
CoasterX: A Case Study in

Component-Driven Hybrid Systems

Proof Automation

Brandon Bohrer, Adriel Luo, Xue An Chuang, André Platzer

Computer Science Department, Carnegie Mellon University (email:
{bbohrer@cs, aluo@andrew, xchuang@alumni, aplatzer@cs}.cmu.edu)

Abstract: Component-driven proof automation (CDPA) exploits component structure to
automate deductive verification of large-scale hybrid systems with non-trivial continuous
dynamics. We use CDPA to implement a case study CoasterX, which is a toolchain for designing
and verifying safety of 2-dimensional roller coaster track designs. Specifically, we verify velocity
and acceleration bounds. CoasterX starts with a graphical front-end for point-and-click design of
tracks. The CoasterX back-end then automatically specifies and verifies the track in differential
dynamic logic (dL) with a custom procedure built in the KeYmaera X theorem prover. We show
that the CDPA approach scales, testing real coasters of up to 56 components.

Keywords: Roller coasters, hybrid programs, component-driven verification

1. INTRODUCTION

We introduce component-driven proof automation (CDPA),
an approach for generating formal hybrid systems speci-
fications and proofs from high-level component-based de-
signs, in order to assure the safety of critical physical sys-
tems. We explore CDPA through our case study CoasterX :
we present a graphical design tool and automated spec-
ification and verification backend for 2D roller coaster
track designs. CDPA begins with building a high-level
component-based design: in the case of CoasterX, the
user builds track designs by placing components (track
sections) in a click-and-point front-end GUI. The backend
then automatically follows the component structure to
build a formal model and verify its safety. A key advantage
of this design is that the technical challenges of modeling
and verification are handled entirely in the CoasterX back-
end: an end-user with no formal methods knowledge can
design a coaster in the high-level tool and benefit from our
formal guarantees.

We build our formal models in differential dynamic logic
(dL) Platzer (2008, 2017), a logic for hybrid systems
that supports non-linearities in both dynamics and safety
conditions. The back-end deductively verifies safety using
a custom procedure built on KeYmaera X Fulton et al.
(2015), a theorem-prover for dL designed to maximize the
trustworthiness of proofs.

Reachability is undecidable for even simple classes of
hybrid systems, so difficult safety proofs are not auto-
matic: users typically provide high-level verification in-
sights through system invariants and perform low-level
simplifications to assist proof automation. These manual
steps demand significant expertise. Even when automatic
proofs are possible, formal modeling is itself a challenge.

The CoasterX study shows that for system classes de-
scribed by reusable components (e.g. coaster tracks are

built from track sections) CDPA can solve the specification
and verification problems once and for all: We exploit com-
ponent structure to implement reusable proof automation
which verifies the entire class of systems. Theorem prov-
ing expertise is needed when implementing the automa-
tion and interactively verifying the individual components.
However, this expertise is not needed to use the resulting
system to build verified designs graphically.

The KeYmaera X prover achieves its high reliability
through a smaller trusted core than competing tools and
the ability to add automation without extending the core.
This reliability is especially valuable when verifying safety-
critical systems. We show that exploiting component struc-
ture allows CDPA to scale efficiently to models with dozens
of sections without compromising reliability.

We identify safety conditions and a formal model for roller
coasters. Our safety conditions come from biodynamics,
the study of the human body’s response to forces. Be-
cause deductive verification is challenging, it is essential
to identify a model that is as simple as possible while
providing sufficiently meaningful guarantees. Our chosen
model is mechanically simple, ignoring friction, environ-
mental effects, and lateral motion. Yet, we will argue why
the insights provided by this simple model are applicable
to real coasters.

