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Université Paris 13, Sorbonne Paris Cité
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Let us represent booleans as the type Bool= ∀X .X ⊗X ( X ⊗X , and bitstrings using the stratified
Church encoding Str= ∀XStr[X ], with Str[X ] =!(X ( X)(!(X ( X)(!(X ( X). Then we have the
following characterization of the exponential time hierarchy:

Theorem 1 (Baillot [1]). A language can be recognized by a proof of !Str (!k+2Bool in Intuitionistic
Elementary Affine Logic (IEAL) with recursive types if and only if it belongs to k-EXPTIME. In particular,
the languages decided by predicates of type !Str(!!Bool are exactly those in PTIME.

Baillot’s proof of extensional completeness crucially relies on type fixpoints. A natural question is
whether they are actually necessary for this result, and if so, what lower complexity class is characterized
if we remove them. We give a conditional answer, assuming a semantic conjecture.

Conjecture 2. There exists a denotational model of second-order Intuitionistic Multiplicative1 Affine
Logic which interprets types as finite sets, and distinguishes between the booleans t and f in Bool.

We shall not be precise as to the definition of a denotational model: we expect any concrete model
to satisfy the required properties for the proof of our result. Our inspiration is the following theorem.

Theorem 3 (Hillebrand & Kanellakis [3]). A language can be decided by a simply typed λ -term of type
((A→ A)→ (A→ A)→ (A→ A))→ (o→ o→ o) (A can be chosen depending on the language, and o
is a base type) if and only if it is regular.

This can be proved rather quickly by interpreting the simply typed λ -calculus in the cartesian closed
category of finite sets (o must have an interpretation of cardinality ≥ 2 to distinguish the booleans). This
argument, which is an instance of semantic evaluation (cf. [4]), adapts easily to show:

Theorem 4. Languages decided by proofs of !Str[A]( 1⊕1 in propositional linear logic are regular.

Indeed, propositional linear logic admits models with finite sets: for instance, finite coherence spaces,
or the Scott model of prime algebraic lattices [4, §3]. (In fact2, transition functions of finite automata
recognizing those languages may be directly read from the interpretation of such a proof in the Scott
model; this may be seen as a particularly simple version of Grellois & Melliès’s work on higher-order
model checking and semantics of linear logic, cf. [2, §9.1].) Analogously, our conditional result is:

Theorem 5. If the above conjecture is true, then the languages decided by predicates in IEAL of type
!Str(!!Bool are exactly the regular languages.

1Actually, multiplicative connectives, weakening and impredicative quantifiation are enough to define the additives.
2Thanks to Pierre Pradic for communicating this remark to the first author.
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Proof sketch. We illustrate the idea on the easier case of the type Str (!Bool. The only thing a proof
of this formula can do, given a Str as input, is to instantiate it as Str[A] for some chosen type A, feed it
some f0 : A ( A and f1 : A ( A, retrieve some g = fi1 ◦ . . .◦ fin depending on the input word, and apply
a fixed program to this g to obtain a boolean. We may assume that A contains no exponential: it would
be of no use because of the stratification at work in IEAL.

Suppose our semantics sends A to a set A and the fi to endofunctions on A , preserving composition.
This defines a monoid morphism ϕ : {0,1}∗→ End(A ), sending each input word to the denotation of
the corresponding g. Let P ⊆ End(A ) be the set of those g for which the boolean output is t. Our
language can thus be defined as ϕ−1(P); it is regular since ϕ has a finite codomain.

If this turns out to be true, it would be to our knowledge the first implicit complexity characterization
of regular languages by a type system with unrestricted quantification. We also expect our semantic
conjecture to entail results on all the types !Str(!k+2Bool in IEAL.

To conclude this note, we justify our belief in this conjecture – at least in the case of second-order
Multiplicative Linear Logic (MLL2), which would already be enough to establish that in Elementary
Linear Logic without additives, proofs of !Str(!!Bool decide regular languages. Actually, we consider
a more precise conjecture to be highly plausible.
Definition 6. Let A be a MLL2 formula and π , π ′ be proofs of A. We write π ∼A π ′ if and only if, for any
proof ρ of A ` B where B is some propositional MLL formula, cut(π,ρ) and cut(π ′,ρ) are equivalent.
Conjecture 7. For any MLL2 formula A, there are finitely many equivalence classes for ∼A.

Thus, our denotational semantics in finite sets would simply be an observational quotient of the
syntactic model. This has no chance to work in System F, for example, since monomorphic types can
have infinitely many non-equivalent inhabitants. But thanks to linearity, in MLL2, propositional formulae
– and more generally, formulae with only universal quantifiers – have a finite number of proofs. The
difficulty is to handle the existential quantifier, which may be used to hide witnesses of arbitrary size.
But any witness introduced by a proof π must be treated generically by the test ρ . This should translate
into a bound on the amount of information on π needed to compute cut(π,ρ), depending only on A.
Typically, think of ∃X .X : all of its proofs are equivalent since there is no way to examine the inside of
the X (indeed, there is no MLL2 proof of ∃X .X ` B for propositional B).

More precisely, the proof strategy we are currently investigating is to show that cut(π,ρ) can be
normalized in such a way that if a ⊗/` or ∀/∃ cut-elimination step involves both a link from π and a
link from ρ , then these links correspond to connectives appearing in the respective types A, A⊥. Morally,
ρ cannot know about the connectives in the existential witnesses of π , and vice versa. If this holds, then
the normalization could be faithfully summarized by a “dialogue” between π and ρ whose messages are
positions of axiom links. Hence the bounded information exchange.
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