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We study the two Girard’s translations of intuitionistic implication into linear logic by exploiting the
bang calculus, a paradigmatic functional language with an explicit box-operator that allows both the
call-by-name and call-by value λ -calculi to be encoded in. We investigate how the bang calculus
subsumes both call-by-name and call-by-value λ -calculi from a syntactic and a semantic viewpoint.

1 Introduction

The λ -calculus is a simple framework formalizing many features of functional programming languages.
For instance, the λ -calculus can be endowed with two different evaluation mechanisms, call-by-name
(CbN) and call-by-value (CbV), which have quite different properties. A CbN discipline re-evaluates an
argument each time it is used. On the contrary, a CbV discipline evaluates an argument just once and recalls
its value each time it is used. CbN and CbV λ -calculi are usually defined by means of operational rules
giving rise to two different rewriting systems on the same set of λ -terms: in CbN there is no restriction on
firing a β -redex, whereas in CbV a β -redex can be fired only when the argument is a value, i.e. a variable
or an abstraction. The standard categorical setting for describing denotational models of the λ -calculus,
cartesian closed categories, provides models which are adequate for CbN, but typically not for CbV. For
CbV, the introduction of an additional computational monad (in the sense of Moggi [18, 19]) is necessary.
While CbN λ -calculus [3] has a rich and refined semantic and syntactic theory featuring advanced concepts
such as separability, solvability, Böhm trees, classification of λ -theories, full-abstraction, etc., this is not
the case for CbV λ -calculus [21], in the sense that concerning the CbV counterpart of these theoretical
notions there are only partial and not satisfactory results (or they do not exist at all!).

Quoting from [13], “the existence of two separate paradigms is troubling” for at least two reasons:

• it makes each language appear arbitrary (whereas a unified language might be more canonical);

• each time we create a new style of semantics, e.g. Scott semantics, operational semantics, game
semantics, continuation semantics, etc., we always need to do it twice — once for each paradigm.

Girard’s Linear Logic (LL, [11]) provides a unifying setting where this discrepancy could be solved
since both CbN and CbV λ -calculi can be faithfully translated, via two different translations, into LL
proof-nets. Following [13], we can claim that, via these translations, LL proof-nets “subsume” the CbN
and CbV paradigms, in the sense that both operational and denotational semantics for those paradigms
can be seen as arising, via these translations, from similar semantics for LL.

Indeed, LL can be understood as a refinement of intuitionistic logic (and hence λ -calculus) in which
resource management is made explicit thanks to the introduction of a new pair of dual connectives:
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the exponentials “!” and “?”. In proof-nets, the standard syntax for LL proofs, boxes (introducing the
modality “!”) mark the sub-proofs available at will: during cut-elimination, such boxes can be erased
(by weakening rules), can be duplicated (by contraction rules), can be opened (by dereliction rules) or
can enter other boxes. The categorical counterpart of this refinement is well known: it is the notion of a
cartesian ∗-autonomous1 category, equipped with a comonad endowed with a strong monoidal structure.
Every instance of such a kind of structure yields a denotational model of LL.

In his seminal article [11], Girard proposes a standard translation of intuitionistic logic (and hence
simply typed λ -calculus) in multiplicative-exponential LL proof-nets whose semantic counterpart is
well known: the Kleisli category of the exponential comonad “!” is cartesian closed thanks to the strong
monoidal structure of “!”. This translation (·)N maps the intuitionistic implication A⇒ B to the LL formula
!AN ( BN. In [11] Girard proposes also another translation (·)V that he calls “boring”: it maps the the
intuitionistic implication A⇒ B to the LL formula !(AV ( BV) (or equivalently !AV ( !BV). Since the
untyped λ -calculus can be seen as simply typed with only one ground type o satisfying the recursive
identity o = o⇒ o, the two Girard’s translations (·)N and (·)V decompose this identity into o = !o ( o
and o = !(o ( o) (or equivalently, o = !o ( !o), respectively. At the λ -term level, these two translations
differ only by the way they use logical exponential rules (i.e. box and dereliction), whereas they use
multiplicative and structural (i.e. contraction and weakening) ingredients in the same way. Because of
this difference, the translation (·)N encodes the CbN λ -calculus into LL proof-nets (in the sense that
CbN evaluation→β is simulated by cut-elimination via (·)N), while (·)V encodes the CbV λ -calculus
into LL proof-nets (CbV evaluation→β v is simulated by cut-elimination via (·)V). Indeed, since in CbN
λ -calculus there is no restriction on firing a β -redex (its argument can be freely copied or erased), the
translation (·)N puts the argument of every application into a box (see [6, 23, 12]); on the other hand, the
translation (·)V puts only values into boxes (see [2]) since in CbV λ -calculus values are the only duplicable
and discardable λ -terms. Thus, as deeply studied in [16], the two Girard’s logical translations explain the
two different evaluation mechanisms, bringing them into the scope of the Curry-Howard isomorphism.