We take as a motivating example Kennywood’s “Steel
Phantom” (Fig. 1). The Phantom caused headaches Pitts-
burgh Post-Gazette (2000) throughout its life, posing a
risk factor for more serious medical problems Fukutake
et al. (2000). It was eventually closed and reopened as
the gentler “Phantom’s Revenge”, with over a third of
the track replaced. We show that CoasterX can detect the
excessive acceleration of the Steel Phantom. This design-
time analysis can be used to detect problems before manu-
facture, ameliorating medical risks and avoiding expensive
changes. For our model of Phantom’s Revenge, CoasterX

Fig. 1. Steel Phantom (top) and Revenge (bottom); dotted
lines separate components

automatically proved a bound of 3.55 vertical G’s, close to
the 3.5 G’s of the real coaster. This is much less than the
6.5 G’s for our Steel Phantom model, showing CoasterX
can distinguish safe vs. unsafe acceleration in practice.

We evaluate CoasterX on 6 models. We computed a
conservative lower bound on the performance gain due to
CDPA, ranging from 1.6x to 20x.

2. RELATED WORK

Verification of Hybrid Systems. We summarize major
approaches to hybrid systems verification. Reachability
analysis Frehse et al. (2011); Chen et al. (2013) provides
automation, but cannot reuse verification results across
component instances, which is important for performance.
Its correctness typically depends on a large code base.

Instead, we use deductive verification in differential dy-
namic logic (dL) Platzer (2008, 2017). It can handle com-
ponent reuse, non-linear dynamics, non-linear safe regions,
and exact representation of reachable sets. The CoasterX
models use all of these: reuse improves performance, our
dynamics are multi-affine, acceleration bounds are non-
linear, and exact reachable sets improve bound precision.
Because coasters are bounded-time, dL’s ability to verify
unbounded-time systems is not used.

The KeYmaera X Fulton et al. (2015) theorem prover
for dL provides proof automation, which is fundamentally
incomplete because reachability of hybrid systems is un-
decidable Henzinger (1996). Thus, typical dL proofs re-
quire more user interaction than does reachability analysis,
gaining exact, expressive results in return. CoasterX shows
that such results can be fully automated for coasters by
reducing track verification to component verification.

Rail systems have been verified in dL, including one with
pressure brakes that take time to apply and which depend
on the train’s mass and length Mitsch et al. (2017). Roller
coasters are rail systems with a unique focus on gravity
power, for which we introduce continuously-changing track
grade. Roller coasters exert unique accelerations on riders,
so we prove the first biodynamic safe acceleration bounds.

Component-based hybrid systems theorem proving has
been explored for traffic network components Müller et al.
(2015), culminating in the (unverified) design tool SAFE-
T. Müller et al. (2017) provide a general rule for composing
components, but do not integrate it with SAFE-T. CDPA
provides the first integrated approach. CoasterX shows
that integrating high-level design with proof is itself non-
trivial, but possible.

Distributed hybrid systems verification Platzer (2012a)
also allows proof reuse for repeated components. It excels
for highly symmetric systems, e.g. many cars all using
the same controller. CDPA excels when asymmetries are

safety-critical: e.g. our straight track component is reused
many times, but each exact track shape is safety-critical.

Component Modeling and Verification. Assume-guarantee
reasoning Frehse et al. (2004); Henzinger et al. (2001)
with Hybrid I/O Automata Lynch et al. (2003) has been
proposed to help hybrid model checking scale. However,
it does not provide reuse across instances, nor is it fully
automatic because component specifications are needed.
Hybrid process algebras such as Hybrid χ Schiffelers et al.
(2004) and Hybrid CSP Liu et al. (2010) provide com-
ponent modeling, but component-based verification with
proof reuse across instances is an open problem.

3. ROLLER COASTER DESIGN AND SAFETY

There are an estimated 4600 roller coasters in the
world Marden (2018). Because of the great forces, veloc-
ities, and heights involved, roller coasters pose inherent
safety risks. Despite the risks, modern coasters have a
remarkable safety record: with over a billion annual rides,
only an estimated 450 injuries IAAPA (2017) were re-
ported in 2015. This safety record is achieved through
pervasive safety engineering, supported by computer anal-
ysis. Modern safety engineering uses computer-aided de-
sign (CAD) software to find problems at design-time,
while they can be fixed cheaply. Industry standards ASTM
(2017) mandate acceleration limits for all coasters along
each dimension of motion, capturing the human body’s
biodynamic limits. Violating these limits can have adverse
medical effects Fukutake et al. (2000). These limits also
help determine the possibility of derailments: derailment
typically occurs if a mechanical component fails during
operation CBC News (1986), and acceleration bounds help
us understand whether forces between mechanical compo-
nents are dangerously high.

