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Abstract: Time delays pose an important challenge in networked control systems, which are
now ubiquitous. Focusing on switched systems, we introduce a framework that provides an
upper bound for errors caused by switching delays. Our framework is based on approximate
bisimulation, a notion that has been previously utilized mainly for symbolic (discrete) abstrac-
tion of state spaces. Notable in our framework is that, in deriving an approximate bisimulation
and thus an error bound, we use a simple incremental stability assumption (namely δ-GUAS)
that does not itself refer to time delays. That this is the same assumption used for state-space
discretization enables a two-step workflow for control synthesis for switched systems, in which a
single Lyapunov-type stability certificate serves for two different purposes of state discretization
and coping with time delays. We demonstrate the proposed framework with a boost DC-DC
converter, a common example of switched systems.
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1. INTRODUCTION

Time Delays Networked control represents an important
aspect in various emerging system design paradigms, such
as cyber-physical systems and the Internet of Things. Con-
sequently, identifying and addressing challenges inherent
in networked control has become a crucial part of the
design of reliable real-world systems.

One of the biggest challenge in networked control is time
delay, which is also called jitter. Physical separation of
plants from controllers leads to inevitable communication
delays. Worse, the rise of cloud control is making both
physical and logical distances between components even
longer and more unpredictable. Precise estimation of com-
munication delays is often hard, let alone reducing them.

These trends in control engineering call for a uniform
framework for robustness against potential time delays. In
this paper, inspired by the hybrid nature of systems that
is intrinsic to networked control, we turn to approximate
bisimulation for coping with delays.

Approximate Bisimulation An approximate bisimulation
is a binary relation between states of two systems, that
witnesses the proximity of the systems’ behaviors. The no-
tion was first introduced in Girard and Pappas (2007) as a
quantitative relaxation of bisimulation, a well-established
coinductive equivalence notion between discrete transition
systems.
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Approximate bisimulation has been actively studied ever
since: a notable theoretical result is its connection to in-
cremental stability in Pola et al. (2008); on the application
side, it has been widely used in (discretized) symbolic
abstraction of continuous systems. See Girard and Pappas
(2011) for an overview.

In this paper we focus on switched systems, and use an ap-
proximate bisimulation for error bounds between: a system
Στ,δ0 with bounded time delays; and the corresponding
system Στ without delays. The choice of switched systems
as our subject is justified by the envisaged applications
in networked control. In a switched system, a plant has
finitely many operation modes and mode changes are dic-
tated by a switching signal that is sent from a controller.

Approximate Bisimulation for Switching Delays Our
contributions in technical terms are as follows. Our system
model Στ,δ0 is a (potentially nonlinear) switched system
where switching signals are nearly periodic with a period
τ ; the system exhibits potential switching delays within
a prescribed bound δ0. Our interest is in the difference
between the behaviors of Στ,δ0 and those of the delay-
free simplification Στ . We turn the two systems into
(discrete-time) transition systems T (Στ,δ0) and T (Στ );
between them we establish an approximate bisimulation
that witnesses proximity of their behaviors. The approxi-
mate bisimulation is derived from an incremental stability
assumption of the dynamics of the system Στ,δ0 , namely
δ-GUAS. More specifically, we present a construction that
turns a Lyapunov-type certificate for δ-GUAS into an
approximate bisimulation.

Our workflow resembles those in existing works about
the use of approximate bisimulation. That is, 1) starting
from an incrementally stable system T , one devises an
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Fig. 1. A two-step control synthesis workflow for switched
systems with delays.

abstraction T abst of the system; and 2) one establishes an
approximate bisimulation between T and T abst out of a
Lyapunov-like certificate of stability. Then the outcome of
analysis of T abst (verification, control synthesis, etc.) can
be carried over to the original system T , modulo the error
bounded by the approximate bisimulation.

One novelty of the current work is that, unlike most
of the existing works that aim at a symbolic (discrete)
abstraction of a state space, our abstraction T abst = Στ is
a temporally idealized system without switching delays.