The syntax of multiplicative-exponential LL proof-nets is extremely expressive and powerful, but it is
too general and sophisticated for the computational purpose of representing purely functional programs.
For instance, simulation of β -reduction on LL proof-nets passes through intermediate states/proof-nets
that cannot be expressed as λ -terms, since LL proof-nets have many spurious cuts with axioms that have
no counterpart on λ -terms. More in general, LL proof-nets are manipulated in their graphical form, and
while this is a handy formalism for intuitions, it is far from practical for formal reasoning.

From the analysis of Girard’s translations it seems worthwhile to extend the syntax of the λ -calculus to
internalize the insights coming from LL in a λ -like syntax. The idea is to enrich the λ -calculus with explicit
boxes marking the “values” of the calculus, i.e. the terms that can be freely duplicated and discarded: such
a linear λ -calculus subsumes both CbN and CbV λ -calculi, via suitable translations. This, of course, has
been done quite early in the history of LL by defining various linear λ -calculi, such as [15, 1, 4, 24, 16].
All these calculi require a clear distinction between linear and non-linear variables, structural rules being
freely (and implicitly) available for the latter and forbidden for the former. This distinction complicates
the formalism and is actually useless as far as we are interested in subsuming λ -calculi.

Inspired by Ehrhard [9], in [10] it has been introduced an intermediate formalism enjoying at the
same time the conceptual simplicity of λ -calculus (without any distinction between linear and non-linear
variables) and the operational expressiveness of LL proof-nets: the bang calculus. It is a variant of the
λ -calculus which is “linear” in the sense that the exponential rules of LL (box and dereliction) are part

1Actually the full symmetry of such a category is not really essential as far as the λ -calculus is concerned, it is however quite
natural from the LL viewpoint: LL restores the classical involutivity of negation in a constructive setting.
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of the syntax, so as to subsume CbN and CbV λ -calculi via two translations (·)n and (·)v, respectively,
from the set Λ of λ -terms to the set !Λ of terms of the bang calculus (see §3). These two translations are
deeply related to Girard’s encodings (·)N and (·)V of CbN and CbV λ -calculi into LL proof-nets. Indeed,
Girard’s translations (·)N and (·)V decompose in such a way that the following diagrams commute:

Λ (·)N //
(·)n

))

LL

!Λ
(·)◦

55 Λ (·)V //
(·)v

))

LL

!Λ
(·)◦

55

where (·)◦ is a natural translation of the bang calculus into multiplicative-exponential LL proof-nets. Thus,
the bang calculus internalizes the two Girard’s translations in a λ -like calculus instead of LL proof-nets.
It subsumes both CbN and CbV λ -calculi in the same rewriting system and denotational model, so that it
may be a general setting to compare CbN and CbV. The bang calculus can be seen as a metalanguage
where the choice of CbN or CbV evaluation depends on the way the term is built up. If we consider the
syntax of the λ -calculus as a programming language, issues like CbN versus CbV evaluations affect the
way the λ -calculus is translated in this metalanguage, but does not affect the metalanguage itself.

It turns out that this bang calculus was already known in the literature: it is an untyped version of the
implicative fragment of Paul Levy’s Call-By-Push-Value calculus [13, 14]. Interestingly, his work was
not motivated by an investigation of the two Girard’s translations. This link is not casual, since it holds
even when the bang calculus is extended to a PCF-like system, as shown by Ehrhard [9].

The aim of our paper is to further investigate the way the bang calculus subsumes CbN and CbV
λ -calculi, refining and extending some results already obtained in [10].

1. From a syntactic viewpoint, we show in §3 that the bang calculus subsumes in the same rewriting sys-
tem both CbN and CbV λ -calculi, in the sense that the translations (·)n and (·)v from the λ -calculus
to the bang calculus are sound and complete with respect to β -reduction and βv-reduction, respec-
tively (in [10] only soundness was proven, and in a less elegant way). In other words, the diagrams

Λ 3 t β //

(·)n

��

s ∈ Λ

(·)n

��
!Λ 3 tn b // sn ∈ !Λ

Λ 3 t βv //

(·)v

��

s ∈ Λ

(·)v

��
!Λ 3 tv b // sv ∈ !Λ

commute in the two ways: starting from the β -reduction step→β for the CbN λ -calculus (on the
left) or the βv-reduction step →β v for the CbV λ -calculus (on the right), and starting from the
b-reduction step→b of the bang calculus.2

2. From a semantic viewpoint, we show in §4 that the every LL-based model U of the bang calculus
(as categorically defined in [10]) provides a model for both CbN and CbV λ -calculi (in [10] this was
done only for the special case of relational semantics). Moreover, given a λ -term t, we investigate
the relation between its interpretations |t|n in CbN (resp. |t|v in CbV) and the interpretation J·K of its
translation tn (resp. tv) into the bang calculus. We prove that the diagram below on the left (for CbN)
commutes, whereas we give a counterexample (in the relational semantics) to the commutation of
the diagram below on the right (for CbV). We conjecture that there still exists a relationship in CbV
between |t|v and JtvK, but it should be more sophisticated than in CbN.