In addition, showing a positive lower bound on velocity
ensures coasters do not get stuck Boyette (2017) or roll
back during operation, an essential correctness property.
Compared with standard CAD software, soundness of
CoasterX depends on only a small amount of code, due
to the small (1700 lines) trusted core of the underlying
prover Fulton et al. (2015). Additional benefits include the
ability to consider infinitely many scenarios (e.g. infinitely
many starting velocities) at once, and high confidence
provided by the use of exact arithmetic in the verification.

To make deductive verification in dL easier, we simplify the
model in multiple ways, ignoring friction, environmental
effects, and lateral motion. We look to the Steel Phantom
example to justify these simplifications. Our main result
is an upper bound on acceleration, which is only made
more conservative (and still sound) by ignoring friction.
This conservative bound provides practical information:
CoasterX shows a wide gap between the Steel Phantom
and Phantom’s Revenge. Because Steel Phantom’s ex-
cessive acceleration was not along the lateral dimension,
providing horizontal and vertical bounds is useful. We also
use simple components (straight lines and arcs), but these
can approximate arbitrary curves at the cost of increased
verification time. We model unit mass because mass can-
cels out of our acceleration equations.

Compared to acceleration upper bounds, velocity lower
bounds help show that coasters do not get stuck or roll
back. Friction and environmental (e.g. wind) effects are
essential in establishing a lower bound, so velocity lower
bounds should be taken with a grain of salt.

Nonetheless, the verification enabled by these simplifica-
tions allows us to draw practical conclusions, e.g. showing
that the Phantom’s Revenge resolved the excess accelera-
tion of the Steel Phantom.

4. TOOL: COASTERX GUI BUILDER

Fig. 2. CoasterX GUI: Placing track (left), Design bug
detected (center), Design bug fixed (right)

The user-facing part of CoasterX is a high-level track
builder GUI (Fig. 2), implemented in Python (≈600 lines).

The builder is completely point-and-click: Track sections
are placed with a mouse click, and the builder automati-
cally ensures all sections are contiguous and tangent. Any
sections where the train can get stuck or go backwards are
automatically highlighted in red. The design tool can also
perform Runge-Kutta (RK4) simulation of the coaster dy-
namics and animate the results. The user can interactively
adjust the coaster’s launch velocity and immediately see
the impact on the safety of model.

The GUI design tool greatly reduces the learning curve vs.
manually specifying and verifying a system in dL. Because
real-time detection of unsafe track sections and dynamical
simulation provide immediate feedback, they enable an
efficient design workflow. However, because track designs
are safety-critical, it is also critical that we maintain a high
degree of assurance while providing that efficient workflow.
These assurances do not come from the GUI builder.

Our assurances come from formal specification and veri-
fication in dL. The CoasterX back-end extends the KeY-
maera X Fulton et al. (2015) prover with custom auto-
matic specification (≈2000 lines) and proof (≈1500 lines)
procedures in Scala. Because only the specifier and KeY-
maera X’s core (together, 3700 lines) must be trusted, the
resulting proofs have a high level of assurance.