Lyapunov-like certificates of stability, for the purpose of
bounding errors caused by time delays, have already been
used in the works by Pola et al. (2010a,b). Compared
to these existing works, the current work is distinguished
in that we rely only on a standard and relatively simple
notion of stability, that does not refer to time delays per
se. Indeed, what we rely on is δ-GUAS—the same stability
notion used for state-space discretization in many existing
works. 1 The abundance of analyses of δ-GUAS in the
literature (e.g. Girard (2010); Girard et al. (2010); Pola
et al. (2008)) suggests that our use of it is an advantage
when it comes to application to various concrete systems.
See §7 for further discussions on related work.

Two-Step Control Synthesis for Switched Systems with
Delays Even better, our reliance on δ-GUAS enables the
following two-step synthesis workflow, where we combine
the current results and those in Girard et al. (2010). See
Fig. 1. Our results derive the first error bound ε1 between
the original system Στ,δ0 and the delay-free abstraction
Στ . The latter system Στ is a delay-free periodic switched
system, to which we can apply the state-space discretiza-
tion technique in Girard et al. (2010). We thus construct a
discretized symbolic model T symb

τ and establish the second
approximate bisimulation ∼ε2 in Fig. 1. The fact that our
construction relies on the same stability assumptions used
in Girard et al. (2010) means the following: for establishing
both of the approximate bisimulations∼ε1 and∼ε2 , we can
reuse the same Lyapunov function, instead of finding two
different Lyapunov functions.

1 We also identify additional technical constraints besides δ-GUAS
(such as Assumption 5.1) that are unique to the current setting.

Once we obtain a symbolic model, we can apply to it
various discrete techniques, such as supervisory control
of discrete event systems (as in Ramadge and Wonham
(1987)). This is the horizontal arrow at the bottom of
Fig. 1. The resulting controller (i.e. a switching signal,
in the current setting) is then guaranteed, by the two
approximate bisimulations, to work well with Στ (with
precision ε2) and with Στ,δ0 (with precision ε1 + ε2).
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This way we ultimately derive a switching signal for the
original system Στ,δ0 whose precision ε1+ε2 is guaranteed.
The workflow in Fig. 1 takes two steps that separate
concerns (namely time delays and discretization of state
spaces). While this two-step approach can potentially lead
to loss of generality (especially in comparison with Pola
et al. (2010a), see §7), it seems to help coping with the
problem’s complexity. We demonstrate our workflow in §6,
where we successfully derive a controller for a boost DC-
DC converter example with additional switching delays.

Contributions Overall, our contributions are summarized
as follows. We present a construction of an approximate
bisimulation between a nearly-periodic switched systems
and its (exactly) periodic approximation. This allows us to
bound the difference between trajectories due to switching
delays. Thanks to our focus on switched systems we can
use a common stability assumption (namely δ-GUAS) as
the ingredient of the construction; this allows us to com-
bine the current results with the existing results on sym-
bolic abstraction and control synthesis, leading to a two-
step control synthesis workflow (Fig. 1) where the same
stability analysis derives two approximate bisimulations.

We focus on common δ-GAS Lyapunov function certifi-
cates of δ-GUAS in this paper. The case where multiple
δ-GAS Lyapunov functions are given is deferred to the
extended version (Kido et al. (2017)). An example using
multiple δ-GAS Lyapunov functions is also presented in
the extended version. We also defer the proofs in §5.

2. SWITCHED SYSTEMS

The set of nonnegative real numbers is denoted by R+. We
let ∥ ∥ denote the usual Euclidean norm on Rn.

Definition 2.1. (switched system). A switched system is a
quadruple Σ = (Rn, P,P, F ) that consists of 1) a state
space Rn; 2) a finite set P = {1, 2, . . . ,m} of modes; 3)
a set of switching signals P ⊆ S(R+, P ), where S(R+, P )
is the set of functions from R+ to P that are piecewise
constant, continuous from the right and non-Zeno; and 4) a
set of vector fields F = {f1, f2, . . . , fm} indexed by p ∈ P ,
where each fp : Rn → Rn is locally Lipschitz continuous.