Λ 3 t |·|n //
(·)n ((

|t|n = JtnK ∈U

tn ∈ !Λ
J·K

44
Λ 3 t |·|v //

(·)v ((

|t|v = JtvK ∈U

tv ∈ !Λ
J·K

44

2Actually, for the CbV λ -calculus the diagram is slightly more complex, as we will see in §3, but the essence does not change.
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Terms: T,S,R ::= x | λxT | 〈T 〉S | derT | T ! (set: !Λ)

Contexts: C ::= L·M | λxC | 〈C〉T | 〈T 〉C | derC | C! (set: !ΛC)

Ground contexts: G ::= L·M | λxG | 〈G〉T | 〈T 〉G | derG (set: !ΛG)

Root-steps: 〈λxT 〉S! 7→` T{S/x} der(T !) 7→d T 7→b := 7→` ∪ 7→d

r-reduction: T →r S ⇔ ∃C ∈ !ΛC, ∃T ′,S′∈ !Λ : T = CLT ′M, S = CLS′M, T ′ 7→r S′

rg-reduction: T →rg S ⇔ ∃G ∈ !ΛG, ∃T ′,S′∈ !Λ : T = GLT ′M, S = GLS′M, T ′ 7→r S′

Figure 1: The bang calculus: its syntax and its reduction rules, where r ∈ {`,d,b}.

In order to achieve these results in a clearer and simpler way, we have slightly modified (see §2) the
syntax and operational semantics of the bang calculus with respect to its original formulation in [10].

Preliminaries and notations. Let→r and→r′ be binary relations on a set X .

• The composition of→r and→r′ is denoted by→r→r′ or→r ·→r′ . The transpose of→r is denoted
by r←. The reflexive-transitive (resp. reflexive) closure of→r is denoted by→∗r (resp.→=

r ). The
r-equivalence 'r is the reflexive-transitive and symmetric closure of→r.

• Let t ∈ X : t is r-normal if there is no term s such that t→r s; t is r-normalizable if there is a r-normal
term s such that t→∗r s, and we then say that s is a r-normal form of t.

• →r is confluent if ∗r← ·→∗r ⊆→∗r · ∗r←. From confluence it follows that: t 'r s iff t→∗r r ∗r← s for
some term r; and any r-normalizable term has a unique r-normal form.

2 Syntax and reduction rules of the bang calculus

The syntax and operational semantics of the bang calculus are defined in Fig. 1.
Terms are built up from a countably infinite set V ar of variables (denoted by x,y,z, . . . ). Terms

of the form T ! (resp. λxT ; 〈T 〉S; derT ) are called or boxes (resp. abstractions; (linear) applications;
derelictions). The set of boxes is denoted by !Λ!. The set of free variables of a term T , denoted by fv(T ),
is defined as expected, λ being the only binding constructor. All terms are considered up to α-conversion.
Given T,S ∈ !Λ and a variable x, T{S/x} denotes the term obtained by the capture-avoiding substitution
of S (and not S!) for each free occurrence of x in T : so, T !{S/x}= (T{S/x})! ∈ !Λ!.

Contexts C and ground contexts G (both with exactly one hole L·M) are defined in Fig. 1. All ground
contexts are contexts but the converse fails: L·M! is a non-ground context. We write CLT M for the term
obtained by the capture-allowing substitution of the term T for the hole L·M in the context C.

Reductions in the bang calculus are defined in Fig. 1 as follows: given a root-step rule 7→r⊆ !Λ× !Λ,
we define the r-reduction→r (resp. rg-reduction→rg) as the closure of 7→r under contexts (resp. ground
contexts). Note that→rg (→r as !ΛG ( !ΛC: the only difference between→r and→rg is that the latter
does not reduce under ! (but both reduce under λ ). The root-steps used in the bang calculus are 7→` and 7→d

and 7→b := 7→`∪ 7→d. From the definitions in Fig. 1 it follows that→b=→` ∪→d and→bg =→`g∪→dg .
Intuitively, the basic idea behind the root-steps 7→` and 7→d is that the box-constructor ! marks the

only terms that can be erased and duplicated. When the argument of a constructor der is a box T !, the
root-step 7→d opens the box, i.e. accesses its content T , destroying its status of availability at will (but T ,
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varx⇒` x
T ⇒` S

λ

λxT ⇒` λxS

T ⇒` S
!

T !⇒` S!

T ⇒` S
der

derT ⇒` derS

T ⇒` S R⇒` Q
@

〈T 〉R⇒` 〈S〉Q
T ⇒` S R⇒` Q

`
〈λxT 〉R!⇒` S{Q/x}

Figure 2: Parallel `-reduction.

in turn, might be a box). The root-step 7→` says that a β -like redex 〈λxT 〉S can be fired only when its
argument is a box, i.e. S = R!: if it so, the content R of the box S replaces any free occurrence of x in T .