5. BACKGROUND: DIFFERENTIAL DYNAMIC
LOGIC dL

The CoasterX back-end uses differential dynamic logic
(dL) to formally express track designs as hybrid programs
(HPs) Platzer (2008, 2017), a program notation for hybrid
systems. Hybrid programs combine basic imperative pro-
gramming constructs with nondeterminism and systems of
differential equations. Their syntax is given below:

α, β ::= x := θ | x′ = f(x)&Q | ?Q | α ∪ β | α;β | α∗

where θ is a term, x is an assignable program variable, f is
a function, α, β are HPs, and Q is a formula. Assignments
x := θ discretely update x to the value of θ. ODEs

x′ = f(x)&Q evolve nondeterministically for any duration
so long as Q remains true. Tests ?Q have no effect when Q
is true, but abort execution otherwise. Nondeterministic
choices α ∪ β nondeterministically run either α or β, and
sequential composition α;β runs β in the state(s) resulting
from α. Nondeterministic loops α∗ run α repeatedly any
nonnegative number of times.

The formulas of dL comprise first-order logic operators in
addition to the dynamic logic operators [α]φ and 〈α〉φ
meaning φ holds in all or some state resulting from
running α, respectively. All properties in this paper are
[α]φ properties. See Platzer (2008, 2017) for details.

6. MODEL GENERATION

Once a design is created in the CoasterX GUI, the
CoasterX back-end automatically produces a formal model
of the coaster and a proof in dL. Our models are aimed at
showing bounds on acceleration, divided into horizontal
(tangential) acceleration and vertical (centripetal) accel-
eration per international standards ASTM (2017).

CoasterX generates this model by following the component
structure of the design. The dL model for each compo-
nent is created by instantiating a generic dL component
model with concrete parameters from the design. The
model for a complete coaster is formed by composing the
component models. Components compose cleanly because
each one is restricted to an evolution domain InBounds,
overlapping only at their handover points as in Fig. 1. For
inversion-free coasters, bounding boxes ((x1, y1), (x2, y2))
suffice as constraints. Inversions (e.g. in Steel Phantom)
introduce self-intersection and overlapping bounds. For
realistic models, overlaps occur only between upward and
downward sections, thus we restore a clean interface by
incorporating direction of motion (Dir is dy ≥ 0 for up or
dy ≤ 0 for down) in the constraint:

InBounds
def
≡ Dir ∧ x1 ≤ x ≤ x2 ∧ y1 ≤ y ≤ y2

Fig. 3 illustrates component model parameters.

Fig. 3. Line and arc components with tangential, cen-
tripetal, radial, and gravitational acceleration

Parametric Line Segment Model. The generic model αL

for constrained nonuniform motion on the line segment
from (x1, y1) to (x2, y2) is a linear differential equation:

αL

def
≡ {x′ = v · dx, y′ = v · dy, v′ = −dy · g& InBounds}

The position (x, y) evolves along the direction vector
(dx, dy) according to the speed v. The speed v evolves

according to the resultant tangential acceleration T , which
for constrained linear motion is the component of gravity
parallel to the track −dy·g (the parallel component cancels
with normal force N). Because the train is constrained
to the track, the direction of motion (dx, dy) is also the
track’s tangent vector. Within any single linear section,
(dx, dy) is constant. The domain constraint InBounds im-
plements the segment’s bounding box as described above.

Parametric Arc Model. We create a generic model αA

for constrained nonuniform motion on an arc by general-
izing αL with continuous evolution of the direction vector
(dx, dy), resulting in a multi-affine differential equation.
We specify the shape of the arc with its center (cx, cy),
radius r and bounding box ((x1, y1), (x2, y2)). The variable
ω is 1 for counterclockwise arcs, -1 for clockwise:

αA

def
≡ {x′ = v · dx, y′ = v · dy, v′ = −dy · g,

dx′ = −dy · v · ω/r, dy′ = dx · v · ω/r & InBounds}

Arcs above the x-axis are clockwise (ω = −1) and arcs
below the x-axis are counterclockwise (ω = 1) normally,
or vice versa when inverted. Long arcs are automatically
split at quadrant (Q1–Q4) boundaries to simplify proofs.

Parameter Instantiation. To build a dL model of a con-
crete design, we instantiate component parameters (e.g.
cx, cy, r for arcs, dx, dy for lines) with concrete values from
the GUI tool. The challenge here is that the GUI tool
works with approximate arithmetic while theorem-proving
works with exact arithmetic.