A continuous and piecewise C1 function x : R+ → Rn

is a trajectory of the switched system Σ if there exists a
switching signal p ∈ P such that ẋ(t) = fp(t)(x(t)) holds

at each time t ∈ R+ when p is continuous.

We let x(t, x,p) denote the point reached at time t ∈ R+,
starting from the state x ∈ Rn (at t = 0), under the
switching signal p ∈ P. In the special case where the
switching signal is constant (i.e. p(s) = p for all s ∈ R+),
it is denoted by x(t, x, p). The continuous subsystem of Σ

2 Here precision means an upper bound for errors.



with the constant switching signal p(s) = p for all s ∈ R+

is denoted by Σp. If P is a singleton P = {p}, the system
Σ = Σp is a continuous system without switching.

Definition 2.2. (periodicity, switching delay). Let 0 ≤ δ0 <
τ . A switching signal p is said to be τ -periodic with
switching delays within δ0 if there exists a sequence of
nonnegative reals t0 < t1 < t2 < · · · such that, for each
k ∈ N, tk ∈ [kτ, kτ+δ0] and the restriction of p to [tk, tk+1)
is a constant function. The time instants tk ∈ R+ are called
switching times. A switched system Σ = (Rn, P,P, F ) is
called τ -periodic with switching delays within δ0 if all the
switching signals in P are τ -periodic with switching delays
within δ0. Additionally, if δ0 = 0, a switching signal or a
switched system is called τ -periodic.

Remark 2.3. Our results rely on δ0 < τ , which we believe
is a reasonable assumption. For example, in automotive
applications, common switching periods are 4–8 millisec-
onds, while jitters arising from CAN (Controller Area
Networking) latency can be bounded by 120 microseconds.

We focus on periodic switched systems with switching
delays, and their difference from those without switching
delays. More specifically, we consider two switched systems

Στ,δ0 = (Rn, P,Pτ,δ0 , F ) τ -periodic with delays ≤ δ0

Στ = (Rn, P,Pτ , F ) τ -periodic
(1)

that have Rn, P and F in common. For the former system
Στ,δ0 , the set Pτ,δ0 consists of all τ -periodic signals with
delays within δ0; for the latter system Στ the set Pτ

consists of all τ -periodic switching signals.

3. TRANSITION SYSTEMS AND APPROXIMATE
BISIMULATION

We use approximate bisimulations from Girard and Pap-
pas (2007) to formalize proximity between Στ,δ0 (with
delay) and Στ (without). In this section we present our key
definition (Def. 3.3) that allows such use of approximate
bisimulation, in addition to a quick recap of a basic theory
of approximate bisimulation.

Definition 3.1. (transition system). A transition system is
a sextuple T = (Q,L,GGGA, O,H, I) consisting of 1) a set
of states Q; 2) a set of labels L; 3) a transition relation
GGGA ⊆ Q × L × Q; 4) a set of outputs O; 5) an output
function H : Q → O; and 6) a set of initial states I ⊆ Q.

We let q
l

GGGGAq′ denote the fact that (q, l, q′) ∈ GGGA. In
this paper, for a set X, a function d : X × X → R+ ∪
{∞} that satisfies, for all x, y, z ∈ X, d(x, y) ≥ 0 and
d(x, z) ≤ d(x, y) + d(y, z) is called a premetric on X. A
transition system T is said to be premetric if the set O of
outputs is equipped with a premetric d.

Approximate bisimulations are defined between transitions
systems. It is a (co)inductive construct that guarantees
henceforth proximity of behaviors of two states.