Example 1. Let ∆ := λx〈x〉x! and ∆′ := λx〈der(x!)〉x!. Then, ∆′→dg ∆ and 〈∆〉∆!→`g 〈∆〉∆!→`g . . . and
〈der(∆′!)〉∆′!→dg 〈∆′〉∆′!→`g 〈der(∆′!)〉∆′!→dg . . . Note that (〈∆〉∆!)! is bg-normal but not b-normalizable.

The bang (resp. ground bang) calculus is the set !Λ endowed with the reduction→b (resp.→bg).

Quasi-strong confluence of bg-reduction and confluence of b-reduction. To prove the confluence
of→b (Prop. 4.2), first we show that→` is confluent (Lemma 3.4). The latter is proved by a standard
adaptation of Tait–Martin-Löf technique — as improved by Takahashi [25] — based on parallel reduction.
For this purpose, we introduce parallel `-reduction, denoted by⇒`, a binary relation on !Λ defined by
the rules in Fig. 2. Intuitively,⇒` reduces simultaneously a number of `-redexes existing in a term. It is
immediate to check that⇒` is reflexive and→`⊆⇒`⊆→∗` , whence⇒∗` =→∗` .

For any term T , we denote by T ∗ the term obtained by reducing all `-redexes in T simultaneously.
Formally, T ∗ is defined by induction on T ∈ !Λ as follows:

x∗ := x (λxT )∗ := λxT ∗ (T !)∗ := (T ∗)! (derT )∗ := der(T ∗)

(〈T 〉S)∗ := 〈T ∗〉S∗ if T 6= λxR or S /∈ !Λ! (〈λxT 〉S!)∗ := T ∗{S∗/x}

Lemma 2 (Development). Let T,S ∈ !Λ. If T ⇒` S, then S⇒` T ∗.

Lemma 2 is the key ingredient to prove the confluence of→` (Lemma 3.4), indeed it entails that⇒`,
and hence→∗` , are strongly confluent.

The next lemma lists a series of good rewriting properties of `-, `g-, d- and dg-reductions that will be
used to prove quasi-strong confluence of→bg and confluence of→b (Prop. 4).

Lemma 3 (Basic properties of reductions).

1. →`g is quasi-strongly confluent: `g← ·→`g⊆ (→`g · `g←)∪=.

2. →dg and→d are quasi-strongly confluent (separately).

3. →dg and→`g strongly commute: dg← ·→`g⊆→`g ·dg← .

→d quasi-strongly commutes over→`: d← ·→` ⊆→` · ∗d← .

→d and→` commute: ∗d← ·→∗` ⊆→∗` · ∗d← .

4. →` is confluent: ∗`← ·→∗` ⊆→∗` · ∗`← .

Proposition 4 (Quasi-strong confluence of→bg and confluence of→b).

1. The reduction→bg is quasi-strongly confluent, i.e. bg← ·→bg⊆ (→bg ·bg←)∪= .

2. The reduction→b is confluent: ∗b← ·→∗b ⊆→∗b · ∗b← .
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λ -terms: t,s,r ::= v | ts (set: Λ)

λ -values: v ::= x | λx t (set: Λv)

λ -contexts: C ::= L·M | λxC | Ct | tC (set: ΛC)

CbN ground λ -contexts: N ::= L·M | λxN | Nt (set: ΛN)

CbV ground λ -contexts: V ::= L·M | Vt | tV (set: ΛV)

Root-steps: (λxt)S 7→β t{S/x} (CbN) (λxt)v 7→β v t{v/x} (CbV)

r-reduction: t→r s ⇔ ∃C ∈ ΛC, ∃ t ′,s′∈ Λ : t = CLt ′M, s = CLs′M, t ′ 7→r s′

βg-reduction: t→βg
s ⇔ ∃N ∈ ΛN, ∃ t ′,s′∈ Λ : t = NLt ′M, s = NLs′M, t ′ 7→β s′

β
v
g -reduction: t→β v

g
s ⇔ ∃V ∈ ΛV, ∃ t ′,s′∈ Λ : t = VLt ′M, s = VLs′M, t ′ 7→β v s′

Figure 3: The CbN and CbV λ -calculi: their syntax and reduction rules, where r ∈ {β ,β v}.

3 The bang calculus with respect to CbN and CbV λ -calculi, syntactically

One of the interests of the bang calculus is that it is a general framework where both call-by-name
(CbN i.e. ordinary, [3]) and Plotkin’s call-by-value (CbV, [21]) λ -calculi can be embedded.3 Syntax and
reduction rules of CbN and CbV λ -calculi are in Fig. 3: β reduction→β (resp. β v-reduction→β v) is
the reduction for the CbN (resp. CbV) λ -calculus. CbN and CbV λ -calculi share the same term syntax
(the set Λ of λ -terms of CbV and CbN λ -calculi can be seen as a subset of !Λ), whereas→β v is just the
restriction of→β allowing to fire a β -redex (λxT )S only when S is a λ -value, i.e. variable or abstraction.
Ground β -(resp. β v-)reduction→βg

(resp.→β v
g
) is an interesting restriction of β -(resp. β v-)reduction:

• →βg
contains head β -reduction and weak head β -reduction, two well-known evaluation strategies

for CbN λ -calculus (both reduce the β -redex in head position, the latter does not reduce under λ ’s);

• →β v
g

contains (weak) head β v-reduction (aka left reduction in [21, p. 136]), the well-known evalua-
tion strategy for CbV λ -calculus firing the leftmost-outermost β v-redex (if any) not under λ ’s.