For example, we wish for (dx, dy) to be tangent to the
track (e.g. dx = −(cy − y)/r ∧ dy = (cx− x)/r in arcs),
which is rarely exactly true in floating point arithmetic.
For this reason, the model generator pre-processes designs
to convert from approximate floating-point arithmetic to
exact real arithmetic while preserving properties such as
tangency of (dx, dy). We round track geometry to an
arbitrarily-high user-specified precision.

Interfacing Between Components. This rounding raises
challenges at the interface between components. Ensur-
ing components meet exactly at their endpoints is not a
problem, but ensuring they do so with the same slope
(i.e. perfectly smooth transition) is harder. While track
geometries could be adapted so their slopes agree exactly,
this would cause an exponential explosion in the com-
plexity of the geometric description, making arithmetic
proofs completely non-scalable. Instead, we allow slight
slope disagreements between components, which can be
reduced arbitrarily by increasing model precision. At the
start of each component, we insert a program δ which
discretely adjusts the slope to match the track exactly.

For a straight section we set slope based on the endpoints:

δL
def
≡ (dx, dy) :=

(x2 − x1, y2 − y1)
√

(x2 − x1)2 + (y2 − y1)2

While for an arc section we set slope based on its center
(cxi, cyi), radius ri, and direction ω:

δA
def
≡ (dx, dy) := (ω(cyi − y)/ri,−ω(cxi − x)/ri)

Composition. We model the complete coaster by com-
posing the component models. For each component i, we
first test whether we are within its respective domain
(InBoundsi), discretely adjust the direction vector (δi),
then follow its continuous dynamics αi. We nondetermin-
istically choose (∪) to evaluate any component that is
InBoundsi, and repeat the process arbitrarily often (∗):

α ≡
(

(?InBounds1; δ1;α1)∪ · · · ∪(?InBoundsn; δn;αn)
)∗

At each iteration, the coaster evolves into any component
whose bounds are satisfied. For a safe launch speed, the
velocity is positive and the train can only move in the
rightmost such section. For an unsafe launch speed, the
train can roll back to the left. By proving positive velocity,
we will prove the train proceeds to the right.

7. VERIFICATION

CoasterX verifies two classes of dL properties: (1) quanti-
tative acceleration and velocity envelopes which ascertain
safety and other correctness properties and (2) qualitative
results, e.g. that components follow their expected geome-
tries, which increase confidence in the correctness of the
model. We begin with the qualitative results, which then
aid in proving the quantitative results.

Conservation of Energy. Any valid model should obey
fundamental laws of mechanics. Because we wish to prove
velocity bounds and energy is directly linked to velocity,
conservation of energy is of special interest. The only
energies in the system are potential energy due to altitude
and kinetic energy, so we prove E(t) = E(0) at all times

t, where E(t) = KE+ PE = v(t)2

2 + g · y(t).

Geometric Correctness. We show that both line segment
and arc components satisfy the algebraic definitions of
their geometry. For a line segment, we show we never leave
the line dx ·(y−y1) = dy ·(x−x1). This proof is automatic
because line segments have a simple (i.e. polynomial)
solution. For arcs, we show we always remain on the circle
(x− cx)2 + (y − cy)2 = r2. This model is multi-affine and
its solution lies outside decidable arithmetic, so instead
of solving it we reason by differential induction Platzer
(2012b). Induction shows the lemma

dx = (y − cy)/r ∧ dy = (cx− x)/r

proving that (dx, dy) is tangent to the arc, then a second
induction shows the train stays on the circle.

Velocity Envelope. Using the conservation of energy in-
variant, velocity is a function of altitude:

v(y) =
√

v20 + 2(y0 − y)

where v0, y0 are the velocity and altitude at the start
of the track. This identity is only true when v ≥ 0, an
invariant which we prove as a lemma using a differential

ghost Platzer (2012b) argument based on our knowledge
that initial velocity is sufficiently high. We then compute
the velocity envelope by computing the extrema of v(y)
across all sections i and points (x, y), then prove:

min
(x,y)∈track

v(y) ≤ v ≤ max
(x,y)∈track

v(y)

for all track sections, which follows by arithmetic from the
geometry of each track and energy conservation.