Definition 3.2. Let Ti = (Qi, L,GGGA
i

, O,Hi, Ii) (i = 1, 2)

be two premetric transition systems, sharing the same sets
of actions L and outputs O with a premetric d. Let ε ∈ R+

be a positive number; we call it a precision. A relation
R ⊆ Q1 × Q2 is called an ε-approximate bisimulation
relation between T1 and T2 if the following three conditions
hold for all (q1, q2) ∈ R.

• d(H1(q1),H2(q2)) ≤ ε;

• ∀q1
l

GGGGA

1
q′1, ∃q2

l
GGGGA

2
q′2 such that (q′1, q

′
2) ∈ R; and

• ∀q2
l

GGGGA

2
q′2, ∃q1

l
GGGGA

1
q′1 such that (q′1, q

′
2) ∈ R.

The transition systems T1 and T2 are approximately bisim-
ilar with precision ε (which is denoted by T1 ∼ε T2) if
there exists an ε-approximate bisimulation relation R that
satisfies the following conditions:

• ∀q1 ∈ I1, ∃q2 ∈ I2 such that (q1, q2) ∈ R;
• ∀q2 ∈ I2, ∃q1 ∈ I1 such that (q1, q2) ∈ R.

For the two switched systems Στ,δ0 = (Rn, P,Pτ,δ0 , F ) and
Στ = (Rn, P,Pτ , F ) in (1), we shall construct associated
transition systems T (Στ,δ0) and T (Στ ), respectively.

Definition 3.3. (T (Στ,δ0), T (Στ )). The transition system
T (Στ,δ0) = (Qτ,δ0 , L,GGGAτ, δ0

, O,Hτ,δ0 , I) associated with the

switched system Στ,δ0 with delays in (1), is defined as
follows:

• the set of states is Qτ,δ0 := Rn×
∪

k∈N[kτ, kτ+δ0]×P ;
• the set of labels L is the set of modes, i.e. L := P ;
• the transition relation GGGA

τ, δ0
⊆ Qτ,δ0 × L × Qτ,δ0 is

defined by (x, t, p)
p′′

GGGGGGA

τ, δ0
(x′, t′, p′) if p = p′′, x′ =

x(t′ − t, x, p) and there exists k ∈ N such that
t ∈ [kτ, kτ + δ0] and t′ ∈ [(k + 1)τ, (k + 1)τ + δ0];

• the set of outputs is O := Rn × R+ × P ;
• the output functionHτ,δ0 : Qτ,δ0 → O is the canonical
embedding Rn×

∪
k∈N[kτ, kτ+δ0]×P → Rn×R+×P ;

and
• the set of initial states is I := Rn × {0} × P .

Intuitively, each state (x, t, p) of T (Στ,δ0) marks switching
in the system Στ,δ0 : x ∈ Rn is the (continuous) state
at switching; t is time of switching; and p is the next
mode. Note that, by the assumption on Στ,δ0 , t necessarily
belongs to the interval [kτ, kτ + δ0] for some k ∈ N.

The transition system T (Στ ) = (Qτ , L,GGGA
τ

, O,Hτ , I) is

constructed similarly from the switched system Στ without
delays in (1), by fixing δ0 in the above definition to 0.

Note that in both T (Στ,δ0) and T (Στ ), the label p′′

for a transition is uniquely determined by the mode
component p of the transition’s source (x, t, p). Therefore,
mathematically speaking, we do not need transition labels.

In Girard et al. (2010), the state space Q of the transi-
tion system is just the continuous state space Rn of the
switched system. In comparison, ours has time t and a
mode p additionally. Moving a mode p from transition
labels to states allows us to analyze what happens during
switching delays, that is, when the system keeps operating
under the mode p while it is not supposed to do so.

Definition 3.4. (premetric on outputs). The transition sys-
tems T (Στ,δ0) and T (Στ ) are premetric with the following
d, defined on the common set of outputs O = Rn×R+×P :

d((x, t, p), (x′, t′, p′)) :={
∥x− x(t− t′, x′, p)∥ if p = p′, t′ = kτ and

t ∈ [t′, t′ + δ0] for some k ∈ N
∞ otherwise.