CbN and CbV translations are two functions (·)n : Λ→ !Λ and (·)v : Λ→ !Λ, respectively, translating
λ -terms into terms of the bang calculus as follows:

xn := x (λx t)n := λx tn (ts)n := 〈tn〉sn!

xv := x! (λx t)v := (λx tv)! (ts)v := 〈der tv〉sv .

Example 5. Let Ω := (λxxx)λxxx, the typical diverging λ -term for CbN and CbV λ -calculi: one has
Ωn = 〈∆〉∆! and Ωv = 〈der(∆′!)〉∆′!, which are not bg- nor b-normalizable (∆ and ∆′ are defined in Ex. 1).

For any λ -term t, tn and tv are just different decorations of t by means of the monadic operators ! and
der (the latter does not occur in tn). Note that the translation (·)n puts the argument of any application
into a box: in CbN λ -calculus any λ -term is duplicable or discardable. On the other hand, only λ -values
(i.e. abstractions and variables) are translated by (·)v into boxes, as they are the only λ -terms duplicable
or discardable in CbV λ -calculus. Moreover, for any λ -term t, tv is `-normal, so if tv→d S0→` S then
the only `-redex in S0 has been created by the step tv→d S0 and is absent in tv.

Lemma 6 (Substitution). Let t,s be λ -terms and x be a variable.

3Here, with CbN or CbV λ -calculus we refer to the whole calculus and its general reduction rules, not only to CbN or CbV
(deterministic) evaluation strategy in the λ -calculus.
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target of CbN translation into !Λ: T,S ::= x | 〈T 〉S! | λxT (set: !Λn)

target of CbV translation into !Λ: M,N ::=U ! | 〈derM〉N | 〈U〉M (set: !Λv) U ::= x | λxM (set: !Λv
v).

Figure 4: Targets of CbN and CbV translations into the bang calculus.

1. One has that tn{sn/x}= (t{s/x})n.

2. If s is such that sv = R! for some R ∈ !Λ, then tv{R/x}= (t{s/x})v.

Note that the hypothesis about s in Lemma 6.2 is fulfilled if and only if s is a λ -value.
We can now show that the CbN (resp. CbV) translation from the CbN (resp. CbV) λ -calculus into the

bang calculus is sound and complete: said differently, the target of the CbN (resp. CbV) translation into
the bang calculus is a conservative extension of the CbN (resp. CbV) λ -calculus.

Proposition 7 (Simulation of CbN and CbV λ -calculi). Let t be a λ -term.

1. Conservative extension of CbN λ -calculus:
Soundness: If t→β t ′ then tn→` t ′n (and tn→b t ′n);
Completeness: Conversely, if tn→b S then tn→` S = t ′n and t→β t ′ for some λ -term t ′.

2. Conservative extension of ground CbN λ -calculus:
Soundness: If t→βg

t ′ then tn→`g t ′n (and tn→bg t ′n);
Completeness: Conversely, if tn→bg S then tn→`g S = t ′n and t→βg

t ′ for some λ -term t ′.

3. Conservative extension of CbV λ -calculus:
Soundness: If t→β v t ′ then tv→d→` t ′v (and hence tv→b→b t ′v);
Completeness: Conversely, if tv→d→` S then S = t ′v and t→β v t ′ for some λ -term t ′.

4. Conservative extension of ground CbV λ -calculus:
Soundness: If t→β v

g
t ′ then tv→dg→`g t ′v (and hence tv→bg→bg t ′v);

Completeness: Conversely, if tv→dg→`g S then S = t ′v and t→β v
g

t ′ for some λ -term t ′.

So, the bang calculus can simulate β - and β v-reductions via (·)n and (·)v and, conversely, `-reductions
in the targets of (·)n and (·)v correspond to β - and β v-reductions. Also, these simulations are:

• modular, in the sense that ground β -reduction (including head β -reduction and weak head β -
reduction) is simulated by ground `-reduction, and vice-versa (Prop. 7.2); ground β v-reduction
(including head β v-reduction) is simulated by ground d- and `-reductions, and vice-versa (Prop. 7.4);

• quantitative sensitive, meaning that one step of (ground) β -reduction corresponds exactly, via (·)n,
to one step of (ground) `-reduction, and vice-versa; one step of (ground) β v-reduction corresponds
exactly, via (·)v, to one step of (ground) `-reduction, and vice-versa.