Acceleration Envelope. We verify upper and lower bounds
for tangential and radial acceleration. For both straight
and arc sections, the tangential acceleration is change in
speed v′ = −dy ·g. As before, we compute the envelope by
checking each segment and prove:

min
(i,x,y)∈track

−dy(i, x, y)·g≤−dy·g≤ max
(i,x,y)∈track

−dy(i, x, y)·g

Radial acceleration is 0 in a straight section, or ω·v2

r
for an

arc of radius r when rotating in direction ω. Building upon
the velocity computation, we derive the specification:

min
(i,x,y)∈track

ωi · v(y)
2

ri
≤

ω · v2

r
≤ max

(i,x,y)∈track

ωi · v(y)
2

ri
Once the acceleration envelope is specified, it proves by
arithmetic using the track geometry and velocity bounds.

Composition. The proofs for αL and αA are generic and
need only be done once. We then verify a complete coaster
by instantiating them to sections α1, . . . , αn, verifying each
branch, and conjoining them with nondeterministic choice
α1∪ · · · ∪αn. We use a loop invariant to show safety holds
for arbitrarily many iterations. The invariant J consists of
a global invariant G and local invariants Ji each of which
holds within the bounds of the respective segment:

J ≡ G ∧
∧

i

(InBoundsi → Ji)

For each case i of the composed coaster, the domain
constraint implies InBoundsi from which we can conclude
Ji holds initially on component i. In each case, we show
the implication InBoundsk → Jk holds as a postcondition
for every k, leading to a quadratic number of cases.
In principle, all but linearly-many are computationally
cheap. In the case k = i, we apply the component
proofs from above, using arithmetic solving to prove their
preconditions. In the cases k = i ± 1, the sections meet
at exactly the handover point, and arithmetic solving
suffices to show the sections agree at that point. In
the cases |k − i| > 1, the sections have no overlap,
making InBoundsi and InBoundsk disjoint. In principle,
this leads to a quick arithmetic proof by contradiction.
In the present implementation, this step is not fully
optimized, leading to quadratic behavior in Section 8. We
expect such optimizations to be straightforward.

8. EVALUATION

Our goal is to prove safety of large coaster models au-
tomatically and scalably. We show that CoasterX scales
to realistic problems by modeling and proving 5 com-
mercial coasters and one hobbyist coaster. The models of
commercial coasters are estimated from publicly available
materials since the exact geometries are proprietary trade

secrets. We supplement them with a model of Gregg’s hob-
byist coaster Gregg (2018), which matches his published
geometry exactly. Each coaster proves within ≤30 minutes
on a modern workstation, with full results in Tab. 1.

There is no other coaster verification work for us to com-
pare with, so we instead assess the speed gained by verify-
ing the generic components once and reusing their proofs
vs. verifying each instance separately. This is conservative,
ignoring, e.g. the gains from component-based arithmetic;
the full benefit is almost certainly greater.

The continuous dynamics are of modest complexity: they
are modeled with multi-affine differential equations of
at most 5 variables. At the same time, our complex
geometries result in models whose sheer size significantly
exceeds previous efforts in KeYmaera X, showing why our
automation and component reuse were important. Our
largest geometries featured 256 modeling variables and
≈50KB model files, nearly an order of magnitude more
variables than previous KeYmaera X efforts Jeannin et al.
(2017). Note most of the modeling variables are used to
keep the length of model files manageable, and should not
be confused with the continuous variables.