4. INCREMENTAL STABILITY

After the pioneering work by Pola et al. (2008), a number
of frameworks rely on the assumption of incremental sta-
bility for the construction of approximate bisimulations.
Intuitively, a dynamical system is incrementally stable if,
under any choice of an initial state, the resulting trajec-
tory asymptotically converges to one reference trajectory.
In this section, we review an incremental stability for
switched systems, following Girard et al. (2010).

Definition 4.1. Let Σ = (Rn, P,P, F ) be a switched sys-
tem. Σ is said to be incrementally globally uniformly
asymptotically stable (δ-GUAS) if there exists a KL func-
tion 3 β such that for all x, y ∈ Rn, t ∈ R+ and p ∈ P,

∥x(t, x,p)− x(t, y,p)∥ ≤ β(∥x− y∥, t) .

Directly establishing that a system is δ-GUAS is often
hard. A usual technique in the field is to let a Lyapunov-
type function play the role of certificate for δ-GUAS.

Definition 4.2. Let Σ = (Rn, P,P, F ) be a single-mode
switched system with P = {p}. A smooth function V :
Rn × Rn → R+ is a δ-GAS Lyapunov function for Σ if
there exist K∞ functions 3 α, α and κ > 0 such that the
following hold for all x, y ∈ Rn.

α(∥x− y∥) ≤ V (x, y) ≤ α(∥x− y∥) (2)

∂V

∂x
(x, y)fp(x) +

∂V

∂y
(x, y)fp(y) ≤ −κV (x, y) (3)

A sufficient condition for a switched system to be δ-GUAS
is the existence of a common δ-GAS Lyapunov function.

Theorem 4.3. (Girard et al. (2010)). Let Σ be a switched
system. Assume that all continuous subsystems Σp(p ∈ P)
have a δ-GAS Lyapunov function V in common (with the
same κ). Then, V is called a common δ-GAS Lyapunov
function for Σ, and Σ is δ-GUAS. 2
5. APPROXIMATE BISIMULATION FOR DELAYS

We have reviewed that a common δ-GAS Lyapunov func-
tion is a certificate for the incremental stability δ-GUAS.
A common δ-GAS Lyapunov function has been previously
used mainly for discrete-state abstraction of switched sys-
tems (see §7). It is our main contribution to use the same
incremental stability assumption to derive upper bounds
for errors caused by switching delays. We focus on periodic
switched systems; our translation of them to transition
systems (Def. 3.3) plays an essential role.

The proofs in this section are omitted. See Appendix A in
the extended version (Kido et al. (2017)) for the proofs.

We will be using the following assumption.

Assumption 5.1. (bounded intermode derivative). Let Σ be
a switched system (Rn, P,P, F ) with P = {1, 2, . . . ,m}
and F = {f1, f2, . . . , fm}. We say a function V : Rn ×
Rn → R+ has bounded intermode derivatives if there exists

3 A continuous function γ : R+ → R+ is in class K if it is strictly
increasing and γ(0) = 0. A K function is in class K∞ if γ(x) → ∞
when x → ∞. A continuous function β : R+ × R+ → R+ is in class
KL if 1) the function defined by x 7→ β(x, t) is a K∞ function for any
fixed t; and 2) for any fixed x, the function defined by t 7→ β(x, t) is
strictly decreasing, and β(x, t) → 0 when t → ∞.

a real number ν ≥ 0 such that, for any distinct p, p′ ∈ P ,
the following inequality holds for each x, y ∈ Rn:

∂V

∂x
(x, y)fp(x) +

∂V

∂y
(x, y)fp′(y) ≤ ν . (4)

Remark 5.2. Assumption 5.1 is not assumed in the previ-
ous works on approximate bisimulation for switched sys-
tems. However, it is not a severe restriction. In Girard et al.
(2010) they make the assumption

∃γ ∈ R+. ∀x, y, z ∈ Rn. |V (x, y)− V (x, z)| ≤ γ(∥y − z∥)
(5)

(we do not need this assumption in the current work).
It is claimed in Girard et al. (2010) that (5) is readily
guaranteed if the dynamics of the system is confined to a
compact set C ⊆ Rn, and if V is class C1 in C. We can use
the same compactness argument to ensure Assumption 5.1.