According to the definition of CbN translation (·)n, the target of (·)n into the bang calculus can be
characterized syntactically: it is the subset !Λn of !Λ defined in Fig. 4. This means that tn ∈ !Λn for any
t ∈ Λ, and conversely, for any T ∈ !Λn, T n = t for some t ∈ Λ. Note that in !Λn the constructor der does
not occur and hence reductions→` and→`g coincide with→b and→bg , respectively, in !Λn.

So, Prop. 7.1-2 says that !Λn endowed with the reduction→` (resp.→`g ) — which coincides with→b

(resp.→bg) in !Λn — is isomorphic to CbN (resp. ground CbN) λ -calculus. In particular:

Corollary 8 (Preservations with respect to CbN λ -calculus). Let t,s ∈ Λ.

1. CbN equational theory: t 'β s iff tn '` sn iff tn 'b sn.
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2. CbN normal forms: t is (ground) β -normal iff tn is (ground) `-normal iff tn is (ground) b-normal.

The correspondence between CbV λ -calculus and bang calculus is slightly more delicate: CbV
translation (·)v gives a sound and complete embedding of→β v into→d→` (and similarly for their ground
variants), but it is not complete with respect to generic →b. Indeed, Ex. 1 and Ex. 5 have shown that
(λxxx)v = ∆′!→d ∆!, where ∆! is b-normal and there is no λ -term t such that tv = ∆!. Note that λxxx is
β v-normal but (λxxx)v = ∆′! is not b-normal: the analogous of Cor. 8.2 does not hold for (·)v.

Actually, an analogous of Cor. 8.1 for CbV holds: CbV translation preserves β v-equivalence in a
sound and complete way with respect to b-equivalence (see Cor. 10 below). The proof requires a fine
analysis of CbV translation (·)v. First, in Fig. 4 we define two subsets !Λv and !Λv

v of !Λ, which include
the target of CbV translation (·)v: for any t ∈ Λ, tv ∈ !Λv; in particular, for any v ∈ Λv, vv =U ! for some
U ∈ !Λv

v . We have just shown that (·)v is not surjective in !Λv. Anyway, it can be shown (Lemma 9.3) that
!Λv is the set of terms in !Λ reachable by b-reduction from CbV translations of λ -terms (i.e. for any t ∈ Λ,
if tv→∗b S then S ∈ !Λv) and b-equivalence in !Λv preserves βv-equivalence (Cor. 10). To prove that, we
define a forgetful translation (·)† : !Λv∪ !Λv

v → Λ transforming terms M ∈ !Λv and U ∈ !Λv
v into λ -terms:

(U !)† :=U† (〈derM〉N)† := M†N† (〈U〉M)† :=U†M†

x† := x (λxM)† := λxM†.

Lemma 9 (Properties of the forgetful translation (·)†).

1. (·)† is a right-inverse of (·)v: For every t ∈ Λ, one has tv† = t.

2. (·)† preserves substitution: M{U/x} ∈ !Λv with (M{U/x})† = M†{U†/x}, for any M ∈ !Λv and
U ∈ !Λv

v .

3. (·)† maps b-reduction into β v-reduction: For any M ∈ !Λv and T ∈ !Λ, if M→b T then T ∈ !Λv

and M†→=
β v T †.

Through this attentive analysis, we can conclude:

Corollary 10 (Preservation of CbV equational theory). Let t,s ∈ Λ. One has t 'β v s iff tv 'b sv.

So, Cor. 10 says that CbV translation (·)v — even if it is a sound but not complete embedding of
β v-reduction into b-reduction — is a sound and complete embedding of β v-equivalence into b-equivalence.

4 The bang calculus with respect to CbN and CbV λ -calculi, semantically

The denotational models we are interested in this paper are those induced by a model of LL. We recall the
basic definitions and notations, see [17, 9, 10] for more details.

Linear logic based denotational semantics of bang calculus. We consider a ∗-autonomous category,
namely an SMCC (L ,⊗,1,λ ,ρ,α,σ) with a dualizing object⊥. We use X (Y for the linear exponential
object, ev ∈L ((X ( Y )⊗X ,Y ) for the evaluation morphism and cur for the linear curryfication map
L (Z⊗X ,Y )→L (Z,X ( Y ). We use X⊥ for the object X (⊥ of L (the linear negation of X). This
operation ( )⊥ is a functor L op→L . The category L is cartesian with terminal object >, product &,
projections pri. By ∗-autonomy L is cocartesian with initial object 0, coproduct ⊕ and injections ini.

We are given a comonad ! : L →L with counit derX ∈L (!X ,X) (dereliction) and comultiplication
digX ∈L (!X , !!X) (digging), and a strong symmetric monoidal structure (Seely isos m0 ∈L (1, !>) and



G. Guerrieri & G. Manzonetto 9

m2
X ,Y ∈L (!X⊗ !Y, !(X &Y ))) for the functor ! , from the symmetric monoidal category (L ,&) to the

symmetric monoidal category (L ,⊗) satisfying an additional coherence condition with respect to dig.
We present now the additional structures and assumptions needed to interpret the bang calculus.
First, we assume that the unique morphism in L (0,>) is an iso (to simplify, assume just 0 = >).