For large coasters, a proof with component reuse is any-
where from 1.6x to 3.5x as fast as the same proof after
disabling reuse. This shows that the value of reuse depends
greatly on the cost of the components: the benefit is mod-
est for arcs using optimized differential invariant proofs,
but major for line proofs using general automation with
no attempt at optimization, which dominate the runtime.
For small coasters, the speedup is up to 20x. The speedup
presently decreases on big models because the current,
unoptimized arithmetic proofs are quadratic.

Lastly, we wish to know that the bounds derived by
CoasterX are tight enough to be useful in practice. While
our Phantom’s Revenge model is only an estimate, we
proved a bound of 3.55 vertical G’s, close to the 3.5 G’s of
the real coaster. This is much less than the 6.5 G’s for our
Steel Phantom coaster, showing CoasterX can distinguish
well between safe and unsafe acceleration in real coasters.

9. CONCLUSION AND FUTURE WORK

We introduced CDPA and implemented a case study,
CoasterX, implemented on top of KeYmaera X. By ex-
ploiting component structure and reuse, CoasterX scales
well to 50+ component instances. Because formal specifi-
cations are automatically generated from high-level graph-
ical designs, CoasterX end-users need no formal methods
experience. The conversion from inexact high-level models
to mathematically exact specifications was subtle.

We modeled coaster dynamics and identified bounded
acceleration as our safety specification. In the process, we
prove velocity bounds, which assess also the absence of
stuck coasters. We applied these analyses to several real
coasters. For our motivating Steel Phantom example, we
show that even simple dynamics can distinguish an unsafe
coaster design (Steel Phantom) from a safe version of it
(Phantom’s Revenge), in this case by a wide margin of 3
G’s. In future work we can get tighter acceleration bounds,
faster verification times, and lateral acceleration bounds
by modeling additional forces, adding new track types, and

Coaster Model Sections Geo. Time No Reuse Speedup Steps Size Component Dim. (ODE) Time # Steps
Top Thrill Dragster 8 37 23s 466s 20x 5K 4.7KB Line 21 (3) 140s 900K
Paul Gregg BYRC 12 57 47s 502s 11x 8K 9.2KB Q1 Arc 29 (5) 3.1s 9K
Lil’ Phantom 22 107 206s 708s 3.4x 14K 21.4KB Q2 Arc 29 (5) 5.1s 14K
Phantom’s Revenge 42 192 723s 2058s 2.8x 19K 37.9KB Q3 Arc 29 (5) 3.6s 10K
El Toro 53 256 1517s 2467s 1.6x 29K 52.3KB Q4 Arc 29 (5) 6.3s 17K
Steel Phantom 56 232 1120s 3965s 3.5x 26K 40.4KB

Table 1. Coaster and component proof stats. Columns (coasters): Number of component
instances, # geometric variables, time with reuse, time without reuse, speedup factor with reuse,
total atomic proof steps, size of theorem statement. Columns (components): total dimension

(continuous vars), proof time, total atomic proof steps

modeling in 3D, respectively. These forces would improve
the velocity lower bound and thus the analysis of stuck
coasters. 3D vs. 2D models are conceptually similar, but a
3D GUI is a larger implementation effort.

Our results for coasters suggest CDPA is a promising
approach for scalable, trustworthy, automation in other
domains including rail networks, road networks, and UAV
flight plans, which we wish to verify in future work.

10. ACKNOWLEDGEMENTS

Special thanks to Jim McCann, Nick Weisenberger, Brian
Ondrey, Jessica Hodgins, and Hunter Lawrence for their
insights about roller coasters. This material is based upon
work supported by the National Science Foundation under
NSF CAREER Award CNS-1054246. The first author
was supported by the Department of Defense through
the National Defense Science & Engineering Graduate
Fellowship Program.

REFERENCES

ASTM (2017). Standard Practice for Design of Amuse-
ment Rides and Devices. Standard, ASTM Intl.

Boyette, C. (2017). 24 stuck on Six Flags roller coaster in
Maryland. URL http://www.cnn.com/2017/04/13/us
/maryland-six-flags-roller-coaster-riders-stu
ck/index.html. Accessed 2018-4-25.