Definition 5.3. (the function V ′). Let Σ = (Rn, P,P, F )
be a switched system, and V : Rn×Rn → R+ be a common
δ-GAS Lyapunov function for Σ. We define a function
V ′ : (Rn × R+ × P )× (Rn × R+ × P ) → R+ by

V ′((x, t, p), (x′, t′, p′)
)
:={

V
(
x,x(t− t′, x′, p′)

)
if p = p′ and t ∈ [t′, t′ + δ0]

∞ otherwise.

Recall that x(t−t′, x′, p′) is the state reached from x′ after
time t− t′ following the vector field fp′ .

The function V ′ defined above is an intermediate construct
that connects a Lyapunov function V and an approximate
bisimulation Rϵ. Note that it can take ∞ as its value.

Here is our main technical lemma.

Lemma 5.4. Let Στ = (Rn, P,Pτ , F ) be a τ -periodic
switched system, and Στ,δ0 = (Rn, P,Pτ,δ0 , F ) be a τ -
periodic switched system with delays within δ0. Assume
that there exists a common δ-GAS Lyapunov function V
for Στ , and that V satisfies Assumption 5.1.

We define a relation Rε ⊆ (Rn×R+×P )×(Rn×R+×P ),
using V ′ from Def. 5.3, by

(q, q′) ∈ Rε
def.⇐⇒ V ′(q, q′) ≤ α(ε) . (6)

If we fix ε = α−1
(

νδ0
1−e−κ(τ−δ0)

)
where ν is from Assump-

tion 5.1, the relation Rε is an approximate bisimulation
between the transition systems T (Στ,δ0) and T (Στ ). 2
In the following theorem we compare the trajectories of
Στ,δ0 and Στ from the same initial state x. It is a direct
consequence from the previous lemma.

Theorem 5.5. Assume the same assumptions as in Lem. 5.4.
Let pτ be a τ -periodic switching signal, and pτ,δ0 be the
same signal but with delays within δ0. That is, for each
s ∈ R+,

pτ,δ0 (s) =

{
pτ (s) or pτ (s− δ0) if s ∈

∪
k∈N,k≥1

[kτ, kτ + δ0)

pτ (s) otherwise.

We have, for each t ∈ R+,∥∥x(t, x,pτ,δ0)− x(t, x,pτ )
∥∥ ≤ α−1

(
νδ0

1− e−κ(τ−δ0)

)
.

2
Note that, for any desired precision ε, there always exists
a small enough delay bound δ0 that achieves the precision
ε (i.e. νδ0

1−e−κ(τ−δ0) ≤ ε).
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Fig. 2. The boost DC-DC converter circuit.

Remark 5.6. It turns out that the upper bound α of a δ-
GAS Lyapunov function V (see (2)) is not used in the
above results (nor their proofs). In Girard et al. (2010), α
is used to define the state space discretization parameter
η so that, for each initial state q1 ∈ I1, there would be an
approximately bisimilar initial state in I2 and vice versa.
This is not necessary in our current setting where there is
an obvious correspondence between the initial states.

6. EXAMPLE

We demonstrate our framework using the example of
the boost DC-DC converter from Beccuti et al. (2005).
It is a common example of switched systems. For this
example we have a common δ-GAS Lyapunov function
V , and therefore we appeal to the results in §5. We also
demonstrate the control synthesis workflow in Fig. 1.