It follows that for any two objects X and Y we have a morphism i t ∈L (X ,Y ) where t is the unique
morphism X →> and i is the unique morphism 0→ Y . We use 0X ,Y for this specific zero morphism,
satisfying for all f ∈L (Y,Z) and g ∈L (X ,Y ) the equation f 0X ,Y = 0X ,Z = 0Y,Zg.

These assumptions are satisfied by many models, like the relational model, Scott model, (hyper-)
coherence space model, all models based on Indexed LL [5], probabilistic coherence space model [7].

A model of the bang calculus is an object U of L satisfying the equation U ∼= !U & (!U ( U )
(we assume this iso to be an equality). Note that this entails both !U C U and !U ( U C U .

Given a term T and a repetition-free list of variables ~x = (x1, . . . ,xn) which contains all the free
variables of T , we can define a morphism JT K~x ∈L ((!U )⊗n,U ), the denotational semantics of T . The
definition is by induction on T ∈ !Λ, with~x = (x1, . . . ,xn) such that fv(T )⊆ {x1, . . . ,xn}:

• JxiK~x = w⊗i−1
U ⊗ derU ⊗w⊗n−i

U where wU ∈L (!U ,1) is the weakening and we keep implicit the
monoidality isos 1⊗U 'U ,

• JλySK~x = 〈0(!U )⊗n,!U ,cur (JSK~x,y)〉, where we assume wlog y /∈~x,

• J〈S〉RK~x = ev (pr2 JSK~x⊗pr1 JRK~x) c, where c ∈L ((!U )⊗n,(!U )⊗n⊗ (!U )⊗n) is the contraction,

• JS!K~x = 〈(JSK~x)
!,0(!U )⊗n,!U (U 〉, for (JSK~x)

! = !(JSK~x)h where h ∈L ((!U )⊗n, !((!U )⊗n)) is the
coalgebra structure map of (!U )⊗n,

• JderSK~x = derU pr1 JSK~x.

Theorem 11 (Invariance, [10]). Let T,S ∈ !Λ and~x be a repetition-free list of variables which contains
all free variables of T and S. If T 'b S then JT K~x = JSK~x.

The general notion of denotational model for the bang calculus presented here and obtained from
any denotational model L of LL (with the assumptions detailed above) is a particular case of Moggi’s
semantics of computations based on monads [18, 19], if one keeps in mind that the functor “!” defines a
strong monad on the Kleisli category L! of L .

Call-by-name. A model of the CbN λ -calculus is a reflexive object in a cartesian closed category. The
category L being ∗-autonomous, its Kleisli L! over the comonad (!,dig,der) is cartesian closed. The cate-
gory L! (whose objects are the same as L and morphisms are given by L!(A,B) =L (!A,B)) has compo-
sition f ◦g defined as f !g dig and identities A given by derA. In L!, products A&B are preserved, with pro-
jections πi := pri der!(A&B) (i ∈ {1,2}); the exponential object A⇒ B is !A ( B (this is the semantic coun-
terpart of Girard’s CbN translation) and has an evaluation morphism Ev = ev(der!A(B⊗ id!A)(m

2)−1 ∈
L (!((!A ( B)&!A),B). This defines an exponentiation since for all f ∈L (!(C &A),B) there is a unique
morphism Λ( f ) = cur( f m2) ∈L (!C, !A ( B) satisfying Ev ◦ 〈Λ( f ),A〉= f .

The identity U = !U & (!U ( U ) entails !U (U CU in L via lam := 〈0!U (U ,!U , id!U (U 〉 ∈
L (!U (U ,U ) and app := pr2 ∈L (U , !U (U ), since app lam= id!U (U . So, U is a reflexive ob-
ject (i.e. !U (U CU ) in L! via appn := der!U (U !app ∈L!(U , !U (U ) and lamn := derU !lam ∈
L!(!U ( U ,U ), since appn ◦ lamn = !U ( U . Therefore, the interpretation of a λ -term t can be
defined as usual as a morphism |t|n~x ∈L!(U k,U ), with~x = (x1, . . . ,xk) such that fv(t)⊆ {x1, . . . ,xk}:

|xi|n~x = π
k
i , |λy t|n~x = lamn ◦Λ(|t|n~x,y), |ts|n~x = Ev ◦ 〈appn ◦ |t|n~x , |s|n~x 〉.
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Summing up, the object U provides both a model of the bang calculus and a model of the CbN λ -
calculus. The relation between the two is elegant: the semantics |t|n in the CbN model of the λ -calculus of a
λ -term t decomposes into the semantics J·K in the model of the bang calculus of the CbN translation tn of t.

Theorem 12 (Factorization of CbN semantics). For every λ -term t, JtnK~x = |t|n~x (up to Seely’s isos).

