
, with

tk = 5
2k, σ(tk) = 5

2k + 3k
2k+7 , 1

3 ≤ µ(tk) = σ(tk) −
tk = 3k

2k+7 ≤
3
2 and 1 ≤ (ti − σ(ti−1)) ≤ 39

28 , k ∈ N∗.
The discrete subsystem is stable on this time scale, but
condition (7) is not satisfied whereas condition (8) is
verified for β = 1.2198, αc = λ2

c = −0.2192 and λ1
d = −1

2 ,
such that
max1≤i≤k,1≤j≤n |1 + µ(ti)λ

j
d| = 0.8333

< e[−αc min1≤i≤k(ti−σ(ti−1))−log(β2)]

= e[0.2192−log((1.2198)2)]

= 0.8368.

Hence the exponential stability of the solution holds. The
result is illustrated in Fig. 2 with initial state x0 =
[0.5 2]T .
Let us now consider that the dynamical system (12) com-
mutes between a stable continuous-time and an instable
discrete-time subsystems on the same time scale

T =
⋃∞
k=0

[
2k + 1.5k

k+1.25 , 2(k + 1)
]

with Ac =

(
−6 4
4 −4

)



and Ad =

 1

6

−1

30

0
1

3

.

λ1
c = −9.1232, λ2

c = −0.8768, λ1
d = 1

6 and λ2
d = 1

3 .
Conditions (i)-(iii) are satisfied. Indeed, condition (7) can-
not be fulfilled. Instead, inequality (8) is verified with
αd = λ2

d = 1
3 , αc = λ2

c = −0.877 and β = 1.2198, such
that

max
1≤i≤k

|1 + µ(ti)λ
2
d| = 0.8333

< e[−αc min1≤i≤k(ti−σ(ti−1)) −log(β2)]

= e[0.2192−log((1.2198)2)]

= 0.8368.

The corresponding trajectories are given in Figs. 3, where
the initial state is x0 = [0.5 2]T . One can see the
exponential stability of the switched system on time scale
T.

0 2 4 6 8 10
0

0.5

1

1.5

2

time(t)

x(
t)

 

 

x
1

x
2

Fig. 3. Trajectories of the switched system (12) with sta-
ble continuous-time and instable discrete-time subsys-
tem.

5. CONCLUSION

In this paper, time scale theory is introduced to study the
stability of a special class of switched linear systems which
evolve on non-uniform time domains. The considered dy-
namical system commutes between a continuous-time lin-
ear subsystem which is supposed stable and a discrete-
time linear subsystem during a certain period of time and
can be stable or instable. Without assuming that matrices
are pairwise commuting, some conditions are derived to
guarantee the exponential stability of the switched system
by using the general solution of the switched system and
the properties of the generalized exponential function.
The effectiveness of the proposed scheme is illustrated in
numerical examples.
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