CBC News (1986). Roller-coaster derailment kills 3 in
Edmonton. URL http://www.cbc.ca/news/canada/e
dmonton/june-14-1986-roller-coaster-derailmen
t-kills-3-in-edmonton-1.3639209.

Chen, X., Ábrahám, E., and Sankaranarayanan, S. (2013).
Flow*: An Analyzer for Non-linear Hybrid Systems,
volume 8044 of LNCS.

Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray,
R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., and
Maler, O. (2011). SpaceEx: Scalable verification of
hybrid systems. In CAV 2011, volume 6806 of LNCS.

Frehse, G., Han, Z., and Krogh, B. (2004). Assume-
guarantee reasoning for hybrid I/O-automata by over-
approximation of continuous interaction. In CDC 2004.

Fukutake, T., Mine, S., Yamakami, I., Yamaura, A., and
Hattori, T. (2000). Roller coaster headache and subdu-
ral hematoma. Neurology.

Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., and Platzer,
A. (2015). KeYmaera X: An axiomatic tactical theorem
prover for hybrid systems. volume 9195 of LNCS.

Gregg, P. (2018). Backyard Roller Coasters: Research and
Development. URL http://backyardrollercoasters
.org/.

Henzinger, T.A. (1996). The theory of hybrid automata.
In LICS. IEEE. doi:10.1109/LICS.1996.561342.

Henzinger, T.A., Minea, M., and Prabhu, V. (2001).
Assume-Guarantee Reasoning for Hierarchical Hybrid
Systems. doi:10.1007/3-540-45351-2 24.

IAAPA (2017). IAAPA 2015 Incident Survey Report.
URL http://www.iaapa.org/intproject/download/
2015RideIncidentSurveyReport.pdf.

Jeannin, J., Ghorbal, K., Kouskoulas, Y., Schmidt, A.,
Gardner, R., Mitsch, S., and Platzer, A. (2017). A
formally verified hybrid system for safe advisories in
the next-generation airborne collision avoidance system.
STTT. doi:10.1007/s10009-016-0434-1.

Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., and
Zou, L. (2010). A calculus for hybrid CSP. In APLAS
2010, volume 6461 of LNCS.

Lynch, N., Segala, R., and Vaandrager, F. (2003). Hybrid
I/O automata. Information and Computation, 185(1).

Marden, D. (2018). Roller Coaster Database Census. URL
https://rcdb.com/census.htm. Accessed 2018-4-25.

Mitsch, S., Gario, M., Budnik, C.J., Golm, M., and
Platzer, A. (2017). Formal verification of train control
with air pressure brakes. volume 10598 of LNCS.

Müller, A., Mitsch, S., and Platzer, A. (2015). Verified
traffic networks: Component-based verification of cyber-
physical flow systems. In International Conference on
Intelligent Transportation Systems.

Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W.,
and Platzer, A. (2017). Change and delay contracts for
hybrid system component verification. In FASE 2017.
doi:10.1007/978-3-662-54494-5 8.

Pittsburgh Post-Gazette (2000). Kennywood not letting
the phantom steal away. C–1,C–10. Aug 11 issue.

Platzer, A. (2008). Differential dynamic logic for hybrid
systems. J. Autom. Reas., 41(2), 143–189.

Platzer, A. (2012a). A complete axiomatization of quan-
tified differential dynamic logic for distributed hybrid
systems. LMCS. doi:10.2168/LMCS-8(4:17)2012.

Platzer, A. (2012b). Logics of dynamical systems. In LICS
2012. IEEE. doi:10.1109/LICS.2012.13.

Platzer, A. (2017). A complete uniform substitution
calculus for differential dynamic logic. J. Autom. Reas.,
59(2), 219–265.

Schiffelers, R.R.H., van Beek, D.A., Man, K.L., Reniers,
M.A., and Rooda, J.E. (2004). Formal Semantics
of Hybrid Chi, volume 2791 of LNCS. doi:10.1007/
978-3-540-40903-8 12.