Call-by-value. Models of the CbV λ -calculus can be defined using the so-called “boring” translation by
Girard of the linear implication into Linear Logic — just recall that the functor “!” defines a strong monad
on the Kleisli category L!. It is therefore enough to find an object X satisfying !X ( !X C X (equivalently,
!(X ( X)C X). This is the case for our object U since !U (U CU and !U CU entail !U ( !U C
U (by the variance of !U ( ) via the morphisms lamv = 〈0!U (!U ,!U ,cur(〈ev,0(!U (!U )⊗!U ,U 〉)〉 and
appv = cur(pr1 ev)pr2. Following e.g. [8], it is possible to define the interpretation of a λ -term t as a
morphism |t|v~x ∈L ((!U )⊗k, !U ), with~x = (x1, . . . ,xk) such that fv(t)⊆ {x1, . . . ,xk}:

|xi|v~x = w⊗i−1
U ⊗ id!U ⊗w⊗k−i

U , |λy t|v~x = (lamv cur(|t|v~x,y))!, |ts|v~x = ev((appv |t|v~x)⊗ (|s|v~x))c .

We now have two possible ways of interpreting the CbV λ -calculus in our model U : either by translating a
λ -term t into tv ∈ !Λ and then compute JtvK, or by computing directly |t|v. It is natural to wonder whether
the two interpretations JtvK and |t|v are related, and in what way. In [10] the authors conjectured that, at
least in the case of a particular relational model U satisfying U = !U ∪ (!U ×U ) = !U & (!U ( U ),
the two interpretations coincide. We show that the situation is actually more complicated than expected.

The relational model U introduced in [10] admits the following concrete description as a type system.
The set U of types and the set !U of finite multisets over U are generated by the following grammar:

(set: U ) α,β ,γ ::= a | a ( α (set: !U ) a,b,c ::= [α1, . . . ,αn] for any n≥ 0.

Environments Γ are functions from variables to !U whose support supp(Γ) = {x | Γ(x) 6= []} is finite. We
write x1 : a1, . . . ,xn : an for the environment Γ satisfying Γ(xi) = ai and Γ(y) = [ ] for y /∈~x. The multiset
union a+b is extended to environments pointwise, namely (Γ+∆)(x) = Γ(x)+∆(x).

On the one hand, the relational model U for the CbV λ -calculus inteprets a λ -term t using | · |v, which
gives |t|v~x = {(Γ,β ) | Γ `v t :β} where `v is the type system below (note that if Γ `v t : β then β ∈ !U ):

ax
x : a `v x : a

Γ `v t : [a(b] ∆ `v s : a
app

Γ+∆ `v ts : b

Γi,y : ai `v t : bi n≥ 0
lam

∑
n
i=1 Γi `v λy t : [a1(b1, . . . ,an(bn]

On the other hand, the relational model U for the bang calculus interprets a term t ∈ !Λ using J·K,
which gives JT K~x = {(Γ,β ) | Γ `! T : β} where `! is the type system defined as follows:

ax!
x : [α] `! x : α

Γ `! T : a(β ∆ `! S : a
@

Γ+∆ `! 〈T 〉S : β

Γi `! T : βi n≥ 0
!

∑
n
i=1 Γi `! T ! : [β1, . . . ,βn]

Γ `! T : [α]
der

Γ `! derT : α

Γ,x : a `! T : β
λ

Γ `! λxT : a ( β

What is the interpretation JtvK~x of the CbV translations of λ -terms? Easy calculations show that in the
type system `! the rules below — the ones needed to interpret terms of the form tv — can be derived:

ax
x : a `! x! : a

Γ `! tv : [a(β ] ∆ `! sv : a
app

Γ+∆ `! 〈der tv〉sv : β

Γi,y : ai `! tv : βi n≥ 0
lam

∑i Γi `! (λy tv)! : [a1(β1, . . . ,an(βn]
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Intuitively, the type system `v is obtained from the restriction of `! to the image of (·)v by substituting
arbitrary types β with multisets b of types. So, given a λ -term t, the two interpretations |t|v~x and JtvK~x can
be different: for α ∈U r !U (e.g. take α = []( [ ]), one has [([a(α]+a)( α]∈ J(λxxx)vKr |λxxx|v.

Theorem 13 (Relational semantics for CbV). In the relational model U , we have |t|v ( JtvK.

The counterexample shows that in general neither JtvK = 〈|t|v,0〉 nor pr1JtvK = |t|v hold. We believe
that |t|v can be obtained from JtvK by iterating the application of pr1 to J·K along the structure of t, but
how to express this formally? Usually in these situations one defines a logical relation between the two
interpretations, but this is complicated by the fact that we are in the untyped setting so there is no type
hierarchy to base our induction. We plan to investigate whether the (syntactic) logical relations introduced
by Pitts in [20] can give an inspiration to define semantic logical relations in the untyped setting. Another
source of inspiration might be the study of other concrete LL based models of the CbV λ -calculus, such
as Scott domains and coherent semantics [22].
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