System Description The boost DC-DC converter system
is presented in Fig. 2. Here we extend the analysis in Gi-
rard et al. (2010). The circuit includes a capacitor with
capacitance xc = 70 p.u. and an inductor with inductance
xl = 3 p.u. The capacitor has the equivalent series resis-
tance rc = 0.005 p.u. and the inductor has the internal
resistance rl = 0.05 p.u. The input voltage is vs = 1 p.u.,
and the resistance ro = 1 p.u. is the output load resistance.

The state x(t) =

[
il(t)
vc(t)

]
of this system consists of the

inductor current il and the capacitor voltage vc.

The system has two modes {ON,OFF} 4 , depending on
whether the switch in the circuit is on or off. By elementary
circuit theory, the dynamics in each mode is modeled by

ẋ(t) = Apx(t) + b for p ∈ {ON,OFF} , where

AON =

[− rl
xl

0

0 − 1
xc(ro+rc)

]
, b =

[
vs

xl

0

]
and

AOFF =

[
− rlro+rlrc+rorc

xl(ro+rc)
− rlro+rlrc+rorc

xl(ro+rc)
ro

xc(ro+rc)
− 1

xc(ro+rc)

]
.

Analysis Our ultimate goal is to synthesize a switching
signal that keeps the dynamics in a safe region S :=
[1.3, 1.7]× [5.7, 5.8]. We shall follow the two-step workflow
in Fig. 1.

Before analyzing the system, following Girard et al. (2010),
we rescale the second variable of the system and redefine

the state x(t) =

[
il(t)
5vc(t)

]
for better numerical condition-

ing. The ODEs are updated accordingly.

Girard et al. (2010) show that the dynamics in each mode
is δ-GAS, finding by SDP optimization a common δ-GAS
4 In the formalization of §2, the set P of modes is declared as
{1, · · · ,m}. Here we instead use P = {ON,OFF} for readability.

Lyapunov function V (x, y) =
√
(x− y)TM(x− y) with

M =

[
1.0224 0.0084
0.0084 1.0031

]
, such that α(s) = s, α(s) = 1.0127s

and κ = 0.014. We use the same function V as an
ingredient for our approximate bisimulation.

Let us first use Thm. 5.5 and derive a bound ε1 for errors
caused by switching delays. We set the switching period
τ = 0.5 and the maximum delay δ0 = τ

1000 . On top of the
analysis in Girard et al. (2010), we have to verify the con-
dition we additionally impose (namely Assumption 5.1).
Let us now assume that the dynamics stays in the safe
region S = [1.3, 1.7] × [5.7, 5.8]—this assumption will be
eventually discharged when we synthesize a safe controller.
We checked ν = 0.41 indeed satisfies the inequality (4),
relying on techniques including QE. By Thm. 5.5, we
obtain that the error between Στ,δ0 (the boost DC-DC
converter with delays) and Στ (the one without delays) is
bounded by ε1 = 0.0294176.

Then we combine the above analysis with that in Girard
et al. (2010), in the way prescribed in Fig. 1. Girard et al.
(2010) use the same Lyapunov function V to derive a dis-
crete symbolic model T symb

τ and establish an approximate
bisimulation between T (Στ ) and T symb

τ . Their symbolic
model T symb

τ can be constructed so that any desired error
bound ε2 is guaranteed (a smaller ε2 calls for a finer grid
for discretization and hence a bigger symbolic model).

Now we employ an algorithm from supervisory control
in Ramadge and Wonham (1987), and synthesize a set of
safe switching signals that confine the dynamics of T symb

τ
to a shrunk safe region Sε1+ε2 := [1.3+(ε1+ε2), 1.7−(ε1+
ε2)]× [5.7+(ε1+ε2), 5.8−(ε1+ε2)]. Let p be any such safe
switching signal. By the second approximate bisimulation
in Fig. 1, the signal p is guaranteed to keep the dynamics
of Στ in the region Sε1 := [1.3 + ε1, 1.7 − ε1] × [5.7 +
ε1, 5.8− ε1]. Finally, the first approximate bisimulation in
Fig. 1 guarantees that the signal p keeps the dynamics of
Στ,δ0 , the system with switching delays, in S.
Remark 6.1. On the choice of a safe region used in con-
trol synthesis for the symbolic model T symb

τ , our current
choice Sε1+ε2 ( S is more conservative than the choice
in Girard et al. (2010), where they in fact expand (rather
than shrink) the original safe region S. We believe our
conservative choice is required in the current workflow
(Fig. 1) where two approximation steps are totally sep-
arated. Tighter integration of the two steps can lead to
relaxation of this conservative choice.

7. RELATED WORK

Time delays are addressed also in Pola et al. (2010a,b).
Pola et al. (2010b) deals with fixed time delays, and Pola
et al. (2010a) considers unknown time delays. The goal of
these works, which is different from ours, is to construct a
comprehensive symbolic (discretized) model that encom-
passes all possible delays and switching signals. In partic-
ular, possible delays are thought of as disturbances (i.e.
demonic/adversarial nondeterminism) and consequently
they use alternating approximate bisimulations. The main
technical gadget in doing so is spline-based finitary ap-
proximation of continuous-time signals.



Towards control synthesis for switched systems with un-
known switching delays, our workflow (Fig. 1) is two-step
while a workflow based on Pola et al. (2010a) is one-step.
The latter works as follows. The results in Pola et al.
(2010a) yields a symbolic model for a switched system with
delays; it is given by a two-player finite-state game G where
angelic moves switching signals and demonic moves are
time delays. By solving the game G (e.g. by the algorithm
in Jurdzinski (2000)) one obtains a control strategy. It
seems that our two-step workflow has an advantage in
complexity: by collecting the spline-based approximations
of all possible delays and switching signals, the game G
in Pola et al. (2010a) tends to have a large number of
transitions. It has to be noted, however, that the workflow
following Pola et al. (2010a) applies to a greater variety of
systems (than switched systems) and a resulting control
strategy can be more fine-grained (reacting to delays, while
our controller always assumes the worst time delays).

Another related work that refers to time delays is Liu and
Ozay (2016). The biggest difference between Liu and Ozay
(2016) and our work is that their framework is based on
the invariance assumption of atomic formulas (δ in the
paper): as long as errors due to delays do not exceed δ, the
system satisfies the same set of LTL formulas. In contrast,
our results bound distances between trajectories; the use
of such bounds of ours is not restricted to satisfaction of
LTL specifications.

The works Borri et al. (2012); Zamani et al. (2017) study
symbolic abstraction of networked control systems, tak-
ing into account issues including time delays. The main
difference from the current work is that their delays are
assumed to be always multiples (0, τ, 2τ, . . . ) of the period
τ ; this assumption is enforced in their framework by sys-
tem components called the zero-order hold (ZOH). Their
game-based frameworks are based on alternating approx-
imate bisimulations, much like in Pola et al. (2010a), but
the above assumption leads to simpler games for control
synthesis. We note that our current setting—where delays
are within a fixed bound δ0 < τ—is outside the scope
of Borri et al. (2012); Zamani et al. (2017).

A recent line of works by Khatib et al. (2016, 2017) take
timing contracts as specifications; and study verification
and scheduling problems. A crucial difference from the
current work is that they assume linear dynamics, while
we can deal with nonlinear dynamics.

8. CONCLUSIONS AND FUTURE WORK

In this paper we introduced an approximate bisimulation
framework to provide upper bounds for errors arising from
switching delays in periodic switched systems. It uses δ-
GUAS as an ingredient for an approximate bisimulation.
This is an advantage in the control synthesis workflow
(Fig. 1), in which we separate two concerns of time delays
and discretization of state spaces.

Adaptation of the current framework to (τ, ε)-closeness
in Abbas et al. (2014) is imminent future work. As we
mentioned in §7, this adaptation will likely not be hard.

Extending the current results to a wider class of systems is
also future work. In particular, we are interested in distur-

bances and the consequent use of alternating approximate
bisimulation by Pola and Tabuada (2009).
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